音樂(lè)和藝術(shù)是表達(dá)和傳達(dá)情感的重要方式。充分利用碎片化時(shí)間,可以讓生活更有節(jié)奏感和充實(shí)感??偨Y(jié)范文可以給我們提供一些寫(xiě)作思路和參考案例。
垂徑定理的教學(xué)設(shè)計(jì)篇一
本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時(shí),它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識(shí)在三角形中的具體運(yùn)用,是生產(chǎn)、生活實(shí)際問(wèn)題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。
本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),學(xué)生通過(guò)對(duì)定理證明的探究和討論,體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進(jìn)而培養(yǎng)學(xué)生提出問(wèn)題、解決問(wèn)題等研究性學(xué)習(xí)的能力。
二、學(xué)情分析。
對(duì)高一的學(xué)生來(lái)說(shuō),一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識(shí),具有一定觀察分析、解決問(wèn)題的能力;但另一方面對(duì)新舊知識(shí)間的聯(lián)系、理解、應(yīng)用往往會(huì)出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動(dòng)性,注意前后知識(shí)間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問(wèn)題、解決問(wèn)題。
三、設(shè)計(jì)思想:
培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的?!边@個(gè)觀點(diǎn)從教學(xué)的角度來(lái)理解就是:知識(shí)不僅是通過(guò)教師傳授得到的,更重要的是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過(guò)與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動(dòng)建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個(gè)原則而進(jìn)行設(shè)計(jì)。
四、教學(xué)目標(biāo):
1、在創(chuàng)設(shè)的問(wèn)題情境中,讓學(xué)生從已有的幾何知識(shí)和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗(yàn)坐標(biāo)法將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性.
2、理解三角形面積公式,能運(yùn)用正弦定理解決三角形的兩類(lèi)基本問(wèn)題,并初步認(rèn)識(shí)用正弦定理解三角形時(shí),會(huì)有一解、兩解、無(wú)解三種情況。
3、通過(guò)對(duì)實(shí)際問(wèn)題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識(shí)既來(lái)源于生活,又服務(wù)與生活。
五、教學(xué)重點(diǎn)與難點(diǎn)。
教學(xué)重點(diǎn):正弦定理的探索與證明;正弦定理的基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索與證明。
主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。
六、復(fù)習(xí)引入:
結(jié)論:
證明:(向量法)過(guò)a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。
正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。
垂徑定理的教學(xué)設(shè)計(jì)篇二
本節(jié)課是在上節(jié)課學(xué)習(xí)了圓的概念及弧、弦等概念的基礎(chǔ)上的一節(jié)課。在上節(jié)課結(jié)束時(shí)留給學(xué)生這樣一個(gè)問(wèn)題“你還想進(jìn)一步研究什么?”通過(guò)學(xué)習(xí),學(xué)生很容易聯(lián)系到上節(jié)課學(xué)習(xí)了圓、弧、弦、直徑、半徑等有關(guān)知識(shí)。那么圓內(nèi)這些元素還具有哪些性質(zhì)呢?學(xué)生自然地從上節(jié)課過(guò)渡到這節(jié)課的學(xué)習(xí),同時(shí)培養(yǎng)了學(xué)生勤于動(dòng)腦,勤于思考的好習(xí)慣,激發(fā)了學(xué)生學(xué)習(xí)的興趣與熱情。
本節(jié)課主要有兩方面的內(nèi)容:一是圓的軸對(duì)稱(chēng)性,二是垂徑定理及其推論。開(kāi)始以趙州橋的問(wèn)題引入課題,帶著問(wèn)題進(jìn)行學(xué)習(xí)。圓的軸對(duì)稱(chēng)性主要是通過(guò)動(dòng)手操作得出結(jié)論,圓是軸對(duì)稱(chēng)圖形,根據(jù)軸對(duì)稱(chēng)性進(jìn)一步研究圓中相等的弦、弧得出垂徑定理及其推論。利用此定理再去解決趙州橋問(wèn)題,每一個(gè)環(huán)節(jié)都是環(huán)環(huán)相扣,不是孤立存在的。
教學(xué)目標(biāo)。
經(jīng)歷探索圓的軸對(duì)稱(chēng)性及相關(guān)性質(zhì)的過(guò)程,進(jìn)一步體會(huì)和理解研究幾何圖形的各種方法。理解并應(yīng)用垂徑定理進(jìn)行有關(guān)的計(jì)算。
重點(diǎn)難點(diǎn)。
掌握垂徑定理及其推論,學(xué)會(huì)運(yùn)用垂徑定理等結(jié)論解決一些有關(guān)證明、計(jì)算和作圖問(wèn)題。
反思之一:實(shí)際問(wèn)題的意義的看法。
數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活。在實(shí)際生活中,數(shù)、形隨處可見(jiàn),無(wú)處不在。好的實(shí)際問(wèn)題容易引起學(xué)生的興趣,激發(fā)學(xué)生探索和發(fā)現(xiàn)問(wèn)題的欲望,使學(xué)生感到數(shù)學(xué)課很熟悉,數(shù)學(xué)知識(shí)離我們很近。學(xué)生在解決實(shí)際問(wèn)題的過(guò)程中,主要困難有兩點(diǎn),一是學(xué)生一見(jiàn)到實(shí)際問(wèn)題就畏懼,根本不去讀題,二是學(xué)生對(duì)實(shí)際背景不熟悉。為此,本節(jié)課設(shè)計(jì)了一個(gè)實(shí)際問(wèn)題,這樣做的好處,一是具有非常實(shí)際的用途,二是與本節(jié)課的內(nèi)容具有直接關(guān)系。這個(gè)問(wèn)題解決了,以后學(xué)生再講到類(lèi)似的實(shí)際問(wèn)題時(shí),就不會(huì)感到陌生。
每種教學(xué)模式都有其優(yōu)劣,如果一味地按一種教學(xué)模式貫穿于整個(gè)教學(xué)過(guò)程,并不能達(dá)到最好的教學(xué)效果。對(duì)于我們教師來(lái)說(shuō),應(yīng)根據(jù)不同的教學(xué)內(nèi)容,選擇不同的教學(xué)模式來(lái)教學(xué),這樣效果會(huì)更好。本節(jié)課,由于學(xué)生的差異較大,所以選擇了小組合作這種教學(xué)模式,發(fā)揮小組合作學(xué)習(xí)的優(yōu)勢(shì),給學(xué)生創(chuàng)造一個(gè)寬松的學(xué)習(xí)環(huán)境,使學(xué)生消除畏懼怕錯(cuò)的心理壓力,激發(fā)學(xué)生的創(chuàng)新精神,幫助學(xué)生樹(shù)立學(xué)好知識(shí)的信心和勇氣。
反思之二:需要更加關(guān)注學(xué)生。
教學(xué)中,把尊重學(xué)生,關(guān)注學(xué)生的發(fā)展動(dòng)態(tài)始終放在第一位。在這節(jié)課中,注重學(xué)生間的合作交流,給學(xué)生多次展示自己的機(jī)會(huì),鍛煉學(xué)生的膽量,培養(yǎng)學(xué)生語(yǔ)言表達(dá)能力及邏輯推理能力,并給予適當(dāng)?shù)墓膭?lì)和表?yè)P(yáng),使學(xué)生有成功感,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心。
在知識(shí)發(fā)生發(fā)展與應(yīng)用過(guò)程中注重教學(xué)思想方法的滲透,如本節(jié)課從特殊到一般的數(shù)學(xué)思想,交給學(xué)生解決問(wèn)題的辦法,使學(xué)生學(xué)會(huì)學(xué)習(xí)。
垂徑定理的教學(xué)設(shè)計(jì)篇三
首先講下這節(jié)課,我的一些思路:
在教學(xué)方法與教材處理方面,根據(jù)現(xiàn)在的教材特點(diǎn),教學(xué)內(nèi)容以及在新課標(biāo)理念的指導(dǎo)下,最后決定讓學(xué)生在課堂上多動(dòng)手、多觀察、多交流,最后得出定理,這個(gè)方法符合新課程理念觀點(diǎn),也符合教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一的原則。
同時(shí),在教學(xué)中,我充分利用教具和投影儀,提高教學(xué)效率。在實(shí)驗(yàn),演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)生,培養(yǎng)學(xué)生直覺(jué)思維能力,結(jié)合學(xué)生實(shí)際情況作適當(dāng)?shù)耐貜V。
我參加這次教學(xué)技能大賽,獲益良多主要體現(xiàn)在以下幾個(gè)方面:
(1)在數(shù)學(xué)教學(xué)中,一些結(jié)論的表述是很重要的,而我在這節(jié)課上有些表述確實(shí)不是很正確;而且我在課堂上,尤其是知識(shí)點(diǎn)的聯(lián)系方面的引導(dǎo)詞,更加需要再努力鉆研。今后我將在這方面下工夫,在去聽(tīng)其他數(shù)學(xué)老師的課時(shí),要注意其他老師在知識(shí)點(diǎn)同知識(shí)點(diǎn)之間的過(guò)渡語(yǔ)句。
(2)一些該讓學(xué)生知道的知識(shí)點(diǎn),講得不夠透徹。如cd是直徑,其實(shí)應(yīng)該可以拓展為過(guò)圓心的直線(要多強(qiáng)調(diào),而不是一筆帶過(guò));不能夠用數(shù)量關(guān)系求的,應(yīng)該要適當(dāng)?shù)匾龑?dǎo)學(xué)生設(shè)未知數(shù)。而不是直接告訴學(xué)生這種題目就是要設(shè)未知數(shù)。同樣在已知一條邊,不夠條件求解時(shí),也要引導(dǎo)學(xué)生利用未知數(shù)來(lái)解題的這種題目,引導(dǎo)得不夠,或者話引導(dǎo)得不夠深刻,學(xué)生就會(huì)覺(jué)得是老師直接將知識(shí)倒向他,而他不一定能接受。
(3)在學(xué)案設(shè)計(jì)方面,在時(shí)間上把握得不夠準(zhǔn)確,設(shè)計(jì)的學(xué)案內(nèi)容太多,在這節(jié)課上如果估計(jì)過(guò)量已經(jīng)足夠的話,垂徑定理的推論其實(shí)可以放在下節(jié)課。這樣就不會(huì)使得后面講推論的時(shí)間太短,太倉(cāng)促。前面復(fù)習(xí)用的時(shí)間太長(zhǎng),在復(fù)習(xí)的部分應(yīng)該多加些關(guān)于勾股定理的計(jì)算的題目,使學(xué)生在后面解直角三角形時(shí)能夠更加快,更熟練;而學(xué)案中練習(xí)題的量太少,而且是題型太單一,可以再做多些找相等的量的基礎(chǔ)訓(xùn)練,對(duì)b班的學(xué)生更加熟悉垂徑定理,基礎(chǔ)題目的掌握對(duì)b班大有好處。
(4)其實(shí)這節(jié)課還有個(gè)作圖思想要灌輸比學(xué)生,即是教學(xué)生如果見(jiàn)到弦心距,弦,那么直接連半徑構(gòu)成直角三角形;如果就是只知道一條弦的題目,就要邊弦心距都要作出來(lái),而這兩種題目我的訓(xùn)練都不到位。
最后,這些失誤給了我一個(gè)今后的努力的方向。在今后的學(xué)習(xí)中,我努力鉆研教材改正自己缺點(diǎn)。
垂徑定理的教學(xué)設(shè)計(jì)篇四
教學(xué)方法與教材處理:我選用引導(dǎo)發(fā)現(xiàn)法和直觀演示法。讓學(xué)生在課堂上多活動(dòng)、多觀察、多合作、多交流,主動(dòng)參與到整個(gè)教學(xué)活動(dòng)中來(lái),組織學(xué)生參與“實(shí)驗(yàn)―――觀察―――猜想―――證明”的活動(dòng),最后得出定理,這符合新課程理念下的“要把學(xué)生學(xué)習(xí)知識(shí)當(dāng)作認(rèn)識(shí)事物的過(guò)程來(lái)進(jìn)行教學(xué)”的觀點(diǎn),也符合教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一的原則。同時(shí),在教學(xué)中,我充分利用學(xué)校新安裝的班班通工程,利用課件,既增強(qiáng)了學(xué)生的學(xué)習(xí)興趣,又提高教學(xué)效果,在實(shí)驗(yàn),演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)生,讓每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,培養(yǎng)學(xué)生直覺(jué)思維能力,這符合新課程理念下的.直觀性與可接受性原則。另外,教學(xué)中我還注重用不同圖片的顏色對(duì)比來(lái)啟發(fā)學(xué)生。
設(shè)計(jì)的特色:為了給學(xué)生營(yíng)造一個(gè)民主、平等而又富有詩(shī)意的課堂,我以新數(shù)學(xué)課程標(biāo)準(zhǔn)下的基本理念和總體目標(biāo)為指導(dǎo)思想在教學(xué)過(guò)程中始終面向全體學(xué)生,依據(jù)學(xué)生的實(shí)際水平,選擇適當(dāng)?shù)慕虒W(xué)起點(diǎn)和教學(xué)方法,充分讓學(xué)生參與教學(xué),在合作交流的過(guò)程中,獲得良好的情感體驗(yàn)。通過(guò)“實(shí)驗(yàn)――觀察――猜想――證明”的思想,讓每個(gè)學(xué)生都有所得,我注意前后知識(shí)的鏈接,進(jìn)行各學(xué)科間的整合,為學(xué)生提供了廣闊的思考空間,同時(shí)輔以相應(yīng)的音樂(lè),為學(xué)生創(chuàng)設(shè)輕松、愉快、高雅的學(xué)習(xí)氛圍,在學(xué)習(xí)中感悟生活中的數(shù)學(xué)美。
垂徑定理的教學(xué)設(shè)計(jì)篇五
本節(jié)課夏老師先復(fù)習(xí)了上節(jié)課學(xué)習(xí)的圓的概念及弧、弦等概念。然后比較三幅圖,找出共同點(diǎn)---軸對(duì)稱(chēng)圖形。這節(jié)課的目的性很強(qiáng),圍繞一個(gè)知識(shí)系統(tǒng)“垂徑定理及其逆定理”展開(kāi)。首先,夏老師讓學(xué)生畫(huà)圓折紙,設(shè)計(jì)的問(wèn)題都是典型問(wèn)題,而且巧妙開(kāi)放,層層遞進(jìn),有效的調(diào)動(dòng)學(xué)生學(xué)習(xí)興趣,喚起學(xué)生的求知欲,激起了學(xué)生的積極思考。整節(jié)課抓住相關(guān)的基本圖形、基本輔助線、基本幾何結(jié)論的應(yīng)用,使學(xué)生的思維得到訓(xùn)練和提升。
夏教師的課堂調(diào)控能力很強(qiáng),課堂中問(wèn)題的處理過(guò)程,大都是學(xué)生先有一定的時(shí)間自己思考,提出想法并向大家展示交流,然后共同解決問(wèn)題,教師絕不包辦,很好地體現(xiàn)了以學(xué)為主體的課標(biāo)要求。教師肯花時(shí)間讓學(xué)生大膽說(shuō)出自己在思考過(guò)程中遇到的困難和障礙,呈現(xiàn)學(xué)生的思維盲點(diǎn),然后通過(guò)學(xué)生之間的合作交流和教師的點(diǎn)撥啟發(fā)幫助學(xué)生理清思路。
在教學(xué)方法與教材處理方面,夏老師能根據(jù)現(xiàn)在的教材特點(diǎn)及學(xué)情,在新課標(biāo)理念的指導(dǎo)下,讓學(xué)生在課堂上多動(dòng)手、多觀察、多交流,最后得出定理,這個(gè)方法符合新課程理念觀點(diǎn),也符合教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一的原則。
垂徑定理的教學(xué)設(shè)計(jì)篇六
導(dǎo)學(xué)案前置,學(xué)生是復(fù)習(xí)的引領(lǐng)者。通過(guò)及時(shí)批改導(dǎo)學(xué)案,發(fā)現(xiàn)學(xué)生在復(fù)習(xí)過(guò)程中的對(duì)知識(shí)理解的薄弱之處,對(duì)知識(shí)應(yīng)用的欠缺之處。主要存在的問(wèn)題:對(duì)瞬時(shí)功率的定義式應(yīng)用不熟練;書(shū)寫(xiě)動(dòng)能定理公式不是很熟練,主要表現(xiàn)在對(duì)變力做功束手無(wú)策。另外,學(xué)生剛參加完運(yùn)動(dòng)會(huì),興奮之余,學(xué)習(xí)狀態(tài)還需要調(diào)整。
1.鞏固強(qiáng)化瞬時(shí)功率的計(jì)算公式,會(huì)運(yùn)用瞬時(shí)功率的公式準(zhǔn)確解決問(wèn)題;
2.鞏固強(qiáng)化摩擦力做功的特點(diǎn),熟練書(shū)寫(xiě)動(dòng)能定理公式。
1.精心設(shè)計(jì)問(wèn)題,引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律。
通過(guò)設(shè)計(jì)問(wèn)題:物體沿粗糙斜面下滑,求物體下滑過(guò)程中摩擦力做的功?讓學(xué)生運(yùn)用功的公式計(jì)算出物體下滑過(guò)程中摩擦力做的功。教師引導(dǎo)學(xué)生對(duì)計(jì)算結(jié)果進(jìn)行分析,讓學(xué)生發(fā)現(xiàn)一個(gè)重要規(guī)律,物體沿斜面下滑摩擦力做的功與物體在相應(yīng)的水平面上滑動(dòng)摩擦力做的功是相等的。通過(guò)變式訓(xùn)練題,鞏固這個(gè)規(guī)律的應(yīng)用,學(xué)生收獲很大。
2.精心設(shè)計(jì)問(wèn)題,提升學(xué)生對(duì)新舊知識(shí)的辨析能力。
初中學(xué)生學(xué)過(guò)功率,但是不對(duì)功率進(jìn)行分類(lèi),并且力和速度的方向始終同向。高中階段,根據(jù)時(shí)間長(zhǎng)短,把功率分為平均功率和瞬時(shí)功率,并且力和速度的方向不在同一直線上。因此,計(jì)算瞬時(shí)功率時(shí),一定要考慮力和速度的方向夾角。學(xué)生受已有知識(shí)的影響頗深,很難意識(shí)到這個(gè)問(wèn)題。由此我精心設(shè)計(jì)問(wèn)題:飛行員抓住秋千桿在豎直面內(nèi)從高處擺下,求飛行員所受重力的瞬時(shí)功率的變化情況?要求學(xué)生嚴(yán)格按照瞬時(shí)功率的定義,計(jì)算出各個(gè)關(guān)鍵位置的重力的瞬時(shí)功率。通過(guò)計(jì)算發(fā)現(xiàn)重力的瞬時(shí)功率是從零變到不是零,最后再變到零。因此,重力的瞬時(shí)功率是先增大后減小,學(xué)生感到茅塞頓開(kāi)。
1.復(fù)習(xí)課就要放手,讓學(xué)生去發(fā)現(xiàn)。
導(dǎo)學(xué)案前置,讓學(xué)生發(fā)現(xiàn)問(wèn)題,展示問(wèn)題,討論問(wèn)題,最后解決問(wèn)題。這樣極大的提高了課堂效率,學(xué)生的學(xué)習(xí)困惑得到了解決,學(xué)生對(duì)物理學(xué)習(xí)的自信心有了很大的提升,學(xué)生學(xué)習(xí)物理的積極性更強(qiáng)了。
2.精益求精,不斷改善。
通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生能夠正確使用瞬時(shí)功率的公式,摩擦力做功的計(jì)算更加熟練,題目正確率大幅上升。像這種復(fù)習(xí)課堂怎么設(shè)計(jì),怎么上,我和老教師經(jīng)常交流,老教師的建議是根據(jù)學(xué)情,精心設(shè)計(jì)導(dǎo)學(xué)案,調(diào)動(dòng)學(xué)生對(duì)物理問(wèn)題的探究欲。響應(yīng)學(xué)校號(hào)召,做好導(dǎo)學(xué)案,多讓學(xué)生講解,真正讓學(xué)生做課堂的主人。
垂徑定理的教學(xué)設(shè)計(jì)篇七
在垂徑定理教學(xué)中,我獲益良多,主要體現(xiàn)在以下幾個(gè)方面:
(1)在數(shù)學(xué)教學(xué)中,一些結(jié)論的表述是很重要的,而我在這節(jié)課上有些表述確實(shí)不是很正確;而且我在課堂上,尤其是知識(shí)點(diǎn)的聯(lián)系方面的引導(dǎo)詞,更加需要再努力鉆研。今后我將在這方面下工夫,在去聽(tīng)其他數(shù)學(xué)老師的課時(shí),要注意其他老師在知識(shí)點(diǎn)同知識(shí)點(diǎn)之間的過(guò)渡語(yǔ)句。
(2)一些該讓學(xué)生知道的知識(shí)點(diǎn),講得不夠透徹。如cd是直徑,其實(shí)應(yīng)該可以拓展為過(guò)圓心的直線;不能夠用數(shù)量關(guān)系求的,應(yīng)該要適當(dāng)?shù)匾龑?dǎo)學(xué)生設(shè)未知數(shù)。而不是直接告訴學(xué)生這種題目就是要設(shè)未知數(shù)。同樣在已知一條邊,不夠條件求解時(shí),也要引導(dǎo)學(xué)生利用未知數(shù)來(lái)解題的這種題目,引導(dǎo)得不夠,或者說(shuō)引導(dǎo)得不夠深刻,學(xué)生就會(huì)覺(jué)得是老師直接將知識(shí)倒向他,而他不一定能接受。
(3)在學(xué)案設(shè)計(jì)方面,在時(shí)間上把握得不夠準(zhǔn)確,設(shè)計(jì)的學(xué)案內(nèi)容太多,在這節(jié)課上如果估計(jì)過(guò)量已經(jīng)足夠的話,垂徑定理的推論其實(shí)可以放在下節(jié)課。這樣就不會(huì)使得后面講推論的時(shí)間太短,太倉(cāng)促。前面在復(fù)習(xí)的部分應(yīng)該加些關(guān)于勾股定理的計(jì)算的題目,使學(xué)生在后面解直角三角形時(shí)能夠更加快,更熟練;而在多媒體中練習(xí)題量太小,而且是題型太單一,可以再多做些找相等的量的基礎(chǔ)訓(xùn)練。
(4)其實(shí)這節(jié)課還有個(gè)作圖思想要灌輸給學(xué)生,即教學(xué)生如果見(jiàn)到弦心距,弦,那么直接連半徑構(gòu)成直角三角形;如果就是只知道一條弦的題目,就要連弦心距都要作出來(lái),而這兩種題目我的`訓(xùn)練都不到位。
通過(guò)反思這一課的課堂教學(xué),我發(fā)現(xiàn)大部分學(xué)生對(duì)知識(shí)的理解不夠,不能靈活應(yīng)用知識(shí)于實(shí)際生活(求趙州橋主橋拱的半徑)。對(duì)這一課進(jìn)行全面反思后,我認(rèn)識(shí)到要善于處理好教學(xué)中知識(shí)傳授與能力培養(yǎng)的關(guān)系,巧妙地引導(dǎo)學(xué)生解決生活中的數(shù)學(xué)問(wèn)題。不斷地激發(fā)學(xué)生的學(xué)習(xí)積極性與主動(dòng)性,培養(yǎng)學(xué)生思維能力、想象力和創(chuàng)新精神,使每個(gè)學(xué)生的身心都能得到充分的發(fā)展。這些失誤給了我一個(gè)今后的努力的方向。在今后的學(xué)習(xí)中,我會(huì)更加努力,改正自己的缺點(diǎn),努力鉆研教材。
垂徑定理的教學(xué)設(shè)計(jì)篇八
正因?yàn)槎?xiàng)式定理在初等數(shù)學(xué)中與其他內(nèi)容聯(lián)系較少,所以教材上教法就顯得呆板,單調(diào),怎樣使二項(xiàng)式定理的教學(xué)生動(dòng)有趣?使得在這節(jié)課上學(xué)生獲得主動(dòng)?我采用啟發(fā)探究式教學(xué)方式,遵循“興趣與能力的同步發(fā)展規(guī)律”和“教,學(xué),研互相促進(jìn)的規(guī)律”,在教學(xué)中追求簡(jiǎn)易,重視直觀,并巧妙地在應(yīng)用抽象使問(wèn)題變得十分有趣,學(xué)生學(xué)得生動(dòng)主動(dòng),充分發(fā)揮其課堂上的主體作用.具體為:
一是從名人、問(wèn)題引入課題。采用“問(wèn)題――探究”的教學(xué)模式,把整個(gè)課堂分為呈現(xiàn)問(wèn)題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個(gè)階段.這里體現(xiàn)了新課程的數(shù)學(xué)應(yīng)用意識(shí)的理念.
讓學(xué)生體會(huì)研究問(wèn)題的方式方法,培養(yǎng)學(xué)生觀察、分析、概括的能力,以及化歸意識(shí)與方法遷移的能力,體會(huì)從特殊到一般的思維方式,也讓學(xué)生體會(huì)數(shù)學(xué)語(yǔ)言的簡(jiǎn)潔和嚴(yán)謹(jǐn)。
二、學(xué)生情況分析。
學(xué)生有過(guò)探究、交流的課堂教學(xué)的嘗試.。
三、教學(xué)診斷分析。
容易產(chǎn)生誤解的內(nèi)容是:通項(xiàng)指的是第r+1項(xiàng);通項(xiàng)的二項(xiàng)式系數(shù)是,與該項(xiàng)的系數(shù)是不同的概念。
四、教學(xué)方式及預(yù)期效果分析。
1.教學(xué)方式:
探究?jī)?nèi)容為二項(xiàng)式定理的內(nèi)涵,包括項(xiàng)數(shù)、指數(shù)、系數(shù)等方面的規(guī)律內(nèi)容.。
2.預(yù)期效果分析:
在知識(shí)層面上,期望學(xué)生能夠理解二項(xiàng)式定理及其推導(dǎo)方法,識(shí)記二項(xiàng)展開(kāi)式的有關(guān)特征,能對(duì)二項(xiàng)式定理進(jìn)行簡(jiǎn)單應(yīng)用;在方法層面上,期望通過(guò)教師指導(dǎo)下的探究活動(dòng),使學(xué)生經(jīng)歷數(shù)學(xué)思維過(guò)程,熟悉理解“觀察—?dú)w納—猜想—證明”的思維方法,培養(yǎng)合作的意識(shí),獲得學(xué)習(xí)和成功的體驗(yàn);通過(guò)對(duì)二項(xiàng)式定理內(nèi)容的研究,使學(xué)生體驗(yàn)特殊到一般發(fā)現(xiàn)規(guī)律,一般到特殊指導(dǎo)實(shí)踐的認(rèn)識(shí)事物過(guò)程,通過(guò)對(duì)二項(xiàng)展開(kāi)式結(jié)構(gòu)特點(diǎn)的觀察,探求過(guò)程將歸納推理與演繹推理有機(jī)結(jié)合起來(lái),是培養(yǎng)學(xué)生數(shù)學(xué)探究能力的極好載體,教學(xué)過(guò)程中,要讓學(xué)生充分體驗(yàn)到歸納推理不僅可以猜想到一般性的結(jié)果,而且可以啟發(fā)我們發(fā)現(xiàn)一般性問(wèn)題的解決方法。
五、教學(xué)目標(biāo)與教學(xué)內(nèi)容。
本節(jié)課的學(xué)生起點(diǎn):學(xué)生已經(jīng)學(xué)習(xí)了組合的基本知識(shí),初中學(xué)習(xí)了多項(xiàng)式乘法法則.。
本節(jié)課是在組合和多項(xiàng)式乘法的基礎(chǔ)上,進(jìn)一步研究學(xué)習(xí)二項(xiàng)式定理的內(nèi)容.。
1.教材分析:
重點(diǎn):用計(jì)數(shù)原理分析、與的展開(kāi)式,歸納得出二項(xiàng)式定理。
2.內(nèi)容分析:
3.教學(xué)目標(biāo):
知識(shí)技能:
(2)理解并掌握二項(xiàng)式定理,能利用計(jì)數(shù)原理證明二項(xiàng)式定理.
過(guò)程方法:
4.教學(xué)過(guò)程。
(1)課堂熱身,前置作業(yè)。
(2)直提問(wèn)題,引入課題。
(3)引導(dǎo)探究,發(fā)現(xiàn)規(guī)律。
(4)形成定理,說(shuō)理證明。
(5)定理剖析,簡(jiǎn)單應(yīng)用。
(6)例題點(diǎn)評(píng),初步體驗(yàn)。
(7)課堂小結(jié),課后作業(yè)(習(xí)題為重組題)。
垂徑定理的教學(xué)設(shè)計(jì)篇九
1.勾股定理的逆定理是研究特殊三角形——直角三角形的一種判定方法,體現(xiàn)了數(shù)形結(jié)合的思想。
2.通過(guò)勾股定理與它的逆定理的學(xué)習(xí),加深了學(xué)生對(duì)性質(zhì)與判定之間辨證統(tǒng)一關(guān)系的認(rèn)識(shí)。
3.完善了知識(shí)結(jié)構(gòu),為后繼學(xué)習(xí)打下基礎(chǔ)。
初中生已經(jīng)具備一定的獨(dú)立思考和探索能力,并能在探索過(guò)程中形成自已的觀點(diǎn),能在傾聽(tīng)別人意見(jiàn)的過(guò)程中逐漸完善自已的想法,而且本班學(xué)生比較上進(jìn),思維活躍,愿意表達(dá)自已的見(jiàn)解,有一定的互動(dòng)互助基礎(chǔ)。
1.知識(shí)與技能:
(2)掌握勾股定理的逆定理,并能應(yīng)用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。
2.過(guò)程與方法。
(1)通過(guò)對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成過(guò)程。
(2)通過(guò)用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合方法的應(yīng)用。
(3)通過(guò)對(duì)勾股定理的逆定理的證明,體會(huì)數(shù)形結(jié)合方法在問(wèn)題解決中的作用,并能應(yīng)用勾股定理的逆定理來(lái)解決相關(guān)問(wèn)題。
3.情感態(tài)度。
(2)在探索勾股定理的逆定理的活動(dòng)中,通過(guò)一系列的富有探究性的問(wèn)題,滲透與他人交流、合作的意識(shí)和探究精神。
垂徑定理的教學(xué)設(shè)計(jì)篇十
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問(wèn)題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說(shuō)明勾股定理的正確性。
學(xué)生分析:
1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過(guò)三角尺的同學(xué)并不多,通過(guò)這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開(kāi)對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開(kāi),以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過(guò)程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過(guò)向?qū)W生介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的`民族自豪感和探究創(chuàng)新的精神。
教學(xué)目標(biāo):
1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過(guò)程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過(guò)程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語(yǔ)言表達(dá)能力等,感受勾股定理的文化價(jià)值。
3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛(ài)國(guó)熱情。
4、欣賞設(shè)計(jì)圖形美。
教學(xué)準(zhǔn)備階段:
學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
(一)引入。
同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過(guò):他們的邊有什么關(guān)系呢?今天我們來(lái)探索這一小秘密。(板書(shū)課題:探索直角三角形三邊關(guān)系)。
(二)實(shí)驗(yàn)探究。
1、取方格紙片,在上面先設(shè)計(jì)任意格點(diǎn)直角三角形,再以它們的每一邊分別向三角形外作正方形,設(shè)網(wǎng)格正方形的邊長(zhǎng)為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫(xiě)下表:
(討論難點(diǎn):以斜邊為邊的正方形的面積找法)。
交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。
(三)探索所得結(jié)論的正確性。
當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時(shí),是否一定成立?
1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)。
在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來(lái)交流講解,并引導(dǎo)學(xué)生進(jìn)行說(shuō)理:
如圖2(用補(bǔ)的方法說(shuō)明)。
師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門(mén)就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來(lái)尺子和筆又量又畫(huà),他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來(lái)西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見(jiàn)課本52頁(yè)彩圖2—1,欣賞圖片)。
如圖3(用割的方法去探索)。
師介紹:(出示圖片)中國(guó)古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過(guò)此方法測(cè)量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來(lái)證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國(guó)古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹(shù)立了一個(gè)典范。他是我國(guó)有記載以來(lái)第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國(guó)數(shù)學(xué)家們?yōu)榱思o(jì)念我國(guó)在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。
20xx年,世界數(shù)學(xué)家大會(huì)在中國(guó)北京召開(kāi),當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國(guó)古代數(shù)學(xué)的輝煌成就。
本節(jié)課學(xué)習(xí)的勾股定理用語(yǔ)言敘說(shuō)為:
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問(wèn)題并交流。
垂徑定理的教學(xué)設(shè)計(jì)篇十一
1、體驗(yàn)勾股定理的探索過(guò)程,由特例猜想勾股定理,再由特例驗(yàn)證勾股定理。
2、會(huì)利用勾股定理解釋生活中的簡(jiǎn)單現(xiàn)象。
(二)能力訓(xùn)練要求。
1、在學(xué)生充分觀察、歸納、猜想、探索勾股定理的過(guò)程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想。
2、在探索勾股定理的過(guò)程中,發(fā)展學(xué)生歸納、概括和有條理地表達(dá)活動(dòng)過(guò)程及結(jié)論的能力。
(三)情感與價(jià)值觀要求。
1、培養(yǎng)學(xué)生積極參與、合作交流的意識(shí)。
2、在探索勾股定理的過(guò)程中,體驗(yàn)獲得成功的快樂(lè),鍛煉學(xué)生克服困難的勇氣。
重點(diǎn):探索和驗(yàn)證勾股定理。
難點(diǎn):在方格紙上通過(guò)計(jì)算面積的方法探索勾股定理。
交流探索猜想。
在方格紙上,同學(xué)們通過(guò)計(jì)算以直角三角形的三邊為邊長(zhǎng)的三個(gè)正方形的面積,在合作交流的過(guò)程中,比較這三個(gè)正方形的面積,由此猜想出直角三角形的三邊關(guān)系。
1、學(xué)生每人課前準(zhǔn)備若干張方格紙。
2、投影片三張:
第一張:填空(記作1.1.1a);。
第二張:?jiǎn)栴}串(記作1.1.1b);。
第三張:做一做(記作1.1.1c)。
創(chuàng)設(shè)問(wèn)題情境,引入新課。
出示投影片(1.1.1a)。
(1)三角形按角分類(lèi),可分為xx。
(2)對(duì)于一般的三角形來(lái)說(shuō),判斷它們?nèi)鹊臈l件有哪些?對(duì)于直角三角形呢?
(3)有兩個(gè)直角三角形,如果有兩條邊對(duì)應(yīng)相等,那么這兩個(gè)直角三角形一定全等嗎?
垂徑定理的教學(xué)設(shè)計(jì)篇十二
高三第一階段復(fù)習(xí),也稱(chēng)“知識(shí)篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個(gè)知識(shí)點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對(duì)學(xué)過(guò)的知識(shí)產(chǎn)生全新認(rèn)識(shí)。在高一、高二時(shí),是以知識(shí)點(diǎn)為主線索,依次傳授講解的,由于后面的相關(guān)知識(shí)還沒(méi)有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識(shí)往往是零碎和散亂,而在第一輪復(fù)習(xí)時(shí),以章節(jié)為單位,將那些零碎的、散亂的知識(shí)點(diǎn)串聯(lián)起來(lái),并將他們系統(tǒng)化、綜合化,把各個(gè)知識(shí)點(diǎn)融會(huì)貫通。對(duì)于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強(qiáng)復(fù)習(xí)的針對(duì)性,講求實(shí)效。
一、內(nèi)容分析說(shuō)明。
1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項(xiàng)式乘法的繼續(xù),它所研究的二項(xiàng)式的`乘方的展開(kāi)式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:
(1)二項(xiàng)展開(kāi)式與多項(xiàng)式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對(duì)多項(xiàng)式的變形起到復(fù)習(xí)深化作用。
(2)二項(xiàng)式定理與概率理論中的二項(xiàng)分布有內(nèi)在聯(lián)系,利用二項(xiàng)式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識(shí)間縱橫聯(lián)系,形成知識(shí)網(wǎng)絡(luò)。
(3)二項(xiàng)式定理是解決某些整除性、近似計(jì)算等問(wèn)題的一種方法。
試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時(shí)也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的近似值。
垂徑定理的教學(xué)設(shè)計(jì)篇十三
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問(wèn)題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。
教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。
據(jù)此,制定教學(xué)目標(biāo)如下:
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):
以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的`主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。
切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。
通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:
1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4。那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè)學(xué)狀態(tài)。
3、板書(shū)課題,出示學(xué)習(xí)目標(biāo)。
教師指導(dǎo)學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。
1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;
(1)這兩個(gè)圖形有什么特點(diǎn)?
(2)你能寫(xiě)出這兩個(gè)圖形的面積嗎?
(3)如何運(yùn)用勾股定理?是否還有其他形式?
這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說(shuō)明本組對(duì)問(wèn)題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。
引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。
垂徑定理的教學(xué)設(shè)計(jì)篇十四
1、知識(shí)目標(biāo):
(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;。
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;。
(2)通過(guò)問(wèn)題的解決,提高學(xué)生的運(yùn)算能力。
3、情感目標(biāo):
(1)通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;。
(2)通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育.
教學(xué)難點(diǎn):通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
教學(xué)用具:直尺,微機(jī)。
教學(xué)方法:以學(xué)生為主體的討論探索法。
垂徑定理的教學(xué)設(shè)計(jì)篇十五
1、知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問(wèn)題。
2、過(guò)程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過(guò)程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
3、情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育。
知識(shí)點(diǎn)1:(已知兩邊求第三邊)。
1.在直角三角形中,若兩直角邊的長(zhǎng)分別為1cm,2cm,則斜邊長(zhǎng)為xx。
2.已知直角三角形的兩邊長(zhǎng)為3、4,則另一條邊長(zhǎng)是xx。
3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長(zhǎng)?
知識(shí)點(diǎn)2:
利用方程求線段長(zhǎng)。
(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
(2)de與ce的位置關(guān)系。
(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
利用方程解決翻折問(wèn)題。
3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點(diǎn)b與點(diǎn)d重合,折痕為ef,求de的長(zhǎng)。
談一談你這節(jié)課都有哪些收獲?
本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的'有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過(guò)程;第二課時(shí)是通過(guò)例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過(guò)從實(shí)際問(wèn)題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和應(yīng)用能力。
垂徑定理的教學(xué)設(shè)計(jì)篇十六
1、內(nèi)容地位:從知識(shí)體系上看,《垂徑定理》是義務(wù)教育新課程標(biāo)準(zhǔn)人教版九年級(jí)(上冊(cè))第三章內(nèi)容,是在學(xué)生學(xué)習(xí)了《旋轉(zhuǎn)與中心對(duì)稱(chēng)》之后,對(duì)特殊的中心對(duì)稱(chēng)圖形圓的深度學(xué)習(xí)的過(guò)程,是學(xué)生學(xué)習(xí)了圓的基本概念之后,對(duì)圓的基本性質(zhì)的新探究。是中考的必考考點(diǎn)之一。
2、學(xué)習(xí)目標(biāo):
(1)利用圓的對(duì)稱(chēng)性探究垂徑定理。(2)能運(yùn)用垂徑定理解決問(wèn)題。(3)全心投入,細(xì)心認(rèn)真。
3、重點(diǎn)難點(diǎn):
學(xué)習(xí)重點(diǎn):垂徑定理的探究及運(yùn)用。學(xué)習(xí)難點(diǎn):利用垂徑定理解決問(wèn)題。
二、學(xué)情分析。
1.學(xué)生心理特征:進(jìn)入初三,學(xué)生思維活躍,求知欲強(qiáng),對(duì)探索問(wèn)題充滿(mǎn)好奇,在課堂上有互相競(jìng)爭(zhēng)的渴望,相比以前,他們有一定的知識(shí)儲(chǔ)備,但學(xué)習(xí)積極性有所減退,自我意識(shí)增強(qiáng)。
2.學(xué)生認(rèn)知基礎(chǔ):在學(xué)習(xí)本節(jié)之前,學(xué)生已經(jīng)學(xué)習(xí)了《圓的基本概念》,明確了直徑、弦等基本概念,會(huì)運(yùn)用軸對(duì)稱(chēng)的性質(zhì)解決問(wèn)題,學(xué)習(xí)了勾股定理,具備了進(jìn)一步學(xué)習(xí)《垂徑定理》的基本能力.3.學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):學(xué)生在之前的學(xué)習(xí)中,已明確了展示課的學(xué)習(xí)程序,并能利用學(xué)案,準(zhǔn)備展示,變式訓(xùn)練,歸納方法,靈活運(yùn)用,具備了學(xué)習(xí)活動(dòng)的經(jīng)驗(yàn)基礎(chǔ).
三、教法學(xué)法分析。
學(xué)法分析:作為一節(jié)展示課,學(xué)生將在教師的帶領(lǐng)下經(jīng)歷明確目標(biāo)、溫故知新、準(zhǔn)備展示、展示所學(xué)、鞏固提升等過(guò)程,培養(yǎng)學(xué)生獨(dú)學(xué)靜思、有效交流、積極合作、大膽展示的良好學(xué)習(xí)習(xí)慣。
四、教學(xué)過(guò)程及大致時(shí)間分配(1)明確目標(biāo)、(1分鐘)。
目標(biāo)出示在黑板上,教師引導(dǎo)學(xué)生理解(2)溫故知新(3分鐘)。
采用個(gè)別提問(wèn)的方式,復(fù)習(xí)基本知識(shí)點(diǎn),為扎實(shí)做充分準(zhǔn)備(3)分配任務(wù),準(zhǔn)備展示(5分鐘)。
教師分配展示的任務(wù),并指導(dǎo)學(xué)生做展示的前期準(zhǔn)備。(4)小組展示,變式訓(xùn)練(20分鐘)。
學(xué)生分組有序展示,在展示中鼓勵(lì)提問(wèn),可做變式訓(xùn)練。要求展示者書(shū)寫(xiě)規(guī)范,過(guò)程完整,聲音洪亮,表達(dá)流利,銜接緊湊。(5)歸納梳理、整理學(xué)案(3分鐘)。
學(xué)生將錯(cuò)誤的題目整理,補(bǔ)充不完整的解題過(guò)程,要求用雙色筆。(6)反饋檢測(cè)、鞏固提高(12分鐘)。
完成學(xué)案反饋檢測(cè)部分,力爭(zhēng)按下課能夠完成。
五、教后反思垂直于弦的直徑也叫垂經(jīng)定理,是初中階段圓中有關(guān)計(jì)算方面比較重要的一節(jié)。本節(jié)課主要經(jīng)過(guò)了三個(gè)環(huán)節(jié):第一個(gè)環(huán)節(jié)是讓學(xué)生通過(guò)折自制的圓形圖片得出圓是軸對(duì)稱(chēng)圖形,每條經(jīng)過(guò)圓心的直線都是它的對(duì)稱(chēng)軸,它有無(wú)數(shù)條對(duì)稱(chēng)軸。第二個(gè)環(huán)節(jié)是讓學(xué)生通過(guò)探究得出垂經(jīng)定理的內(nèi)容。第三個(gè)環(huán)節(jié)是利用垂經(jīng)定理解決有關(guān)方面的計(jì)算。其中,第二個(gè)環(huán)節(jié)是本節(jié)課的重點(diǎn),也是我這節(jié)課的一個(gè)亮點(diǎn)。具體經(jīng)過(guò)以下5個(gè)步驟:
(1)讓學(xué)生拿出自己手中的圓形圖片對(duì)折圓,找出圓心。(學(xué)生很感興趣,有些同學(xué)折的是兩條互相垂直的直徑得出圓心,有些同學(xué)折的是兩條斜交的直徑得出圓心,但方法都很好。)。
(2)讓兩條互相垂直的直徑其中一條不動(dòng),另一條直徑向下平移,變成一條普通的弦,并且和原來(lái)的一條直徑仍然保持垂直關(guān)系。
(3)讓學(xué)生在自己的圖片上畫(huà)出與直徑垂直的弦,并讓他們把圓形圖片沿直徑對(duì)折,問(wèn)學(xué)生會(huì)發(fā)現(xiàn)什么結(jié)論?(平分弦,也平分弦所對(duì)的兩條?。?BR> (4)問(wèn)學(xué)生在什么樣條件下得出這些結(jié)論的?
(5)最后引導(dǎo)學(xué)生歸納出垂經(jīng)定理的內(nèi)容,教師再補(bǔ)充、強(qiáng)調(diào)并板書(shū)。通過(guò)這一探究過(guò)程,大部分學(xué)生參與到課堂中去,并培養(yǎng)了學(xué)生動(dòng)手操作和創(chuàng)新的能力,也激發(fā)了學(xué)生探究問(wèn)題的興趣,學(xué)生就在這種輕松、愉快的活動(dòng)中掌握了垂徑定理,實(shí)現(xiàn)了教學(xué)的有效性,這是在這節(jié)課中我感覺(jué)最成功的地方。
當(dāng)然,整節(jié)課也有許多不足之處。例如,在對(duì)垂經(jīng)定理有關(guān)計(jì)算方面的安排上欠妥,具體表現(xiàn)在:(1)把課本中趙州橋的問(wèn)題作為第一個(gè)練習(xí)題讓學(xué)生解決稍微偏難,應(yīng)該先解決一些簡(jiǎn)單的類(lèi)型題。比如:已知弦的長(zhǎng)度和圓心到弦的距離,求圓的半徑這類(lèi)題,這樣的話學(xué)生不但鞏固了垂經(jīng)定理,而且也能體會(huì)到成功的喜悅,等再處理趙州橋的問(wèn)題就變成水到渠成的事情了。(2)垂經(jīng)定理中平分弦的證明過(guò)程盡量給學(xué)生留點(diǎn)時(shí)間讓學(xué)生板書(shū)出來(lái),這樣可以防止學(xué)生缺少主動(dòng)性,并且會(huì)有更多的學(xué)生參與到課堂中去。
(3)應(yīng)該給學(xué)生滲透一些情感教育,讓學(xué)生知道數(shù)學(xué)來(lái)源于生活,又應(yīng)用于生活。
總之,在教學(xué)設(shè)計(jì)和課堂教學(xué)中應(yīng)充分了解學(xué)生,研究學(xué)生,我們不僅要備教材,而且還要備學(xué)生。要真正樹(shù)立以學(xué)生的發(fā)展為本的教學(xué)理念。只有這樣,才能為學(xué)生提供充分的教學(xué)活動(dòng)和交流的機(jī)會(huì),使學(xué)生從單純的的知識(shí)接受者變?yōu)閿?shù)學(xué)學(xué)習(xí)的主人。
垂徑定理的教學(xué)設(shè)計(jì)篇十七
勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫(huà)了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!?0xx版數(shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)勾股定理教學(xué)內(nèi)容的要求是:
1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過(guò)程中,進(jìn)一步發(fā)展空間觀念;
2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;
3、經(jīng)歷從不同角度分析問(wèn)題和解決問(wèn)題的方法的過(guò)程,體驗(yàn)解決問(wèn)題方法的多樣性;
4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
本節(jié)課的教學(xué)目標(biāo)是:
1、能正確運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)重點(diǎn)和難點(diǎn):
應(yīng)用勾股定理及其逆定理解決實(shí)際問(wèn)題是重點(diǎn)。
把實(shí)際問(wèn)題化歸成數(shù)學(xué)模型是難點(diǎn)。
根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問(wèn)題情境,使教學(xué)活動(dòng)充滿(mǎn)趣味性和吸引力,讓他們?cè)谧灾魈骄浚献鹘涣髦蟹治鰡?wèn)題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問(wèn)題。在教學(xué)過(guò)程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類(lèi)討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。
在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
第一環(huán)節(jié):情境引入。
情景1:復(fù)習(xí)提問(wèn):勾股定理的語(yǔ)言表述以及幾何語(yǔ)言表達(dá)?
設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語(yǔ)言及數(shù)學(xué)表達(dá),體現(xiàn)。
設(shè)計(jì)意圖:既靈活考察學(xué)生對(duì)勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
第二環(huán)節(jié):合作探究(圓柱體表面路程最短問(wèn)題)。
情景3:課本引例(螞蟻怎樣走最近)。
第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問(wèn)題逐步變?yōu)殚L(zhǎng)方體表面的距離最短問(wèn)題)。
設(shè)計(jì)意圖:將問(wèn)題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對(duì)知識(shí)的理解和鞏固。再將圓柱問(wèn)題變?yōu)檎襟w長(zhǎng)方體問(wèn)題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長(zhǎng)方體問(wèn)題中學(xué)生會(huì)有不同的做法,正好透分類(lèi)討論思想。
第四環(huán)節(jié):議一議。
設(shè)計(jì)意圖:
第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
1、解決實(shí)際問(wèn)題的方法是建立數(shù)學(xué)模型求解、
2、在尋求最短路徑時(shí),往往把空間問(wèn)題平面化,利用勾股定理及其逆定理解決實(shí)際問(wèn)題。
3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
第七環(huán)作業(yè)設(shè)計(jì):
第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。
知識(shí)技能:了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過(guò)程、
數(shù)學(xué)思考:在勾股定理的探索過(guò)程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想、解決問(wèn)題:
1、通過(guò)拼圖活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維、
2、在探究活動(dòng)中,學(xué)會(huì)與人合作并能與他人交流思維的過(guò)程和探究結(jié)果、
情感態(tài)度:
1、通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)熱情、
2、在探究活動(dòng)中,體驗(yàn)解決問(wèn)題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神、
2、難點(diǎn)是用拼圖的方法證明勾股定理、
垂徑定理的教學(xué)設(shè)計(jì)篇一
本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時(shí),它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識(shí)在三角形中的具體運(yùn)用,是生產(chǎn)、生活實(shí)際問(wèn)題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。
本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),學(xué)生通過(guò)對(duì)定理證明的探究和討論,體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進(jìn)而培養(yǎng)學(xué)生提出問(wèn)題、解決問(wèn)題等研究性學(xué)習(xí)的能力。
二、學(xué)情分析。
對(duì)高一的學(xué)生來(lái)說(shuō),一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識(shí),具有一定觀察分析、解決問(wèn)題的能力;但另一方面對(duì)新舊知識(shí)間的聯(lián)系、理解、應(yīng)用往往會(huì)出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動(dòng)性,注意前后知識(shí)間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問(wèn)題、解決問(wèn)題。
三、設(shè)計(jì)思想:
培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的?!边@個(gè)觀點(diǎn)從教學(xué)的角度來(lái)理解就是:知識(shí)不僅是通過(guò)教師傳授得到的,更重要的是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過(guò)與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動(dòng)建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個(gè)原則而進(jìn)行設(shè)計(jì)。
四、教學(xué)目標(biāo):
1、在創(chuàng)設(shè)的問(wèn)題情境中,讓學(xué)生從已有的幾何知識(shí)和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗(yàn)坐標(biāo)法將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性.
2、理解三角形面積公式,能運(yùn)用正弦定理解決三角形的兩類(lèi)基本問(wèn)題,并初步認(rèn)識(shí)用正弦定理解三角形時(shí),會(huì)有一解、兩解、無(wú)解三種情況。
3、通過(guò)對(duì)實(shí)際問(wèn)題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識(shí)既來(lái)源于生活,又服務(wù)與生活。
五、教學(xué)重點(diǎn)與難點(diǎn)。
教學(xué)重點(diǎn):正弦定理的探索與證明;正弦定理的基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索與證明。
主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。
六、復(fù)習(xí)引入:
結(jié)論:
證明:(向量法)過(guò)a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。
正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。
垂徑定理的教學(xué)設(shè)計(jì)篇二
本節(jié)課是在上節(jié)課學(xué)習(xí)了圓的概念及弧、弦等概念的基礎(chǔ)上的一節(jié)課。在上節(jié)課結(jié)束時(shí)留給學(xué)生這樣一個(gè)問(wèn)題“你還想進(jìn)一步研究什么?”通過(guò)學(xué)習(xí),學(xué)生很容易聯(lián)系到上節(jié)課學(xué)習(xí)了圓、弧、弦、直徑、半徑等有關(guān)知識(shí)。那么圓內(nèi)這些元素還具有哪些性質(zhì)呢?學(xué)生自然地從上節(jié)課過(guò)渡到這節(jié)課的學(xué)習(xí),同時(shí)培養(yǎng)了學(xué)生勤于動(dòng)腦,勤于思考的好習(xí)慣,激發(fā)了學(xué)生學(xué)習(xí)的興趣與熱情。
本節(jié)課主要有兩方面的內(nèi)容:一是圓的軸對(duì)稱(chēng)性,二是垂徑定理及其推論。開(kāi)始以趙州橋的問(wèn)題引入課題,帶著問(wèn)題進(jìn)行學(xué)習(xí)。圓的軸對(duì)稱(chēng)性主要是通過(guò)動(dòng)手操作得出結(jié)論,圓是軸對(duì)稱(chēng)圖形,根據(jù)軸對(duì)稱(chēng)性進(jìn)一步研究圓中相等的弦、弧得出垂徑定理及其推論。利用此定理再去解決趙州橋問(wèn)題,每一個(gè)環(huán)節(jié)都是環(huán)環(huán)相扣,不是孤立存在的。
教學(xué)目標(biāo)。
經(jīng)歷探索圓的軸對(duì)稱(chēng)性及相關(guān)性質(zhì)的過(guò)程,進(jìn)一步體會(huì)和理解研究幾何圖形的各種方法。理解并應(yīng)用垂徑定理進(jìn)行有關(guān)的計(jì)算。
重點(diǎn)難點(diǎn)。
掌握垂徑定理及其推論,學(xué)會(huì)運(yùn)用垂徑定理等結(jié)論解決一些有關(guān)證明、計(jì)算和作圖問(wèn)題。
反思之一:實(shí)際問(wèn)題的意義的看法。
數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活。在實(shí)際生活中,數(shù)、形隨處可見(jiàn),無(wú)處不在。好的實(shí)際問(wèn)題容易引起學(xué)生的興趣,激發(fā)學(xué)生探索和發(fā)現(xiàn)問(wèn)題的欲望,使學(xué)生感到數(shù)學(xué)課很熟悉,數(shù)學(xué)知識(shí)離我們很近。學(xué)生在解決實(shí)際問(wèn)題的過(guò)程中,主要困難有兩點(diǎn),一是學(xué)生一見(jiàn)到實(shí)際問(wèn)題就畏懼,根本不去讀題,二是學(xué)生對(duì)實(shí)際背景不熟悉。為此,本節(jié)課設(shè)計(jì)了一個(gè)實(shí)際問(wèn)題,這樣做的好處,一是具有非常實(shí)際的用途,二是與本節(jié)課的內(nèi)容具有直接關(guān)系。這個(gè)問(wèn)題解決了,以后學(xué)生再講到類(lèi)似的實(shí)際問(wèn)題時(shí),就不會(huì)感到陌生。
每種教學(xué)模式都有其優(yōu)劣,如果一味地按一種教學(xué)模式貫穿于整個(gè)教學(xué)過(guò)程,并不能達(dá)到最好的教學(xué)效果。對(duì)于我們教師來(lái)說(shuō),應(yīng)根據(jù)不同的教學(xué)內(nèi)容,選擇不同的教學(xué)模式來(lái)教學(xué),這樣效果會(huì)更好。本節(jié)課,由于學(xué)生的差異較大,所以選擇了小組合作這種教學(xué)模式,發(fā)揮小組合作學(xué)習(xí)的優(yōu)勢(shì),給學(xué)生創(chuàng)造一個(gè)寬松的學(xué)習(xí)環(huán)境,使學(xué)生消除畏懼怕錯(cuò)的心理壓力,激發(fā)學(xué)生的創(chuàng)新精神,幫助學(xué)生樹(shù)立學(xué)好知識(shí)的信心和勇氣。
反思之二:需要更加關(guān)注學(xué)生。
教學(xué)中,把尊重學(xué)生,關(guān)注學(xué)生的發(fā)展動(dòng)態(tài)始終放在第一位。在這節(jié)課中,注重學(xué)生間的合作交流,給學(xué)生多次展示自己的機(jī)會(huì),鍛煉學(xué)生的膽量,培養(yǎng)學(xué)生語(yǔ)言表達(dá)能力及邏輯推理能力,并給予適當(dāng)?shù)墓膭?lì)和表?yè)P(yáng),使學(xué)生有成功感,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心。
在知識(shí)發(fā)生發(fā)展與應(yīng)用過(guò)程中注重教學(xué)思想方法的滲透,如本節(jié)課從特殊到一般的數(shù)學(xué)思想,交給學(xué)生解決問(wèn)題的辦法,使學(xué)生學(xué)會(huì)學(xué)習(xí)。
垂徑定理的教學(xué)設(shè)計(jì)篇三
首先講下這節(jié)課,我的一些思路:
在教學(xué)方法與教材處理方面,根據(jù)現(xiàn)在的教材特點(diǎn),教學(xué)內(nèi)容以及在新課標(biāo)理念的指導(dǎo)下,最后決定讓學(xué)生在課堂上多動(dòng)手、多觀察、多交流,最后得出定理,這個(gè)方法符合新課程理念觀點(diǎn),也符合教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一的原則。
同時(shí),在教學(xué)中,我充分利用教具和投影儀,提高教學(xué)效率。在實(shí)驗(yàn),演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)生,培養(yǎng)學(xué)生直覺(jué)思維能力,結(jié)合學(xué)生實(shí)際情況作適當(dāng)?shù)耐貜V。
我參加這次教學(xué)技能大賽,獲益良多主要體現(xiàn)在以下幾個(gè)方面:
(1)在數(shù)學(xué)教學(xué)中,一些結(jié)論的表述是很重要的,而我在這節(jié)課上有些表述確實(shí)不是很正確;而且我在課堂上,尤其是知識(shí)點(diǎn)的聯(lián)系方面的引導(dǎo)詞,更加需要再努力鉆研。今后我將在這方面下工夫,在去聽(tīng)其他數(shù)學(xué)老師的課時(shí),要注意其他老師在知識(shí)點(diǎn)同知識(shí)點(diǎn)之間的過(guò)渡語(yǔ)句。
(2)一些該讓學(xué)生知道的知識(shí)點(diǎn),講得不夠透徹。如cd是直徑,其實(shí)應(yīng)該可以拓展為過(guò)圓心的直線(要多強(qiáng)調(diào),而不是一筆帶過(guò));不能夠用數(shù)量關(guān)系求的,應(yīng)該要適當(dāng)?shù)匾龑?dǎo)學(xué)生設(shè)未知數(shù)。而不是直接告訴學(xué)生這種題目就是要設(shè)未知數(shù)。同樣在已知一條邊,不夠條件求解時(shí),也要引導(dǎo)學(xué)生利用未知數(shù)來(lái)解題的這種題目,引導(dǎo)得不夠,或者話引導(dǎo)得不夠深刻,學(xué)生就會(huì)覺(jué)得是老師直接將知識(shí)倒向他,而他不一定能接受。
(3)在學(xué)案設(shè)計(jì)方面,在時(shí)間上把握得不夠準(zhǔn)確,設(shè)計(jì)的學(xué)案內(nèi)容太多,在這節(jié)課上如果估計(jì)過(guò)量已經(jīng)足夠的話,垂徑定理的推論其實(shí)可以放在下節(jié)課。這樣就不會(huì)使得后面講推論的時(shí)間太短,太倉(cāng)促。前面復(fù)習(xí)用的時(shí)間太長(zhǎng),在復(fù)習(xí)的部分應(yīng)該多加些關(guān)于勾股定理的計(jì)算的題目,使學(xué)生在后面解直角三角形時(shí)能夠更加快,更熟練;而學(xué)案中練習(xí)題的量太少,而且是題型太單一,可以再做多些找相等的量的基礎(chǔ)訓(xùn)練,對(duì)b班的學(xué)生更加熟悉垂徑定理,基礎(chǔ)題目的掌握對(duì)b班大有好處。
(4)其實(shí)這節(jié)課還有個(gè)作圖思想要灌輸比學(xué)生,即是教學(xué)生如果見(jiàn)到弦心距,弦,那么直接連半徑構(gòu)成直角三角形;如果就是只知道一條弦的題目,就要邊弦心距都要作出來(lái),而這兩種題目我的訓(xùn)練都不到位。
最后,這些失誤給了我一個(gè)今后的努力的方向。在今后的學(xué)習(xí)中,我努力鉆研教材改正自己缺點(diǎn)。
垂徑定理的教學(xué)設(shè)計(jì)篇四
教學(xué)方法與教材處理:我選用引導(dǎo)發(fā)現(xiàn)法和直觀演示法。讓學(xué)生在課堂上多活動(dòng)、多觀察、多合作、多交流,主動(dòng)參與到整個(gè)教學(xué)活動(dòng)中來(lái),組織學(xué)生參與“實(shí)驗(yàn)―――觀察―――猜想―――證明”的活動(dòng),最后得出定理,這符合新課程理念下的“要把學(xué)生學(xué)習(xí)知識(shí)當(dāng)作認(rèn)識(shí)事物的過(guò)程來(lái)進(jìn)行教學(xué)”的觀點(diǎn),也符合教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一的原則。同時(shí),在教學(xué)中,我充分利用學(xué)校新安裝的班班通工程,利用課件,既增強(qiáng)了學(xué)生的學(xué)習(xí)興趣,又提高教學(xué)效果,在實(shí)驗(yàn),演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)生,讓每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,培養(yǎng)學(xué)生直覺(jué)思維能力,這符合新課程理念下的.直觀性與可接受性原則。另外,教學(xué)中我還注重用不同圖片的顏色對(duì)比來(lái)啟發(fā)學(xué)生。
設(shè)計(jì)的特色:為了給學(xué)生營(yíng)造一個(gè)民主、平等而又富有詩(shī)意的課堂,我以新數(shù)學(xué)課程標(biāo)準(zhǔn)下的基本理念和總體目標(biāo)為指導(dǎo)思想在教學(xué)過(guò)程中始終面向全體學(xué)生,依據(jù)學(xué)生的實(shí)際水平,選擇適當(dāng)?shù)慕虒W(xué)起點(diǎn)和教學(xué)方法,充分讓學(xué)生參與教學(xué),在合作交流的過(guò)程中,獲得良好的情感體驗(yàn)。通過(guò)“實(shí)驗(yàn)――觀察――猜想――證明”的思想,讓每個(gè)學(xué)生都有所得,我注意前后知識(shí)的鏈接,進(jìn)行各學(xué)科間的整合,為學(xué)生提供了廣闊的思考空間,同時(shí)輔以相應(yīng)的音樂(lè),為學(xué)生創(chuàng)設(shè)輕松、愉快、高雅的學(xué)習(xí)氛圍,在學(xué)習(xí)中感悟生活中的數(shù)學(xué)美。
垂徑定理的教學(xué)設(shè)計(jì)篇五
本節(jié)課夏老師先復(fù)習(xí)了上節(jié)課學(xué)習(xí)的圓的概念及弧、弦等概念。然后比較三幅圖,找出共同點(diǎn)---軸對(duì)稱(chēng)圖形。這節(jié)課的目的性很強(qiáng),圍繞一個(gè)知識(shí)系統(tǒng)“垂徑定理及其逆定理”展開(kāi)。首先,夏老師讓學(xué)生畫(huà)圓折紙,設(shè)計(jì)的問(wèn)題都是典型問(wèn)題,而且巧妙開(kāi)放,層層遞進(jìn),有效的調(diào)動(dòng)學(xué)生學(xué)習(xí)興趣,喚起學(xué)生的求知欲,激起了學(xué)生的積極思考。整節(jié)課抓住相關(guān)的基本圖形、基本輔助線、基本幾何結(jié)論的應(yīng)用,使學(xué)生的思維得到訓(xùn)練和提升。
夏教師的課堂調(diào)控能力很強(qiáng),課堂中問(wèn)題的處理過(guò)程,大都是學(xué)生先有一定的時(shí)間自己思考,提出想法并向大家展示交流,然后共同解決問(wèn)題,教師絕不包辦,很好地體現(xiàn)了以學(xué)為主體的課標(biāo)要求。教師肯花時(shí)間讓學(xué)生大膽說(shuō)出自己在思考過(guò)程中遇到的困難和障礙,呈現(xiàn)學(xué)生的思維盲點(diǎn),然后通過(guò)學(xué)生之間的合作交流和教師的點(diǎn)撥啟發(fā)幫助學(xué)生理清思路。
在教學(xué)方法與教材處理方面,夏老師能根據(jù)現(xiàn)在的教材特點(diǎn)及學(xué)情,在新課標(biāo)理念的指導(dǎo)下,讓學(xué)生在課堂上多動(dòng)手、多觀察、多交流,最后得出定理,這個(gè)方法符合新課程理念觀點(diǎn),也符合教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一的原則。
垂徑定理的教學(xué)設(shè)計(jì)篇六
導(dǎo)學(xué)案前置,學(xué)生是復(fù)習(xí)的引領(lǐng)者。通過(guò)及時(shí)批改導(dǎo)學(xué)案,發(fā)現(xiàn)學(xué)生在復(fù)習(xí)過(guò)程中的對(duì)知識(shí)理解的薄弱之處,對(duì)知識(shí)應(yīng)用的欠缺之處。主要存在的問(wèn)題:對(duì)瞬時(shí)功率的定義式應(yīng)用不熟練;書(shū)寫(xiě)動(dòng)能定理公式不是很熟練,主要表現(xiàn)在對(duì)變力做功束手無(wú)策。另外,學(xué)生剛參加完運(yùn)動(dòng)會(huì),興奮之余,學(xué)習(xí)狀態(tài)還需要調(diào)整。
1.鞏固強(qiáng)化瞬時(shí)功率的計(jì)算公式,會(huì)運(yùn)用瞬時(shí)功率的公式準(zhǔn)確解決問(wèn)題;
2.鞏固強(qiáng)化摩擦力做功的特點(diǎn),熟練書(shū)寫(xiě)動(dòng)能定理公式。
1.精心設(shè)計(jì)問(wèn)題,引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律。
通過(guò)設(shè)計(jì)問(wèn)題:物體沿粗糙斜面下滑,求物體下滑過(guò)程中摩擦力做的功?讓學(xué)生運(yùn)用功的公式計(jì)算出物體下滑過(guò)程中摩擦力做的功。教師引導(dǎo)學(xué)生對(duì)計(jì)算結(jié)果進(jìn)行分析,讓學(xué)生發(fā)現(xiàn)一個(gè)重要規(guī)律,物體沿斜面下滑摩擦力做的功與物體在相應(yīng)的水平面上滑動(dòng)摩擦力做的功是相等的。通過(guò)變式訓(xùn)練題,鞏固這個(gè)規(guī)律的應(yīng)用,學(xué)生收獲很大。
2.精心設(shè)計(jì)問(wèn)題,提升學(xué)生對(duì)新舊知識(shí)的辨析能力。
初中學(xué)生學(xué)過(guò)功率,但是不對(duì)功率進(jìn)行分類(lèi),并且力和速度的方向始終同向。高中階段,根據(jù)時(shí)間長(zhǎng)短,把功率分為平均功率和瞬時(shí)功率,并且力和速度的方向不在同一直線上。因此,計(jì)算瞬時(shí)功率時(shí),一定要考慮力和速度的方向夾角。學(xué)生受已有知識(shí)的影響頗深,很難意識(shí)到這個(gè)問(wèn)題。由此我精心設(shè)計(jì)問(wèn)題:飛行員抓住秋千桿在豎直面內(nèi)從高處擺下,求飛行員所受重力的瞬時(shí)功率的變化情況?要求學(xué)生嚴(yán)格按照瞬時(shí)功率的定義,計(jì)算出各個(gè)關(guān)鍵位置的重力的瞬時(shí)功率。通過(guò)計(jì)算發(fā)現(xiàn)重力的瞬時(shí)功率是從零變到不是零,最后再變到零。因此,重力的瞬時(shí)功率是先增大后減小,學(xué)生感到茅塞頓開(kāi)。
1.復(fù)習(xí)課就要放手,讓學(xué)生去發(fā)現(xiàn)。
導(dǎo)學(xué)案前置,讓學(xué)生發(fā)現(xiàn)問(wèn)題,展示問(wèn)題,討論問(wèn)題,最后解決問(wèn)題。這樣極大的提高了課堂效率,學(xué)生的學(xué)習(xí)困惑得到了解決,學(xué)生對(duì)物理學(xué)習(xí)的自信心有了很大的提升,學(xué)生學(xué)習(xí)物理的積極性更強(qiáng)了。
2.精益求精,不斷改善。
通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生能夠正確使用瞬時(shí)功率的公式,摩擦力做功的計(jì)算更加熟練,題目正確率大幅上升。像這種復(fù)習(xí)課堂怎么設(shè)計(jì),怎么上,我和老教師經(jīng)常交流,老教師的建議是根據(jù)學(xué)情,精心設(shè)計(jì)導(dǎo)學(xué)案,調(diào)動(dòng)學(xué)生對(duì)物理問(wèn)題的探究欲。響應(yīng)學(xué)校號(hào)召,做好導(dǎo)學(xué)案,多讓學(xué)生講解,真正讓學(xué)生做課堂的主人。
垂徑定理的教學(xué)設(shè)計(jì)篇七
在垂徑定理教學(xué)中,我獲益良多,主要體現(xiàn)在以下幾個(gè)方面:
(1)在數(shù)學(xué)教學(xué)中,一些結(jié)論的表述是很重要的,而我在這節(jié)課上有些表述確實(shí)不是很正確;而且我在課堂上,尤其是知識(shí)點(diǎn)的聯(lián)系方面的引導(dǎo)詞,更加需要再努力鉆研。今后我將在這方面下工夫,在去聽(tīng)其他數(shù)學(xué)老師的課時(shí),要注意其他老師在知識(shí)點(diǎn)同知識(shí)點(diǎn)之間的過(guò)渡語(yǔ)句。
(2)一些該讓學(xué)生知道的知識(shí)點(diǎn),講得不夠透徹。如cd是直徑,其實(shí)應(yīng)該可以拓展為過(guò)圓心的直線;不能夠用數(shù)量關(guān)系求的,應(yīng)該要適當(dāng)?shù)匾龑?dǎo)學(xué)生設(shè)未知數(shù)。而不是直接告訴學(xué)生這種題目就是要設(shè)未知數(shù)。同樣在已知一條邊,不夠條件求解時(shí),也要引導(dǎo)學(xué)生利用未知數(shù)來(lái)解題的這種題目,引導(dǎo)得不夠,或者說(shuō)引導(dǎo)得不夠深刻,學(xué)生就會(huì)覺(jué)得是老師直接將知識(shí)倒向他,而他不一定能接受。
(3)在學(xué)案設(shè)計(jì)方面,在時(shí)間上把握得不夠準(zhǔn)確,設(shè)計(jì)的學(xué)案內(nèi)容太多,在這節(jié)課上如果估計(jì)過(guò)量已經(jīng)足夠的話,垂徑定理的推論其實(shí)可以放在下節(jié)課。這樣就不會(huì)使得后面講推論的時(shí)間太短,太倉(cāng)促。前面在復(fù)習(xí)的部分應(yīng)該加些關(guān)于勾股定理的計(jì)算的題目,使學(xué)生在后面解直角三角形時(shí)能夠更加快,更熟練;而在多媒體中練習(xí)題量太小,而且是題型太單一,可以再多做些找相等的量的基礎(chǔ)訓(xùn)練。
(4)其實(shí)這節(jié)課還有個(gè)作圖思想要灌輸給學(xué)生,即教學(xué)生如果見(jiàn)到弦心距,弦,那么直接連半徑構(gòu)成直角三角形;如果就是只知道一條弦的題目,就要連弦心距都要作出來(lái),而這兩種題目我的`訓(xùn)練都不到位。
通過(guò)反思這一課的課堂教學(xué),我發(fā)現(xiàn)大部分學(xué)生對(duì)知識(shí)的理解不夠,不能靈活應(yīng)用知識(shí)于實(shí)際生活(求趙州橋主橋拱的半徑)。對(duì)這一課進(jìn)行全面反思后,我認(rèn)識(shí)到要善于處理好教學(xué)中知識(shí)傳授與能力培養(yǎng)的關(guān)系,巧妙地引導(dǎo)學(xué)生解決生活中的數(shù)學(xué)問(wèn)題。不斷地激發(fā)學(xué)生的學(xué)習(xí)積極性與主動(dòng)性,培養(yǎng)學(xué)生思維能力、想象力和創(chuàng)新精神,使每個(gè)學(xué)生的身心都能得到充分的發(fā)展。這些失誤給了我一個(gè)今后的努力的方向。在今后的學(xué)習(xí)中,我會(huì)更加努力,改正自己的缺點(diǎn),努力鉆研教材。
垂徑定理的教學(xué)設(shè)計(jì)篇八
正因?yàn)槎?xiàng)式定理在初等數(shù)學(xué)中與其他內(nèi)容聯(lián)系較少,所以教材上教法就顯得呆板,單調(diào),怎樣使二項(xiàng)式定理的教學(xué)生動(dòng)有趣?使得在這節(jié)課上學(xué)生獲得主動(dòng)?我采用啟發(fā)探究式教學(xué)方式,遵循“興趣與能力的同步發(fā)展規(guī)律”和“教,學(xué),研互相促進(jìn)的規(guī)律”,在教學(xué)中追求簡(jiǎn)易,重視直觀,并巧妙地在應(yīng)用抽象使問(wèn)題變得十分有趣,學(xué)生學(xué)得生動(dòng)主動(dòng),充分發(fā)揮其課堂上的主體作用.具體為:
一是從名人、問(wèn)題引入課題。采用“問(wèn)題――探究”的教學(xué)模式,把整個(gè)課堂分為呈現(xiàn)問(wèn)題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個(gè)階段.這里體現(xiàn)了新課程的數(shù)學(xué)應(yīng)用意識(shí)的理念.
讓學(xué)生體會(huì)研究問(wèn)題的方式方法,培養(yǎng)學(xué)生觀察、分析、概括的能力,以及化歸意識(shí)與方法遷移的能力,體會(huì)從特殊到一般的思維方式,也讓學(xué)生體會(huì)數(shù)學(xué)語(yǔ)言的簡(jiǎn)潔和嚴(yán)謹(jǐn)。
二、學(xué)生情況分析。
學(xué)生有過(guò)探究、交流的課堂教學(xué)的嘗試.。
三、教學(xué)診斷分析。
容易產(chǎn)生誤解的內(nèi)容是:通項(xiàng)指的是第r+1項(xiàng);通項(xiàng)的二項(xiàng)式系數(shù)是,與該項(xiàng)的系數(shù)是不同的概念。
四、教學(xué)方式及預(yù)期效果分析。
1.教學(xué)方式:
探究?jī)?nèi)容為二項(xiàng)式定理的內(nèi)涵,包括項(xiàng)數(shù)、指數(shù)、系數(shù)等方面的規(guī)律內(nèi)容.。
2.預(yù)期效果分析:
在知識(shí)層面上,期望學(xué)生能夠理解二項(xiàng)式定理及其推導(dǎo)方法,識(shí)記二項(xiàng)展開(kāi)式的有關(guān)特征,能對(duì)二項(xiàng)式定理進(jìn)行簡(jiǎn)單應(yīng)用;在方法層面上,期望通過(guò)教師指導(dǎo)下的探究活動(dòng),使學(xué)生經(jīng)歷數(shù)學(xué)思維過(guò)程,熟悉理解“觀察—?dú)w納—猜想—證明”的思維方法,培養(yǎng)合作的意識(shí),獲得學(xué)習(xí)和成功的體驗(yàn);通過(guò)對(duì)二項(xiàng)式定理內(nèi)容的研究,使學(xué)生體驗(yàn)特殊到一般發(fā)現(xiàn)規(guī)律,一般到特殊指導(dǎo)實(shí)踐的認(rèn)識(shí)事物過(guò)程,通過(guò)對(duì)二項(xiàng)展開(kāi)式結(jié)構(gòu)特點(diǎn)的觀察,探求過(guò)程將歸納推理與演繹推理有機(jī)結(jié)合起來(lái),是培養(yǎng)學(xué)生數(shù)學(xué)探究能力的極好載體,教學(xué)過(guò)程中,要讓學(xué)生充分體驗(yàn)到歸納推理不僅可以猜想到一般性的結(jié)果,而且可以啟發(fā)我們發(fā)現(xiàn)一般性問(wèn)題的解決方法。
五、教學(xué)目標(biāo)與教學(xué)內(nèi)容。
本節(jié)課的學(xué)生起點(diǎn):學(xué)生已經(jīng)學(xué)習(xí)了組合的基本知識(shí),初中學(xué)習(xí)了多項(xiàng)式乘法法則.。
本節(jié)課是在組合和多項(xiàng)式乘法的基礎(chǔ)上,進(jìn)一步研究學(xué)習(xí)二項(xiàng)式定理的內(nèi)容.。
1.教材分析:
重點(diǎn):用計(jì)數(shù)原理分析、與的展開(kāi)式,歸納得出二項(xiàng)式定理。
2.內(nèi)容分析:
3.教學(xué)目標(biāo):
知識(shí)技能:
(2)理解并掌握二項(xiàng)式定理,能利用計(jì)數(shù)原理證明二項(xiàng)式定理.
過(guò)程方法:
4.教學(xué)過(guò)程。
(1)課堂熱身,前置作業(yè)。
(2)直提問(wèn)題,引入課題。
(3)引導(dǎo)探究,發(fā)現(xiàn)規(guī)律。
(4)形成定理,說(shuō)理證明。
(5)定理剖析,簡(jiǎn)單應(yīng)用。
(6)例題點(diǎn)評(píng),初步體驗(yàn)。
(7)課堂小結(jié),課后作業(yè)(習(xí)題為重組題)。
垂徑定理的教學(xué)設(shè)計(jì)篇九
1.勾股定理的逆定理是研究特殊三角形——直角三角形的一種判定方法,體現(xiàn)了數(shù)形結(jié)合的思想。
2.通過(guò)勾股定理與它的逆定理的學(xué)習(xí),加深了學(xué)生對(duì)性質(zhì)與判定之間辨證統(tǒng)一關(guān)系的認(rèn)識(shí)。
3.完善了知識(shí)結(jié)構(gòu),為后繼學(xué)習(xí)打下基礎(chǔ)。
初中生已經(jīng)具備一定的獨(dú)立思考和探索能力,并能在探索過(guò)程中形成自已的觀點(diǎn),能在傾聽(tīng)別人意見(jiàn)的過(guò)程中逐漸完善自已的想法,而且本班學(xué)生比較上進(jìn),思維活躍,愿意表達(dá)自已的見(jiàn)解,有一定的互動(dòng)互助基礎(chǔ)。
1.知識(shí)與技能:
(2)掌握勾股定理的逆定理,并能應(yīng)用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。
2.過(guò)程與方法。
(1)通過(guò)對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成過(guò)程。
(2)通過(guò)用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合方法的應(yīng)用。
(3)通過(guò)對(duì)勾股定理的逆定理的證明,體會(huì)數(shù)形結(jié)合方法在問(wèn)題解決中的作用,并能應(yīng)用勾股定理的逆定理來(lái)解決相關(guān)問(wèn)題。
3.情感態(tài)度。
(2)在探索勾股定理的逆定理的活動(dòng)中,通過(guò)一系列的富有探究性的問(wèn)題,滲透與他人交流、合作的意識(shí)和探究精神。
垂徑定理的教學(xué)設(shè)計(jì)篇十
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問(wèn)題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說(shuō)明勾股定理的正確性。
學(xué)生分析:
1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過(guò)三角尺的同學(xué)并不多,通過(guò)這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開(kāi)對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開(kāi),以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過(guò)程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過(guò)向?qū)W生介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的`民族自豪感和探究創(chuàng)新的精神。
教學(xué)目標(biāo):
1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過(guò)程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過(guò)程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語(yǔ)言表達(dá)能力等,感受勾股定理的文化價(jià)值。
3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛(ài)國(guó)熱情。
4、欣賞設(shè)計(jì)圖形美。
教學(xué)準(zhǔn)備階段:
學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
(一)引入。
同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過(guò):他們的邊有什么關(guān)系呢?今天我們來(lái)探索這一小秘密。(板書(shū)課題:探索直角三角形三邊關(guān)系)。
(二)實(shí)驗(yàn)探究。
1、取方格紙片,在上面先設(shè)計(jì)任意格點(diǎn)直角三角形,再以它們的每一邊分別向三角形外作正方形,設(shè)網(wǎng)格正方形的邊長(zhǎng)為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫(xiě)下表:
(討論難點(diǎn):以斜邊為邊的正方形的面積找法)。
交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。
(三)探索所得結(jié)論的正確性。
當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時(shí),是否一定成立?
1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)。
在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來(lái)交流講解,并引導(dǎo)學(xué)生進(jìn)行說(shuō)理:
如圖2(用補(bǔ)的方法說(shuō)明)。
師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門(mén)就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來(lái)尺子和筆又量又畫(huà),他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來(lái)西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見(jiàn)課本52頁(yè)彩圖2—1,欣賞圖片)。
如圖3(用割的方法去探索)。
師介紹:(出示圖片)中國(guó)古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過(guò)此方法測(cè)量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來(lái)證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國(guó)古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹(shù)立了一個(gè)典范。他是我國(guó)有記載以來(lái)第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國(guó)數(shù)學(xué)家們?yōu)榱思o(jì)念我國(guó)在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。
20xx年,世界數(shù)學(xué)家大會(huì)在中國(guó)北京召開(kāi),當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國(guó)古代數(shù)學(xué)的輝煌成就。
本節(jié)課學(xué)習(xí)的勾股定理用語(yǔ)言敘說(shuō)為:
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問(wèn)題并交流。
垂徑定理的教學(xué)設(shè)計(jì)篇十一
1、體驗(yàn)勾股定理的探索過(guò)程,由特例猜想勾股定理,再由特例驗(yàn)證勾股定理。
2、會(huì)利用勾股定理解釋生活中的簡(jiǎn)單現(xiàn)象。
(二)能力訓(xùn)練要求。
1、在學(xué)生充分觀察、歸納、猜想、探索勾股定理的過(guò)程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想。
2、在探索勾股定理的過(guò)程中,發(fā)展學(xué)生歸納、概括和有條理地表達(dá)活動(dòng)過(guò)程及結(jié)論的能力。
(三)情感與價(jià)值觀要求。
1、培養(yǎng)學(xué)生積極參與、合作交流的意識(shí)。
2、在探索勾股定理的過(guò)程中,體驗(yàn)獲得成功的快樂(lè),鍛煉學(xué)生克服困難的勇氣。
重點(diǎn):探索和驗(yàn)證勾股定理。
難點(diǎn):在方格紙上通過(guò)計(jì)算面積的方法探索勾股定理。
交流探索猜想。
在方格紙上,同學(xué)們通過(guò)計(jì)算以直角三角形的三邊為邊長(zhǎng)的三個(gè)正方形的面積,在合作交流的過(guò)程中,比較這三個(gè)正方形的面積,由此猜想出直角三角形的三邊關(guān)系。
1、學(xué)生每人課前準(zhǔn)備若干張方格紙。
2、投影片三張:
第一張:填空(記作1.1.1a);。
第二張:?jiǎn)栴}串(記作1.1.1b);。
第三張:做一做(記作1.1.1c)。
創(chuàng)設(shè)問(wèn)題情境,引入新課。
出示投影片(1.1.1a)。
(1)三角形按角分類(lèi),可分為xx。
(2)對(duì)于一般的三角形來(lái)說(shuō),判斷它們?nèi)鹊臈l件有哪些?對(duì)于直角三角形呢?
(3)有兩個(gè)直角三角形,如果有兩條邊對(duì)應(yīng)相等,那么這兩個(gè)直角三角形一定全等嗎?
垂徑定理的教學(xué)設(shè)計(jì)篇十二
高三第一階段復(fù)習(xí),也稱(chēng)“知識(shí)篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個(gè)知識(shí)點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對(duì)學(xué)過(guò)的知識(shí)產(chǎn)生全新認(rèn)識(shí)。在高一、高二時(shí),是以知識(shí)點(diǎn)為主線索,依次傳授講解的,由于后面的相關(guān)知識(shí)還沒(méi)有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識(shí)往往是零碎和散亂,而在第一輪復(fù)習(xí)時(shí),以章節(jié)為單位,將那些零碎的、散亂的知識(shí)點(diǎn)串聯(lián)起來(lái),并將他們系統(tǒng)化、綜合化,把各個(gè)知識(shí)點(diǎn)融會(huì)貫通。對(duì)于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強(qiáng)復(fù)習(xí)的針對(duì)性,講求實(shí)效。
一、內(nèi)容分析說(shuō)明。
1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項(xiàng)式乘法的繼續(xù),它所研究的二項(xiàng)式的`乘方的展開(kāi)式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:
(1)二項(xiàng)展開(kāi)式與多項(xiàng)式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對(duì)多項(xiàng)式的變形起到復(fù)習(xí)深化作用。
(2)二項(xiàng)式定理與概率理論中的二項(xiàng)分布有內(nèi)在聯(lián)系,利用二項(xiàng)式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識(shí)間縱橫聯(lián)系,形成知識(shí)網(wǎng)絡(luò)。
(3)二項(xiàng)式定理是解決某些整除性、近似計(jì)算等問(wèn)題的一種方法。
試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時(shí)也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的近似值。
垂徑定理的教學(xué)設(shè)計(jì)篇十三
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問(wèn)題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。
教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。
據(jù)此,制定教學(xué)目標(biāo)如下:
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):
以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的`主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。
切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。
通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:
1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4。那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè)學(xué)狀態(tài)。
3、板書(shū)課題,出示學(xué)習(xí)目標(biāo)。
教師指導(dǎo)學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。
1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;
(1)這兩個(gè)圖形有什么特點(diǎn)?
(2)你能寫(xiě)出這兩個(gè)圖形的面積嗎?
(3)如何運(yùn)用勾股定理?是否還有其他形式?
這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說(shuō)明本組對(duì)問(wèn)題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。
引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。
垂徑定理的教學(xué)設(shè)計(jì)篇十四
1、知識(shí)目標(biāo):
(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;。
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;。
(2)通過(guò)問(wèn)題的解決,提高學(xué)生的運(yùn)算能力。
3、情感目標(biāo):
(1)通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;。
(2)通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育.
教學(xué)難點(diǎn):通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
教學(xué)用具:直尺,微機(jī)。
教學(xué)方法:以學(xué)生為主體的討論探索法。
垂徑定理的教學(xué)設(shè)計(jì)篇十五
1、知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問(wèn)題。
2、過(guò)程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過(guò)程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
3、情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育。
知識(shí)點(diǎn)1:(已知兩邊求第三邊)。
1.在直角三角形中,若兩直角邊的長(zhǎng)分別為1cm,2cm,則斜邊長(zhǎng)為xx。
2.已知直角三角形的兩邊長(zhǎng)為3、4,則另一條邊長(zhǎng)是xx。
3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長(zhǎng)?
知識(shí)點(diǎn)2:
利用方程求線段長(zhǎng)。
(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
(2)de與ce的位置關(guān)系。
(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
利用方程解決翻折問(wèn)題。
3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點(diǎn)b與點(diǎn)d重合,折痕為ef,求de的長(zhǎng)。
談一談你這節(jié)課都有哪些收獲?
本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的'有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過(guò)程;第二課時(shí)是通過(guò)例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過(guò)從實(shí)際問(wèn)題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和應(yīng)用能力。
垂徑定理的教學(xué)設(shè)計(jì)篇十六
1、內(nèi)容地位:從知識(shí)體系上看,《垂徑定理》是義務(wù)教育新課程標(biāo)準(zhǔn)人教版九年級(jí)(上冊(cè))第三章內(nèi)容,是在學(xué)生學(xué)習(xí)了《旋轉(zhuǎn)與中心對(duì)稱(chēng)》之后,對(duì)特殊的中心對(duì)稱(chēng)圖形圓的深度學(xué)習(xí)的過(guò)程,是學(xué)生學(xué)習(xí)了圓的基本概念之后,對(duì)圓的基本性質(zhì)的新探究。是中考的必考考點(diǎn)之一。
2、學(xué)習(xí)目標(biāo):
(1)利用圓的對(duì)稱(chēng)性探究垂徑定理。(2)能運(yùn)用垂徑定理解決問(wèn)題。(3)全心投入,細(xì)心認(rèn)真。
3、重點(diǎn)難點(diǎn):
學(xué)習(xí)重點(diǎn):垂徑定理的探究及運(yùn)用。學(xué)習(xí)難點(diǎn):利用垂徑定理解決問(wèn)題。
二、學(xué)情分析。
1.學(xué)生心理特征:進(jìn)入初三,學(xué)生思維活躍,求知欲強(qiáng),對(duì)探索問(wèn)題充滿(mǎn)好奇,在課堂上有互相競(jìng)爭(zhēng)的渴望,相比以前,他們有一定的知識(shí)儲(chǔ)備,但學(xué)習(xí)積極性有所減退,自我意識(shí)增強(qiáng)。
2.學(xué)生認(rèn)知基礎(chǔ):在學(xué)習(xí)本節(jié)之前,學(xué)生已經(jīng)學(xué)習(xí)了《圓的基本概念》,明確了直徑、弦等基本概念,會(huì)運(yùn)用軸對(duì)稱(chēng)的性質(zhì)解決問(wèn)題,學(xué)習(xí)了勾股定理,具備了進(jìn)一步學(xué)習(xí)《垂徑定理》的基本能力.3.學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):學(xué)生在之前的學(xué)習(xí)中,已明確了展示課的學(xué)習(xí)程序,并能利用學(xué)案,準(zhǔn)備展示,變式訓(xùn)練,歸納方法,靈活運(yùn)用,具備了學(xué)習(xí)活動(dòng)的經(jīng)驗(yàn)基礎(chǔ).
三、教法學(xué)法分析。
學(xué)法分析:作為一節(jié)展示課,學(xué)生將在教師的帶領(lǐng)下經(jīng)歷明確目標(biāo)、溫故知新、準(zhǔn)備展示、展示所學(xué)、鞏固提升等過(guò)程,培養(yǎng)學(xué)生獨(dú)學(xué)靜思、有效交流、積極合作、大膽展示的良好學(xué)習(xí)習(xí)慣。
四、教學(xué)過(guò)程及大致時(shí)間分配(1)明確目標(biāo)、(1分鐘)。
目標(biāo)出示在黑板上,教師引導(dǎo)學(xué)生理解(2)溫故知新(3分鐘)。
采用個(gè)別提問(wèn)的方式,復(fù)習(xí)基本知識(shí)點(diǎn),為扎實(shí)做充分準(zhǔn)備(3)分配任務(wù),準(zhǔn)備展示(5分鐘)。
教師分配展示的任務(wù),并指導(dǎo)學(xué)生做展示的前期準(zhǔn)備。(4)小組展示,變式訓(xùn)練(20分鐘)。
學(xué)生分組有序展示,在展示中鼓勵(lì)提問(wèn),可做變式訓(xùn)練。要求展示者書(shū)寫(xiě)規(guī)范,過(guò)程完整,聲音洪亮,表達(dá)流利,銜接緊湊。(5)歸納梳理、整理學(xué)案(3分鐘)。
學(xué)生將錯(cuò)誤的題目整理,補(bǔ)充不完整的解題過(guò)程,要求用雙色筆。(6)反饋檢測(cè)、鞏固提高(12分鐘)。
完成學(xué)案反饋檢測(cè)部分,力爭(zhēng)按下課能夠完成。
五、教后反思垂直于弦的直徑也叫垂經(jīng)定理,是初中階段圓中有關(guān)計(jì)算方面比較重要的一節(jié)。本節(jié)課主要經(jīng)過(guò)了三個(gè)環(huán)節(jié):第一個(gè)環(huán)節(jié)是讓學(xué)生通過(guò)折自制的圓形圖片得出圓是軸對(duì)稱(chēng)圖形,每條經(jīng)過(guò)圓心的直線都是它的對(duì)稱(chēng)軸,它有無(wú)數(shù)條對(duì)稱(chēng)軸。第二個(gè)環(huán)節(jié)是讓學(xué)生通過(guò)探究得出垂經(jīng)定理的內(nèi)容。第三個(gè)環(huán)節(jié)是利用垂經(jīng)定理解決有關(guān)方面的計(jì)算。其中,第二個(gè)環(huán)節(jié)是本節(jié)課的重點(diǎn),也是我這節(jié)課的一個(gè)亮點(diǎn)。具體經(jīng)過(guò)以下5個(gè)步驟:
(1)讓學(xué)生拿出自己手中的圓形圖片對(duì)折圓,找出圓心。(學(xué)生很感興趣,有些同學(xué)折的是兩條互相垂直的直徑得出圓心,有些同學(xué)折的是兩條斜交的直徑得出圓心,但方法都很好。)。
(2)讓兩條互相垂直的直徑其中一條不動(dòng),另一條直徑向下平移,變成一條普通的弦,并且和原來(lái)的一條直徑仍然保持垂直關(guān)系。
(3)讓學(xué)生在自己的圖片上畫(huà)出與直徑垂直的弦,并讓他們把圓形圖片沿直徑對(duì)折,問(wèn)學(xué)生會(huì)發(fā)現(xiàn)什么結(jié)論?(平分弦,也平分弦所對(duì)的兩條?。?BR> (4)問(wèn)學(xué)生在什么樣條件下得出這些結(jié)論的?
(5)最后引導(dǎo)學(xué)生歸納出垂經(jīng)定理的內(nèi)容,教師再補(bǔ)充、強(qiáng)調(diào)并板書(shū)。通過(guò)這一探究過(guò)程,大部分學(xué)生參與到課堂中去,并培養(yǎng)了學(xué)生動(dòng)手操作和創(chuàng)新的能力,也激發(fā)了學(xué)生探究問(wèn)題的興趣,學(xué)生就在這種輕松、愉快的活動(dòng)中掌握了垂徑定理,實(shí)現(xiàn)了教學(xué)的有效性,這是在這節(jié)課中我感覺(jué)最成功的地方。
當(dāng)然,整節(jié)課也有許多不足之處。例如,在對(duì)垂經(jīng)定理有關(guān)計(jì)算方面的安排上欠妥,具體表現(xiàn)在:(1)把課本中趙州橋的問(wèn)題作為第一個(gè)練習(xí)題讓學(xué)生解決稍微偏難,應(yīng)該先解決一些簡(jiǎn)單的類(lèi)型題。比如:已知弦的長(zhǎng)度和圓心到弦的距離,求圓的半徑這類(lèi)題,這樣的話學(xué)生不但鞏固了垂經(jīng)定理,而且也能體會(huì)到成功的喜悅,等再處理趙州橋的問(wèn)題就變成水到渠成的事情了。(2)垂經(jīng)定理中平分弦的證明過(guò)程盡量給學(xué)生留點(diǎn)時(shí)間讓學(xué)生板書(shū)出來(lái),這樣可以防止學(xué)生缺少主動(dòng)性,并且會(huì)有更多的學(xué)生參與到課堂中去。
(3)應(yīng)該給學(xué)生滲透一些情感教育,讓學(xué)生知道數(shù)學(xué)來(lái)源于生活,又應(yīng)用于生活。
總之,在教學(xué)設(shè)計(jì)和課堂教學(xué)中應(yīng)充分了解學(xué)生,研究學(xué)生,我們不僅要備教材,而且還要備學(xué)生。要真正樹(shù)立以學(xué)生的發(fā)展為本的教學(xué)理念。只有這樣,才能為學(xué)生提供充分的教學(xué)活動(dòng)和交流的機(jī)會(huì),使學(xué)生從單純的的知識(shí)接受者變?yōu)閿?shù)學(xué)學(xué)習(xí)的主人。
垂徑定理的教學(xué)設(shè)計(jì)篇十七
勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫(huà)了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!?0xx版數(shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)勾股定理教學(xué)內(nèi)容的要求是:
1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過(guò)程中,進(jìn)一步發(fā)展空間觀念;
2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;
3、經(jīng)歷從不同角度分析問(wèn)題和解決問(wèn)題的方法的過(guò)程,體驗(yàn)解決問(wèn)題方法的多樣性;
4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
本節(jié)課的教學(xué)目標(biāo)是:
1、能正確運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)重點(diǎn)和難點(diǎn):
應(yīng)用勾股定理及其逆定理解決實(shí)際問(wèn)題是重點(diǎn)。
把實(shí)際問(wèn)題化歸成數(shù)學(xué)模型是難點(diǎn)。
根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問(wèn)題情境,使教學(xué)活動(dòng)充滿(mǎn)趣味性和吸引力,讓他們?cè)谧灾魈骄浚献鹘涣髦蟹治鰡?wèn)題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問(wèn)題。在教學(xué)過(guò)程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類(lèi)討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。
在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
第一環(huán)節(jié):情境引入。
情景1:復(fù)習(xí)提問(wèn):勾股定理的語(yǔ)言表述以及幾何語(yǔ)言表達(dá)?
設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語(yǔ)言及數(shù)學(xué)表達(dá),體現(xiàn)。
設(shè)計(jì)意圖:既靈活考察學(xué)生對(duì)勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
第二環(huán)節(jié):合作探究(圓柱體表面路程最短問(wèn)題)。
情景3:課本引例(螞蟻怎樣走最近)。
第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問(wèn)題逐步變?yōu)殚L(zhǎng)方體表面的距離最短問(wèn)題)。
設(shè)計(jì)意圖:將問(wèn)題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對(duì)知識(shí)的理解和鞏固。再將圓柱問(wèn)題變?yōu)檎襟w長(zhǎng)方體問(wèn)題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長(zhǎng)方體問(wèn)題中學(xué)生會(huì)有不同的做法,正好透分類(lèi)討論思想。
第四環(huán)節(jié):議一議。
設(shè)計(jì)意圖:
第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
1、解決實(shí)際問(wèn)題的方法是建立數(shù)學(xué)模型求解、
2、在尋求最短路徑時(shí),往往把空間問(wèn)題平面化,利用勾股定理及其逆定理解決實(shí)際問(wèn)題。
3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
第七環(huán)作業(yè)設(shè)計(jì):
第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。
知識(shí)技能:了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過(guò)程、
數(shù)學(xué)思考:在勾股定理的探索過(guò)程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想、解決問(wèn)題:
1、通過(guò)拼圖活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維、
2、在探究活動(dòng)中,學(xué)會(huì)與人合作并能與他人交流思維的過(guò)程和探究結(jié)果、
情感態(tài)度:
1、通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)熱情、
2、在探究活動(dòng)中,體驗(yàn)解決問(wèn)題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神、
2、難點(diǎn)是用拼圖的方法證明勾股定理、