亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        反比例函數(shù)教案(實(shí)用17篇)

        字號(hào):

            教案是一種指導(dǎo)教師教學(xué)行為的工具,具有明確的教學(xué)目標(biāo)和任務(wù)。寫教案時(shí)要注重與其他學(xué)科和教學(xué)環(huán)節(jié)的銜接,促進(jìn)學(xué)科整合和綜合應(yīng)用。教案范文的實(shí)施效果也是可以借鑒的參考指標(biāo)。
            反比例函數(shù)教案篇一
            2.滲透數(shù)形結(jié)合思想,提高學(xué)生用函數(shù)觀點(diǎn)解決問題的能力。
            二、重點(diǎn)、難點(diǎn)。
            2.難點(diǎn):分析實(shí)際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式。
            3.難點(diǎn)的突破方法:
            用函數(shù)觀點(diǎn)解實(shí)際問題,一要搞清題目中的.基本數(shù)量關(guān)系,將實(shí)際問題抽象成數(shù)學(xué)問題,看看各變量間應(yīng)滿足什么樣的關(guān)系式(包括已學(xué)過的基本公式),這一步很重要;二是要分清自變量和函數(shù),以便寫出正確的函數(shù)關(guān)系式,并注意自變量的取值范圍;三要熟練掌握反比例函數(shù)的意義、圖象和性質(zhì),特別是圖象,要做到數(shù)形結(jié)合,這樣有利于分析和解決問題。教學(xué)中要讓學(xué)生領(lǐng)會(huì)這一解決實(shí)際問題的基本思路。
            三、例題的意圖分析。
            教材第57頁(yè)的例1,數(shù)量關(guān)系比較簡(jiǎn)單,學(xué)生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實(shí)際上是利用了反比例函數(shù)的定義,同時(shí)也是要讓學(xué)生學(xué)會(huì)分析問題的方法。
            教材第58頁(yè)的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實(shí)際問題,此題的實(shí)際背景較例1稍復(fù)雜些,目的是為了提高學(xué)生將實(shí)際問題抽象成數(shù)學(xué)問題的能力,掌握用函數(shù)觀點(diǎn)去分析和解決問題的思路。
            反比例函數(shù)教案篇二
            1、本節(jié)課講述內(nèi)容為北師大版教材九年級(jí)下冊(cè)第五章《反比例函數(shù)》的第二節(jié),也這一章的重點(diǎn)。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎(chǔ)上,進(jìn)一步熟悉其圖象和性質(zhì)的過程。
            2、對(duì)教材的分析。
            (1)教學(xué)目標(biāo):進(jìn)一步熟悉作函數(shù)圖象的主要步驟,會(huì)作反比例函數(shù)的圖象;體會(huì)函數(shù)三種方式的相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整和;逐步提高從函數(shù)圖象中獲取知識(shí)的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
            (2)重點(diǎn):會(huì)作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
            (3)難點(diǎn):探索并掌握反比例函數(shù)的主要性質(zhì)。
            1、提問:
            (1)=4/x是什么函數(shù)?你會(huì)作反比例函數(shù)的圖象嗎?
            (2)作圖的步驟是怎樣的。
            (3)填寫電腦上的表格,開始在坐標(biāo)紙上描點(diǎn)連線。
            2、按照上述方法作=—4/x的圖象。
            3、對(duì)照你所作的兩個(gè)函數(shù)圖象,找一下它們的相同點(diǎn)和不同點(diǎn)。
            1、讓學(xué)生觀察函數(shù)=/x的圖象,按下動(dòng)畫按鈕,在運(yùn)動(dòng)中觀察值的變化與函數(shù)圖象變化之間的關(guān)系,并與同學(xué)充分討論有何規(guī)律。
            2、演示反比例函數(shù)中心對(duì)稱的性質(zhì)以及軸對(duì)稱性質(zhì),顯示反比例函數(shù)的兩條對(duì)稱軸。
            3、讓學(xué)生觀察函數(shù)=/x的圖象,觀察過反比例函數(shù)上任意一點(diǎn)作x軸和軸的垂線,觀察其圍成矩形的面積變化情況。
            (1)拖動(dòng),使變化,觀察不斷變化過程中,矩形面積的變化情況,討論得出結(jié)論。
            (2)拖動(dòng)函數(shù)上的點(diǎn),觀察矩形面積的變化情況,討論得出結(jié)論。
            1、給出兩個(gè)反比例函數(shù)的圖象,判斷哪一個(gè)是=2/x和=—2/x的圖象。
            2、判斷一位同學(xué)畫的反比例函數(shù)的圖象是否正確。
            :課本137頁(yè)第1題、141頁(yè)第2題。
            反比例函數(shù)教案篇三
            1、經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程。
            2、體會(huì)數(shù)學(xué)與現(xiàn)實(shí)。
            生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí)。提高運(yùn)用代數(shù)方法解決問題的能力。
            通過對(duì)反比例函數(shù)的應(yīng)用,培養(yǎng)學(xué)生解決問題的能力。
            經(jīng)歷將一些實(shí)際問題抽象為數(shù)學(xué)問題的過程,初步學(xué)會(huì)從數(shù)學(xué)的角度提出問題。理解問題,并能綜合運(yùn)用所學(xué)的知識(shí)和技能解決問題。發(fā)展應(yīng)用意識(shí),初步認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用。
            如何從實(shí)際問題中抽象出數(shù)學(xué)問題、建立數(shù)學(xué)模型,用數(shù)學(xué)知識(shí)去解決實(shí)際問題。
            教師引導(dǎo)學(xué)生探索法。
            [生]是為了應(yīng)用。
            [師]很好。學(xué)習(xí)的目的是為了用學(xué)到的知識(shí)解決實(shí)際問題。究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學(xué)一學(xué)。
            投影片:(5.3a)。
            某??萍夹〗M進(jìn)行野外考察,途中遇到片十幾米寬的爛泥濕地。為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時(shí)通道,從而順利完成了任務(wù)。你能解釋他們這樣做的道理嗎?當(dāng)人和木板對(duì)濕地的壓力一定時(shí)隨著木板面積s(m2)的變化,人和木板對(duì)地面的壓強(qiáng)p(pa)將如何變化?如果人和木板對(duì)濕地地面的壓力合計(jì)600n,那么:
            (1)用含s的代數(shù)式表示p,p是s的反比例函數(shù)嗎?為什么?
            (2)當(dāng)木板畫積為0.2m2時(shí)。壓強(qiáng)是多少?
            (3)如果要求壓強(qiáng)不超過6000pa,木板面積至少要多大?
            (4)在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象。
            反比例函數(shù)教案篇四
            1.能運(yùn)用反比例函數(shù)的相關(guān)知識(shí)分析和解決一些簡(jiǎn)單的實(shí)際問題。
            2.在解決實(shí)際問題的過程中,進(jìn)一步體會(huì)和認(rèn)識(shí)反比例函數(shù)是刻。
            畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。
            反比例函數(shù)在生活、生產(chǎn)實(shí)際中也有著廣泛的應(yīng)用。
            例如:在矩形中s一定,a和b之間的關(guān)系?你能舉例嗎?
            例1、見課本73頁(yè)。
            例2、見課本74頁(yè)。
            (1)寫出這個(gè)函數(shù)解析式。
            (2)當(dāng)氣球的體積為0.8m3時(shí),氣球的氣壓是多少千帕?
            反比例函數(shù)教案篇五
            3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;
            4、體會(huì)數(shù)學(xué)從實(shí)踐中來又到實(shí)際中去的研究、應(yīng)用過程;
            5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力。
            直尺。
            教學(xué)方法:小組合作、探究式。
            我們?cè)谛W(xué)學(xué)過反比例關(guān)系。例如:當(dāng)路程s一定時(shí),時(shí)間t與速度v成反比例。
            即vt=;。
            當(dāng)矩形面積s一定時(shí),長(zhǎng)a與寬b成反比例,即ab=。
            從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫成:
            (s是常數(shù))。
            (s是常數(shù))。
            一般地,函數(shù)(k是常數(shù))叫做反比例函數(shù)。
            如上例,當(dāng)路程s是常數(shù)時(shí),時(shí)間t就是v的反比例函數(shù)。當(dāng)矩形面積s是常數(shù)時(shí),長(zhǎng)a是寬b的反比例函數(shù)。
            在現(xiàn)實(shí)生活中,也有許多反比例關(guān)系的例子??梢越M織學(xué)生進(jìn)行討論。下面的例子僅供。
            解:列表。
            一般地反比例函數(shù)(k是常數(shù),)的圖象由兩條曲線組成,叫做雙曲線。
            3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)。
            前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí)。
            顯示這兩個(gè)函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證。(下列答案僅供參考)。
            (1)的圖象在第一、三象限??梢詳U(kuò)展到k0時(shí)的情形,即k0時(shí),雙曲線兩支各在第一和第三象限。從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限。
            的討論與此類似。
            抓住機(jī)會(huì),說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法。體現(xiàn)了由特殊到一般的研究過程。
            (2)函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減?。?BR>    從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì)。從列表中也可以看出這樣的變化趨勢(shì)。有理數(shù)除法說明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小。由此可歸納出,當(dāng)k0時(shí),函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小。
            同樣可以推出的圖象的性質(zhì)。
            (3)函數(shù)的圖象不經(jīng)過原點(diǎn),且不與x軸、y軸交。從解析式中也可以看出,.如果x取值越來越大時(shí),y的值越來越小,趨近于零;如果x取負(fù)值且越來越小時(shí),y的值也越來越趨近于零。因此,呈現(xiàn)的是雙曲線的樣子。同理,抽象出圖象的性質(zhì)。
            函數(shù)的圖象性質(zhì)的討論與次類似。
            4、小結(jié):
            本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì)。大家展開了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí)。數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),給以一定的解釋。即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中。
            反比例函數(shù)教案篇六
            備課過程,我認(rèn)真研讀教材,認(rèn)為本節(jié)課重點(diǎn)和難點(diǎn)就是掌握反比例函數(shù)的概念,以及如何與一次函數(shù)及一次函數(shù)中的正比例函數(shù)的區(qū)別。所以,我在講授新課前安排了對(duì)“函數(shù)”、“一次函數(shù)”及“正比例函數(shù)”概念及“一次函數(shù)”和“正比例函數(shù)”一般式的復(fù)習(xí)。
            為了更好的引入“反比例函數(shù)”的概念,并能突出重點(diǎn),我采用了課本上的問題情境,同時(shí)調(diào)整了課本上提供的“思考”的問題的位置,將它放到函數(shù)概念引出之后,讓學(xué)生體會(huì)在生活中有很多反比例關(guān)系。
            情境設(shè)置:
            汽車從南京開往上海,全程約300km,全程所用的時(shí)間t(h)隨v(km/h)的變化而變化。
            (1)你能用含v的代數(shù)式來表示t嗎?
            (2)時(shí)間t是速度v的函數(shù)嗎?
            設(shè)計(jì)意圖:與前面復(fù)習(xí)內(nèi)容相呼應(yīng),讓同學(xué)們能在“做一做”和“議一儀”中感受兩個(gè)量之間的函數(shù)關(guān)系,同時(shí)也能注意到與所學(xué)“一次函數(shù)”,尤其是“正比例函數(shù)”的不同。從而自然地引入“反比例函數(shù)”概念。
            為幫助學(xué)生更深刻的認(rèn)識(shí)和掌握反比例函數(shù)概念,我引導(dǎo)學(xué)生將反比例函數(shù)的一般式進(jìn)行變形,并安排了相應(yīng)的例題。
            一般式變形:(其中k均不為0)。
            通過對(duì)一般式的變形,讓學(xué)生從“形”上掌握“反比例函數(shù)”的概念,在結(jié)合“思考”的幾個(gè)問題,讓學(xué)生從“神”神上體驗(yàn)“反比例函數(shù)”。
            為加深難度,我又補(bǔ)充了幾個(gè)練習(xí):
            2是的反比例函數(shù),是的正比例函數(shù),則與成什么關(guān)系?
            關(guān)于課堂。
            教學(xué)。
            由于備課充分,我信心十足,課堂上情緒飽滿,學(xué)生們也受到我的影響,精神飽滿,課堂氣氛相對(duì)活躍。
            在復(fù)習(xí)“函數(shù)”這一概念的時(shí)候,很多學(xué)生顯露出難色,顯然不是忘記了就是不知到如何表達(dá)。我舉了兩個(gè)簡(jiǎn)單的實(shí)例,學(xué)生們立即就回憶起函數(shù)的本質(zhì)含義,為學(xué)習(xí)反比例函數(shù)做了很好的鋪墊。一路走來,非常輕松。
            對(duì)反比例函數(shù)一般式的變形,是課堂教學(xué)中較成功的一筆,就是因?yàn)檫@一探索過程,對(duì)于我補(bǔ)充的練習(xí)1這類屬中等難度的題型,班級(jí)中成績(jī)偏下的同學(xué)也能很好的掌握。
            而對(duì)于練習(xí)3,對(duì)于初學(xué)反比例函數(shù)的學(xué)生來說,有點(diǎn)難度,大部分學(xué)生顯露出感興趣的神情,不少學(xué)生能很好得解答此類題。
            經(jīng)驗(yàn)感想:
            1、課前認(rèn)真準(zhǔn)備,對(duì)授課效果的影響是不容忽視的。
            2、教師的精神狀態(tài)直接影響學(xué)生的精神狀態(tài)。
            3、數(shù)學(xué)教學(xué)一定要重概念,抓本質(zhì)。
            4、課堂上要注重學(xué)生情感,表情,可適當(dāng)調(diào)整教學(xué)深度。
            反比例函數(shù)教案篇七
            2、能根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式。
            3、在解決實(shí)際問題的過程中,進(jìn)一步體會(huì)和認(rèn)識(shí)反比例函數(shù)是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。
            重點(diǎn):能利用反比例函數(shù)的相關(guān)的知識(shí)分析和解決一些簡(jiǎn)單的實(shí)際問題。
            難點(diǎn):根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式。
            為了預(yù)防“非典”,某學(xué)校對(duì)教室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量(g)與時(shí)間x(in)成正比例。藥物燃燒后,與x成反比例(如圖所示),現(xiàn)測(cè)得藥物8in燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量為6g,請(qǐng)根據(jù)題中所提供的信息,解答下列問題:
            (1)藥物燃燒時(shí),關(guān)于x的函數(shù)關(guān)系式為:________,自變量x的取值范圍是:_______,藥物燃燒后關(guān)于x的函數(shù)關(guān)系式為_______.
            (1)如果小明以每分種120字的速度錄入,他需要多少時(shí)間才能完成錄入任務(wù)?
            (2)錄入文字的速度v(字/in)與完成錄入的時(shí)間t(in)有怎樣的函數(shù)關(guān)系?
            (3)小明希望能在3h內(nèi)完成錄入任務(wù),那么他每分鐘至少應(yīng)錄入多少個(gè)字?
            例2某自來水公司計(jì)劃新建一個(gè)容積為的長(zhǎng)方形蓄水池。
            (1)蓄水池的底部s與其深度有怎樣的函數(shù)關(guān)系?
            (2)如果蓄水池的深度設(shè)計(jì)為5,那么蓄水池的底面積應(yīng)為多少平方米?
            (3)由于綠化以及輔助用地的需要,經(jīng)過實(shí)地測(cè)量,蓄水池的長(zhǎng)與寬最多只能設(shè)計(jì)為100和60,那么蓄水池的深度至少達(dá)到多少才能滿足要求?(保留兩位小數(shù))。
            1、一定質(zhì)量的氧氣,它的密度(g/3)是它的體積v(3)的反比例函數(shù),當(dāng)v=103時(shí),=1.43g/3.(1)求與v的函數(shù)關(guān)系式;(2)求當(dāng)v=23時(shí)求氧氣的密度。
            2、某地上年度電價(jià)為0.8元&nt/&nt度,年用電量為1億度。本年度計(jì)劃將電價(jià)調(diào)至0.55元至0.75元之間。經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量(億度)與(x-0.4)(元)成反比例,當(dāng)x=0.65時(shí),=-0.8。
            (1)求與x之間的函數(shù)關(guān)系式;
            3、如圖,矩形abcd中,ab=6,ad=8,點(diǎn)p在bc邊上移動(dòng)(不與點(diǎn)b、c重合),設(shè)pa=x,點(diǎn)d到pa的距離de=.求與x之間的函數(shù)關(guān)系式及自變量x的取值范圍。
            30.3——1、2、3。
            反比例函數(shù)教案篇八
            1、借助正比例的意義理解反比例的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
            2、在小組合作學(xué)習(xí)過程中,掌握合作學(xué)習(xí)技能,體驗(yàn)合作學(xué)習(xí)的快樂。
            一、創(chuàng)設(shè)情境,明確問題。
            同學(xué)們,昨天老師去幼兒園接小朋友,看見幼兒園的老師正在給小朋友們分餅干,想知道他們是怎么分的嗎?我們一起去看一看:
            人數(shù)(人)。
            反比例函數(shù)教案篇九
            這節(jié)課是在學(xué)生掌握了反比例函數(shù)的概念及其圖像與性質(zhì)的基礎(chǔ)之上而學(xué)習(xí)的,并且上學(xué)學(xué)習(xí)了正比例函數(shù)和一次函數(shù),因此學(xué)生已經(jīng)有了一定的知識(shí)準(zhǔn)備,但是由于學(xué)生的知識(shí)所限,對(duì)于例題中的信息并不了解,這樣容易造成學(xué)生在了解上的困難,所以在教學(xué)時(shí)我選用了學(xué)生所熟悉的實(shí)例進(jìn)行教學(xué)。使學(xué)生從身邊事物入手,真正體會(huì)到數(shù)學(xué)知識(shí)來源于生活,有一種親切感,另外對(duì)于本節(jié)的問題,文字多,閱讀量大,所以我應(yīng)用幻燈片的形式展現(xiàn),效果要好,注意要讓學(xué)生經(jīng)歷實(shí)踐、思考、表達(dá)與交流的過程,給學(xué)生留下充足的時(shí)間來活動(dòng),不斷引導(dǎo)學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際問題,本節(jié)課效果較好。
            反比例函數(shù)教案篇十
            本節(jié)課的教學(xué),我本意是通過反比例函數(shù)及其圖像相關(guān)問題的復(fù)習(xí),引出本節(jié)課所要討論的問題反比例函數(shù)的應(yīng)用,而后通過對(duì)問題1的討論切入正題,重點(diǎn)研究“數(shù)”與“形”的互相滲透,并通過這節(jié)課的學(xué)習(xí)讓學(xué)生體會(huì)“數(shù)形結(jié)合”的數(shù)學(xué)思想,利用函數(shù)圖像來解決應(yīng)用題。在教學(xué)中,我發(fā)現(xiàn)這種教學(xué)設(shè)計(jì)出現(xiàn)了以下幾個(gè)問題。
            首先,目標(biāo)教學(xué)的第一環(huán)節(jié),前測(cè)激趣,但沒有達(dá)到激趣的目的,這種引課方式,在課堂反映出來顯得非常平淡,沒有新意,沒能引起學(xué)生的認(rèn)知發(fā)生沖突,激發(fā)學(xué)生的求知欲。
            其次,在導(dǎo)探激勵(lì)環(huán)節(jié)中,問題設(shè)計(jì)較好,但問題的處理上操之過急,沒能讓學(xué)生切實(shí)做出函數(shù)圖像,通過問題迫使學(xué)生利用函數(shù)圖像來解決問題,達(dá)到真正看圖說話,因此就數(shù)形的內(nèi)在聯(lián)系學(xué)生體會(huì)不是很深刻。
            為了一開始就能充分調(diào)動(dòng)學(xué)生的情商,激發(fā)他們的學(xué)習(xí)動(dòng)機(jī)和好奇心,激發(fā)他們的求知欲,使他們的思維進(jìn)入最佳狀態(tài),我就上面存在的問題作如下改進(jìn)。
            在整個(gè)題目的處理過程,鼓勵(lì)學(xué)生畫出函數(shù)圖像,更好的認(rèn)識(shí)整個(gè)過程自變量和應(yīng)變量變化的整體情況,處理好題目中的量與自變量和應(yīng)變量的關(guān)系。
            作以上改進(jìn),可以很好地讓學(xué)生體會(huì)到“數(shù)”與“形”之間的聯(lián)系,并且會(huì)根據(jù)反比例函數(shù)求應(yīng)用題。
            反比例函數(shù)教案篇十一
            1. 本節(jié) 課講述內(nèi)容為北師大版教材九年級(jí)下冊(cè)第五章《反比例函數(shù)》 的第二節(jié),也這一章的重點(diǎn)。本節(jié)課是在理解反比例 函數(shù)的意義和概念的基礎(chǔ)上,進(jìn)一步熟悉其圖象和性質(zhì)的過程。
            2. 對(duì)教材的分析
            (1) 教學(xué)目標(biāo):進(jìn) 一步熟悉作函數(shù)圖象的主要步驟,會(huì)作反比例函數(shù)的圖象;體會(huì)函數(shù)三種方式的相互轉(zhuǎn)換,對(duì) 函數(shù)進(jìn)行認(rèn)識(shí)上的整和;逐步提高從函數(shù)圖象中獲取知識(shí)的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
            (2) 重點(diǎn):會(huì)作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
            (3) 難點(diǎn):探索并掌握反比例函數(shù)的主要性質(zhì)。
            1、提問:
            (1)=4/x 是什么函數(shù)?你會(huì)作反比例函數(shù)的圖象嗎?
            (2)作圖的步驟是 怎樣的(3)填寫電腦上的表格,開始在坐標(biāo)紙上描點(diǎn)連線。
            2、按照上述方法作 =―4/x 的圖象3、 對(duì)照你所作的兩個(gè)函數(shù)圖象,找一下它們的相同點(diǎn)和不同點(diǎn)。
            1、讓學(xué)生觀察函 數(shù) =/x 的圖象 ,按下動(dòng)畫按鈕,在運(yùn)動(dòng)中觀察值的變化與函數(shù)圖象變化之間的關(guān)系,并與同學(xué)充分討論有何規(guī)律。
            2、演示反比例函數(shù)中心 對(duì)稱的性質(zhì)以及軸對(duì)稱性質(zhì),顯示反比例函數(shù)的兩條對(duì)稱軸。
            3、讓學(xué)生觀察函數(shù) =/x 的圖象,觀察過反比例函數(shù)上任意一 點(diǎn)作x軸和軸的垂線,觀察其圍成矩形的面積變化情況。
            (1) 拖動(dòng),使變化,觀察不斷變化過程中,矩形面積的變化情況,討論得出 結(jié)論。
            (2) 拖動(dòng)函數(shù)上的點(diǎn),觀察矩形面積的變化情況,討論得出結(jié)論。
            1、給出兩個(gè)反比例函數(shù)的圖象,判斷哪一個(gè)是 =2/x 和 =―2/x 的圖象。
            2、判斷一位同學(xué)畫的反比例函數(shù)的圖象是否正確。
            3、下列函數(shù)中,其圖象位于第一、三象限
            的有哪幾個(gè)?在其圖象所在象限內(nèi),的值隨x的增大而增
            大的有哪幾個(gè)?
            :課本137頁(yè)第1題、141頁(yè)第2題
            反比例函數(shù)教案篇十二
            知識(shí)與技能:1.進(jìn)一步熟悉作函數(shù)圖象的主要步驟,會(huì)作反比例函數(shù)的圖象。
            2.體會(huì)函數(shù)的三種表示方法的相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整合。
            3.培養(yǎng)學(xué)生從函數(shù)圖象中獲取信息的能力,初步探索反比例函數(shù)的性質(zhì)。
            過程與方法:通過學(xué)生自己動(dòng)手列表,描點(diǎn),連線,提高學(xué)生的作圖能力;通過觀察圖象,概括反比例函數(shù)圖象的有關(guān)性質(zhì),訓(xùn)練學(xué)生的概括總結(jié)能力.
            情感、態(tài)度與價(jià)值觀:讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動(dòng)中去,增強(qiáng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心和求知欲。
            教學(xué)難點(diǎn) 1) 重點(diǎn):畫反比例函數(shù)圖象并認(rèn)識(shí)圖象的特點(diǎn).
            2)難點(diǎn):畫反比例函數(shù)圖象.
            教學(xué)關(guān)鍵 教師畫圖中要規(guī)范,為學(xué)生樹立一個(gè)可以學(xué)習(xí)的模板
            教學(xué)方法 激發(fā)誘導(dǎo),探索交流,講練結(jié)合三位一體的教學(xué)方式
            教學(xué)手段 教師畫圖,學(xué)生模仿
            教具 三角板,小黑板
            學(xué)法 學(xué)生動(dòng)手,動(dòng)眼,動(dòng)耳,采用自主,合作,探究的學(xué)習(xí)方法
            (包含課前檢測(cè)、新課導(dǎo)入、新課講解、課堂練習(xí)、小結(jié)、形成性檢測(cè)、反饋拓展、作業(yè)布置)
            內(nèi) 容 設(shè)計(jì)意圖
            1.什么叫做反比例函數(shù);
            (一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y= (k為常數(shù),k0)的形式,那么稱y是x的反比例函數(shù)。)
            2.反比例函數(shù)的定義中需要注意什么?
            (1)k為常數(shù),k0
            (2)從y= 中可知x作為分母,所以x不能為零.
            y=kx+b y=kx
            k0 一、二、三 一、三
            b0 一、三、四
            k0 一、二、四 二、四
            b0 二、三、四
            可以
            問題3:畫圖象的步驟有哪些呢?
            (1)列表
            (2)描點(diǎn)
            (3)連線
            (教學(xué)片斷:
            師:上一節(jié)課我們研究了反比例函數(shù),今天我們繼續(xù)研究反比例函數(shù),下面哪位同學(xué)說一下自己對(duì)反比例函數(shù)的了解。
            生:我知道反比例函數(shù)來源于生活,生活中的許多問題都屬于反比例函數(shù)問題,例如,在勻速運(yùn)動(dòng)中當(dāng)路程一定時(shí),且路程不等于零,則速度與時(shí)間成反比例函數(shù)關(guān)系。
            生:我知道反比例函數(shù)的解析式為 且k不等于0
            生:我知道反比例函數(shù)的圖象是曲線。
            生:該研究反比例函數(shù)圖象和性質(zhì)了。
            師:現(xiàn)在給大家?guī)追昼姷臅r(shí)間探討一下反比例函數(shù)圖象該怎么畫?
            學(xué)生思考、交流、回答。
            提問:你能畫出 的圖象嗎?
            學(xué)生動(dòng)手畫圖,相互觀摩。
            (1) 列表(取值的特殊與有效性)
            x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
            (2)描點(diǎn)(描點(diǎn)的準(zhǔn)確)
            (3)連線(注意光滑曲線)
            議一議
            (1)你認(rèn)為作反比例函數(shù)圖象時(shí)應(yīng)注意哪些問題?與同伴進(jìn)行交流。
            (2)如果在列表時(shí)所選取的數(shù)值不同,那么圖象的形狀是否相同?
            (3)連接時(shí)能否連成折線?為什么必須用光滑的曲線連接各點(diǎn)?
            (4)曲線的發(fā)展趨勢(shì)如何?
            曲線無限接近坐標(biāo)軸但不與坐標(biāo)軸相交
            學(xué)生先分四人小組進(jìn)行討論,而后小組匯報(bào)
            做一做
            作反比例函數(shù) 的圖象。
            學(xué)生動(dòng)手畫圖,相互觀摩。
            想一想
            觀察 和 的圖象,它們有什么相同點(diǎn)和不同點(diǎn)?
            學(xué)生小組討論,弄清上述兩個(gè)圖象的異同點(diǎn)
            相同點(diǎn):(1)圖象分別都是由兩支曲線組成(2)都不與坐標(biāo)軸相交(3)都是軸對(duì)稱圖形(y=x、y=-x)和中心對(duì)稱圖形(對(duì)稱中心(0,0)即坐標(biāo)原點(diǎn))
            不同點(diǎn):第一個(gè)圖象位于一、三象限;第二個(gè)圖象位于二、四象限
            反比例函數(shù) y = 有下列性質(zhì):反比例函數(shù)的圖象y = 是由兩支曲線組成的。
            (1) 當(dāng) k0 時(shí),兩支曲線分別位于第___、___象限,
            (2) 當(dāng) k0 時(shí),兩支曲線分別位于第___、___象限.
            (1)
            (1)已知函數(shù) 的圖象分布在第二、四象限內(nèi),則 的取值范圍是_________
            (2)若ab0,則函數(shù) 與 在同一坐標(biāo)系內(nèi)的圖象大致可能是下圖中的 ( )
            (a) (b) (c) (d)
            (3)畫 和 的圖象
            在同一坐標(biāo)系中作出函數(shù)y=2/x與函數(shù)y=x-1的圖象,并利用圖象求它們的交點(diǎn)坐標(biāo).
            (1) 作反比例函數(shù)y=2/x,y=4/x,y=6/x的圖象
            (2) 習(xí)題5.2.1
            (3)預(yù)習(xí)下一節(jié) 反比例函數(shù)的圖象與性質(zhì)ii
            復(fù)習(xí)上節(jié)主要內(nèi)容
            (3分鐘)
            (5分鐘)
            運(yùn)用類比研究一次函數(shù)性質(zhì)的方法,來研究反比例函數(shù)圖象與性質(zhì)
            由于初中學(xué)生屬于義務(wù)教育階段,沒有經(jīng)過入學(xué)選拔,所以兩極分化比較嚴(yán)重,上面提出的問題帶有一定的開放性,面向各層次的學(xué)生,使不同層次的學(xué)生都有一定的問題可答,從而激發(fā)起不同層次學(xué)生的學(xué)習(xí)積極性。
            數(shù)學(xué)教學(xué)重要目的之一是使學(xué)生學(xué)會(huì)學(xué)習(xí),利用這個(gè)問題可以使學(xué)生學(xué)會(huì)尋找研究的方向,會(huì)提出研究的課題,提高學(xué)習(xí)的能力。
            數(shù)學(xué)學(xué)習(xí)活動(dòng)是學(xué)生對(duì)自己頭腦中已有知識(shí)的重新建構(gòu),所以利用學(xué)生頭腦中已有的一次函數(shù)圖象與性質(zhì),及研究一次函數(shù)圖象與性質(zhì)的方法,創(chuàng)設(shè)問題情境,可以激發(fā)學(xué)習(xí)研究的熱情,點(diǎn)燃學(xué)生思維的火花,并使學(xué)生知道如何研究新問題,使學(xué)生在探究過程中實(shí)現(xiàn)知識(shí)的遷移,形成新的認(rèn)知結(jié)構(gòu)。
            (12分鐘)
            引導(dǎo)學(xué)生正確畫出反比例函數(shù)圖象,并能歸納反比例函數(shù)圖象的有關(guān)性質(zhì).
            在畫第一個(gè)圖象時(shí),教師要在黑板上用三角板一步一步的示范,在重要地方再重點(diǎn)強(qiáng)調(diào),直到整個(gè)圖象的完成。只有以身示范,同學(xué)學(xué)習(xí)才有樣可依,有了正確標(biāo)準(zhǔn)的樣板,學(xué)生學(xué)習(xí)也變得容易。這樣可以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)與嚴(yán)密的做題步驟以及做題的規(guī)范性。
            注:(1)x取絕對(duì)值相等符號(hào)相反的數(shù)值
            (2) x取值要盡可能多,而且有代表性
            (3)連線時(shí)用光滑曲線從小到大依次連接
            (4)圖象不與坐標(biāo)軸相交
            在此學(xué)生若是回答圖象是軸對(duì)稱圖象或者中心對(duì)稱圖象都要予以肯定,這些內(nèi)容留給學(xué)生課下探討,并鼓勵(lì)提出問題的學(xué)生繼續(xù)探索不要放棄。
            (3分鐘)
            此時(shí)圖象由學(xué)生仿照第一個(gè)在下邊自己獨(dú)立畫出,并且監(jiān)督學(xué)生,在有學(xué)生畫的不對(duì)的地方及時(shí)指出,并使其改正后鼓勵(lì)。最后在黑板上畫出正確的圖象,使學(xué)生自己畫的圖象與黑板對(duì)比。
            (5分鐘)
            (4分鐘)
            培養(yǎng)學(xué)生歸納,語(yǔ)言表達(dá)能力
            此中注意分類討論思想的應(yīng)用
            鞏固反比例函數(shù)圖象性質(zhì)
            (2分鐘)
            與新課較接近的簡(jiǎn)化檢測(cè)可以再次回顧所學(xué)內(nèi)容,以及內(nèi)容重點(diǎn)。這類題多為口算或口答,題目簡(jiǎn)單不過所學(xué)內(nèi)容可以全部體現(xiàn)。
            (5分鐘)
            這類練習(xí)要求動(dòng)筆計(jì)算或者畫圖,有一定難度,可以深化所學(xué)內(nèi)容。
            (4分鐘)
            此題既是對(duì)函數(shù)圖象畫法的復(fù)習(xí)又是對(duì)方程求解的深化。其中蘊(yùn)含了數(shù)形結(jié)合思想。
            (1分鐘)
            鞏固作反比例函數(shù)圖象的步驟,預(yù)習(xí)下一節(jié)課內(nèi)容
            本節(jié)課通過學(xué)生自主探索,合作交流,自主畫圖,以認(rèn)知規(guī)律為主線,以發(fā)展能力為目標(biāo),以從直觀感受到分析歸納為手段,培養(yǎng)學(xué)生的合情推理能力和積極的情感態(tài)度,促進(jìn)良好的數(shù)學(xué)觀的形成。培養(yǎng)了學(xué)生的抽象思維能力,同時(shí)也向?qū)W生滲透了歸納類比,數(shù)形結(jié)合以及分類討論的數(shù)學(xué)思想方法。
            由于此節(jié)課是動(dòng)手畫圖,限于器材以及教學(xué)設(shè)備,圖象顯示不能用幾何畫板和投影儀,不過一筆一筆的教學(xué)生一個(gè)范例,既可給學(xué)生思考也可有學(xué)習(xí)的空間。
            在由圖象獲取性質(zhì)的時(shí)候有一些不足,以后教課時(shí)要注意引導(dǎo),使學(xué)生較快獲得有效信息,從而歸納出要得到的性質(zhì)和結(jié)論。在這節(jié)課要多強(qiáng)調(diào)光滑曲線以及畫法。
            (1)列表(取值的特殊與有效性)
            x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
            (2)描點(diǎn)(描點(diǎn)的準(zhǔn)確)
            (3)連線(注意光滑曲線)
            注:(1)x取絕對(duì)值相等符號(hào)相反的數(shù)值
            (2)x取值要盡可能多,而且有代表性 三:練習(xí)
            (3)連線時(shí)用光滑曲線從小到大依次連接
            (4)圖象不與坐標(biāo)軸相交
            (1) 當(dāng) k0 時(shí),兩支曲線分別位于第一、三象限,
            (2) 當(dāng) k0 時(shí),兩支曲線分別位于第二、四象限.
            反比例函數(shù)教案篇十三
            1、能利用反比例函數(shù)的相關(guān)的知識(shí)分析和解決一些簡(jiǎn)單的實(shí)際問題。
            2、能根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式。
            3、在解決實(shí)際問題的過程中,進(jìn)一步體會(huì)和認(rèn)識(shí)反比例函數(shù)是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。
            重點(diǎn):能利用反比例函數(shù)的相關(guān)的知識(shí)分析和解決一些簡(jiǎn)單的實(shí)際問題。
            難點(diǎn):根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式。
            為了預(yù)防“非典”,某學(xué)校對(duì)教室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量為6mg,請(qǐng)根據(jù)題中所提供的信息,解答下列問題:。
            (1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為_______。
            (1)如果小明以每分種120字的速度錄入,他需要多少時(shí)間才能完成錄入任務(wù)?
            (3)小明希望能在3h內(nèi)完成錄入任務(wù),那么他每分鐘至少應(yīng)錄入多少個(gè)字?
            例2某自來水公司計(jì)劃新建一個(gè)容積為的長(zhǎng)方形蓄水池。
            (1)蓄水池的底部s與其深度有怎樣的函數(shù)關(guān)系?
            (2)如果蓄水池的深度設(shè)計(jì)為5m,那么蓄水池的底面積應(yīng)為多少平方米?
            (3)由于綠化以及輔助用地的需要,經(jīng)過實(shí)地測(cè)量,蓄水池的長(zhǎng)與寬最多只能設(shè)計(jì)為100m和60m,那么蓄水池的.深度至少達(dá)到多少才能滿足要求?(保留兩位小數(shù))。
            1、一定質(zhì)量的氧氣,它的密度(kg/m3)是它的體積v(m3)的反比例函數(shù),當(dāng)v=10m3時(shí),=1.43kg/m3.(1)求與v的函數(shù)關(guān)系式;(2)求當(dāng)v=2m3時(shí)求氧氣的密度。
            2、某地上年度電價(jià)為0.8元度,年用電量為1億度.本年度計(jì)劃將電價(jià)調(diào)至0.55元至0.75元之間.經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當(dāng)x=0.65時(shí),y=-0.8。
            (1)求y與x之間的函數(shù)關(guān)系式;
            3、如圖,矩形abcd中,ab=6,ad=8,點(diǎn)p在bc邊上移動(dòng)(不與點(diǎn)b、c重合),設(shè)pa=x,點(diǎn)d到pa的距離de=y.求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍。
            反比例函數(shù)教案篇十四
            數(shù)學(xué)思考
            解決問題
            情感態(tài)度
            重點(diǎn)
            運(yùn)用反比例函數(shù)解釋生活中的一些規(guī)律、解決一些實(shí)際問題
            難點(diǎn)
            把實(shí)際問題利用反比例函數(shù)轉(zhuǎn)化為數(shù)學(xué)問題加以解決
            活動(dòng)流程圖
            活動(dòng)內(nèi)容和目的
            活動(dòng)1創(chuàng)設(shè)情境,引出問題
            活動(dòng)2分析解決問題
            活動(dòng)3從函數(shù)的觀點(diǎn)進(jìn)一步分析規(guī)律
            活動(dòng)4鞏固練習(xí)
            活動(dòng)5課堂小結(jié)、布置作業(yè)
            教師提出生活中遇到的難題,請(qǐng)學(xué)生幫助解決,激發(fā)學(xué)生的興趣
            與學(xué)生共同分析實(shí)際問題中的變量關(guān)系,引導(dǎo)學(xué)生利用反比例函數(shù)解決問題
            引導(dǎo)學(xué)生追尋杠桿原理中蘊(yùn)涵的規(guī)律,從反比例函數(shù)的圖象、性質(zhì)等角度挖掘
            通過課堂練習(xí),提高學(xué)生運(yùn)用反比例函數(shù)解決實(shí)際問題的能力
            歸納、總結(jié)所學(xué),體會(huì)利用函數(shù)的觀點(diǎn)解決實(shí)際問題
            問題與情境
            師生行為
            設(shè)計(jì)意圖
            如何打開這個(gè)未開封的奶粉桶呢?―
            教師提出實(shí)際生活中的問題,學(xué)生提出解決辦法,教師引出利用杠桿原理解決問題。
            能否從數(shù)學(xué)角度探索杠桿原理中蘊(yùn)涵的變量關(guān)系呢?
            讓學(xué)生了解到日常生活中存在著許多兩個(gè)量之間具有反比例關(guān)系的例子,自然引入課題
            展示問題1:
            幾位同學(xué)玩撬石頭的游戲,已知阻力和阻力臂不變,分別是1200牛頓和0.5米,設(shè)動(dòng)力為f,動(dòng)力臂為?;卮鹣铝袉栴}:
            (1)動(dòng)力f與動(dòng)力臂有怎樣的函數(shù)關(guān)系?
            不妨列表描點(diǎn)畫出圖象
            (圖象在第三象限會(huì)有嗎?)
            分析問題中變量間的關(guān)系
            教師按照學(xué)生的認(rèn)知規(guī)律有層次、有步驟地引導(dǎo)學(xué)生分析解決問題
            從函數(shù)的觀點(diǎn)進(jìn)一步分析規(guī)律
            (5)地球重量的近似值為(即為阻力),假設(shè)阿基米德有500牛頓的力量,阻力臂為20xx千米,請(qǐng)你幫助阿基米德設(shè)計(jì)該用動(dòng)力臂為多長(zhǎng)的杠桿才能把地球撬動(dòng)?利用反比例函數(shù)的變化規(guī)律解釋實(shí)際生活中一些問題深入挖掘動(dòng)力臂與動(dòng)力f又有怎樣的函數(shù)關(guān)系呢?待定系數(shù)法解決函數(shù)問題公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”:
            阻力阻力臂=動(dòng)力動(dòng)力臂,他形象地說,“給我一個(gè)支點(diǎn)我可以把地球撬動(dòng)”
            展示練習(xí)
            市政府計(jì)劃建設(shè)一項(xiàng)水利工程,工程需要運(yùn)送的土石方總量為米,某運(yùn)輸公司承辦了該項(xiàng)工程運(yùn)送土方的任務(wù)。
            歸納、總結(jié)
            作業(yè):教科書習(xí)題17.2第6題
            教師引導(dǎo)學(xué)生回憶、總結(jié),教師予以補(bǔ)充
            通過小結(jié),使學(xué)生把所學(xué)知識(shí)進(jìn)一步內(nèi)化、系統(tǒng)化
            反比例函數(shù)教案篇十五
            1.對(duì)教材的分析。
            本節(jié)課講述內(nèi)容為北師大版教材九年級(jí)下冊(cè)第五章《反比例函數(shù)》的第二節(jié),也這一章的重點(diǎn)。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎(chǔ)上,進(jìn)一步熟悉其圖象和性質(zhì)的過程。
            本節(jié)課前一課時(shí)是在具體情境中領(lǐng)會(huì)反比例函數(shù)的意義和概念。函數(shù)的性質(zhì)蘊(yùn)涵于概念之中,對(duì)反比例函數(shù)性質(zhì)的探索是對(duì)其內(nèi)在規(guī)定性的的認(rèn)識(shí),也是對(duì)函數(shù)的概念的深化。同時(shí),本節(jié)課也是下一節(jié)課《反比例函數(shù)的應(yīng)用》的基礎(chǔ),有了本節(jié)課的知識(shí)儲(chǔ)備,便于學(xué)生利用函數(shù)的觀點(diǎn)來處理問題和解釋問題。
            傳統(tǒng)教材在內(nèi)容和編寫意圖的比較:傳統(tǒng)教材里反比例函數(shù)的內(nèi)容僅有一節(jié),新教材里反比例函數(shù)的內(nèi)容增加至一章。本節(jié)課中的作函數(shù)圖象的要求在新舊教材中并不一樣,舊教材對(duì)畫圖只是一帶而過,而新教材中讓學(xué)生反復(fù)作反比例函數(shù)的圖象,為下一步性質(zhì)的探索打下良好的基礎(chǔ)。因?yàn)樵趯W(xué)生進(jìn)行函數(shù)的列表、描點(diǎn)作圖是活動(dòng)中,就已經(jīng)開始了對(duì)反比例函數(shù)性質(zhì)的探索,而且通過對(duì)函數(shù)的三種表示方式的整和,逐步形成對(duì)函數(shù)概念的整體性認(rèn)識(shí)。在舊教材中對(duì)反比例函數(shù)性質(zhì)只是簡(jiǎn)單觀察以后,由老師講解得到,但是在新教材中注重從操作、觀察、概括和交流這些數(shù)學(xué)活動(dòng)中得到性質(zhì)結(jié)論,從而逐步提高從函數(shù)圖象中獲取信息的能力。這也充分體現(xiàn)了重視獲取知識(shí)過程體驗(yàn)的新課標(biāo)的精神。
            (1)教學(xué)目標(biāo):進(jìn)一步熟悉作函數(shù)圖象的主要步驟,會(huì)作反比例函數(shù)的圖象;體會(huì)函數(shù)三種方式的相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整和;逐步提高從函數(shù)圖象中獲取知識(shí)的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
            (2)重點(diǎn):會(huì)作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
            (3)難點(diǎn):探索并掌握反比例函數(shù)的主要性質(zhì)。
            2、對(duì)學(xué)情的分析。
            九年級(jí)學(xué)生在前面學(xué)習(xí)了一次函數(shù)之后,對(duì)函數(shù)有了一定的認(rèn)識(shí),雖然他們?cè)谛W(xué)已經(jīng)接觸了反比例,但都處于淺顯的、膚淺的知識(shí)表面,這對(duì)于他們理解反比例函數(shù)的圖象與性質(zhì)沒有多大的幫助,但由于本節(jié)課采用z+z智能教育平臺(tái)進(jìn)行教學(xué),比較形象,便于學(xué)生接受。
            教學(xué)過程。
            一、憶一憶。
            生:作一次函數(shù)的圖象要采用以下幾個(gè)步驟:(1)列表(2)描點(diǎn)(3)連線。
            生乙:一次函數(shù)的圖象是一條直線。
            師:你們能作出它的圖象嗎?
            生:可以。
            點(diǎn)評(píng):復(fù)習(xí)舊知識(shí),讓學(xué)生感受到新舊知識(shí)的聯(lián)系,并為后面的作反比例函數(shù)的圖象做好準(zhǔn)備。
            二、作圖象,試比較。
            師:請(qǐng)?zhí)顚戨娔X上的表格,并開始在坐標(biāo)紙上描點(diǎn),連線。
            師:再按照上述方法作y=-4/x的圖象。
            (學(xué)生動(dòng)手操作)。
            師:下面大家分小組討論:對(duì)照你們所作出的兩個(gè)函數(shù)圖象,找出它們的相同點(diǎn)與不同點(diǎn)。
            (學(xué)生討論交流,教師參與)。
            師:討論結(jié)束,下面哪個(gè)小組的同學(xué)說說你們的看法?
            生1:它們的圖象都是由兩支曲線組成的。
            生2:y=4/x的圖象的兩條曲線分布在一、三象限內(nèi),而y=-4/x的圖象的兩支曲線分布在二、四象限內(nèi)。
            點(diǎn)評(píng):這里讓學(xué)生自己上臺(tái)操作,既培養(yǎng)了學(xué)生的動(dòng)手能力,又可以激發(fā)學(xué)生學(xué)好數(shù)學(xué)的興趣。
            三、細(xì)觀察,找規(guī)律。
            師:大家都說得很好,下面我們一起觀察反比例函數(shù)y=k/x的圖象,當(dāng)k的發(fā)值生變化時(shí),函數(shù)的圖象發(fā)生了怎樣的變化,并分小組討論有什么規(guī)律。
            (展示圖象,讓學(xué)生觀察y=k/x的圖象,按下動(dòng)畫按鈕,在運(yùn)動(dòng)中觀察值的變化與函數(shù)的圖象變化之間的關(guān)系,并與同學(xué)們充分討論)。
            師:請(qǐng)同學(xué)們談一談剛才討論的結(jié)果。
            生:我發(fā)現(xiàn)函數(shù)圖象的變化與k的值有關(guān):當(dāng)k0時(shí),在每一象限內(nèi),y隨x的增大而減小,當(dāng)k0時(shí),在每一象限內(nèi),y隨x的增大而增大。
            師:看來大家都經(jīng)過了認(rèn)真的思考和討論,對(duì)規(guī)律總結(jié)的也比較完整,下面我們一起把剛才兩個(gè)環(huán)節(jié)的知識(shí)點(diǎn)一起總結(jié)一下。
            (1)反比例函數(shù)y=k/x的圖象是由兩支曲線所組成的。
            (2)當(dāng)k0時(shí),兩支曲線分別在一、三象限;當(dāng)k0時(shí),兩支曲線分別在二、四象限。
            (3)當(dāng)k0時(shí),在每一象限內(nèi),y隨x的增大而減小,當(dāng)k0時(shí),在每一象限內(nèi),y隨x的增大而增大。
            (由學(xué)生在電腦上進(jìn)行操作)。
            生:我發(fā)現(xiàn)旋轉(zhuǎn)后的圖象與原圖象完全重合了,這說明反比例函數(shù)的圖象是一個(gè)中心對(duì)稱圖形。
            師:大家做得很好。那么,如果我們?cè)趫D象上任取a、b兩點(diǎn),經(jīng)過這兩點(diǎn)分別作軸、軸的垂線,與坐標(biāo)軸圍成的矩形面積分別為s1、s2,觀察兩個(gè)矩形面積的變化情況,并找出其中的變化規(guī)律。
            題目:(1)拖動(dòng)k,使k變化,觀察k不斷變化過程中,矩形面積的變化情況,討論得出結(jié)論。(2)拖動(dòng)函數(shù)上的點(diǎn),觀察矩形面積的變化情況,討論得出結(jié)論。
            生:我們發(fā)現(xiàn),在同一個(gè)反比例函數(shù)中,不管k值怎么變化,矩形的面積始終不變。
            師:大家的觀察很仔細(xì),總結(jié)得也很正確。
            點(diǎn)評(píng):在這個(gè)環(huán)節(jié)中,既讓學(xué)生動(dòng)手操作,又讓他們分組交流,這樣既培養(yǎng)了他們的動(dòng)手能力,又增強(qiáng)了他們的團(tuán)結(jié)合作的意識(shí)。結(jié)論主要有學(xué)生來發(fā)現(xiàn),體現(xiàn)了新課程理論的精神。
            四、用規(guī)律,練一練。
            1、課本137頁(yè)隨堂練習(xí)1。
            生:第一幅圖是y=-2/x的圖象,因?yàn)樵谶@里的k0,雙曲線應(yīng)在第二、四象限。
            (1)y=1/(2x)(2)y=0.3/x(3)y=10/x(4)y=-7/(100x)。
            生:其中(1)(2)(3)的圖象在一、三象限;(4)的圖象在每一象限內(nèi),y隨x的增大而增大。
            反比例函數(shù)教案篇十六
            本節(jié)課是在學(xué)習(xí)了反比例函數(shù)的概念,反比例函數(shù)的圖像和性質(zhì)等相關(guān)知識(shí)的基礎(chǔ)上引入的。首先創(chuàng)設(shè)問題情境,展示反比例函數(shù)在實(shí)際生活中的應(yīng)用情況,激發(fā)學(xué)生的求知欲和濃厚的學(xué)習(xí)興趣。接下來主要討論了反比例函數(shù)在體積、面積這樣的實(shí)際問題中的應(yīng)用。分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題。
            1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題。
            2.能綜合利用幾何、方程、反比例函數(shù)的知識(shí)解決一些實(shí)際問題。
            1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題。
            2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力。
            情感態(tài)度與價(jià)值觀。
            體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具。
            從實(shí)際問題中尋找變量之間的關(guān)系。關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析實(shí)際情況,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想。
            啟發(fā)引導(dǎo)、合作探究。
            (一)創(chuàng)設(shè)問題情境,引入新課。
            [生]是為了應(yīng)用。
            [師]很好。學(xué)習(xí)的目的是為了用學(xué)到的知識(shí)解決實(shí)際問題。究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學(xué)一學(xué)。
            問題:某校科技小組進(jìn)行野外考察,途中遇到一片十幾米寬的爛泥濕地,為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時(shí)通道,從而順利完成了任務(wù)的情境。
            反比例函數(shù)教案篇十七
            教學(xué)目標(biāo):
            1、理解反比例函數(shù),并能從實(shí)際問題中抽象出反比例關(guān)系的函數(shù)解析式;。
            2、會(huì)畫出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);。
            3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;。
            4、體會(huì)數(shù)學(xué)從實(shí)踐中來又到實(shí)際中去的研究、應(yīng)用過程;。
            5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力。
            教學(xué)重點(diǎn):
            教學(xué)用具:直尺。
            教學(xué)方法:小組合作、探究式。
            教學(xué)過程:
            我們?cè)谛W(xué)學(xué)過反比例關(guān)系。例如:當(dāng)路程s一定時(shí),時(shí)間t與速度v成反比例。
            即vt=;。
            當(dāng)矩形面積s一定時(shí),長(zhǎng)a與寬b成反比例,即ab=。
            從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫成:
            (s是常數(shù))。
            (s是常數(shù))。
            一般地,函數(shù)(k是常數(shù),)叫做反比例函數(shù)。
            如上例,當(dāng)路程s是常數(shù)時(shí),時(shí)間t就是v的反比例函數(shù).當(dāng)矩形面積s是常數(shù)時(shí),長(zhǎng)a是寬b的反比例函數(shù)。
            在現(xiàn)實(shí)生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進(jìn)行討論。
            解:列表。
            說明:由于學(xué)生第一次接觸反比例函數(shù),無法推測(cè)出它的大致圖象.取點(diǎn)的時(shí)候最好多取幾個(gè),正負(fù)可以對(duì)稱著取分別畫點(diǎn)描圖。
            一般地反比例函數(shù)(k是常數(shù))的圖象由兩條曲線組成,叫做雙曲線。
            3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)。
            前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí)。
            顯示這兩個(gè)函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證。
            (1)的圖象在第一、三象限.可以擴(kuò)展到k=0時(shí)的情形,即k=0時(shí),雙曲線兩支各在第一和第三象限。從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限的討論與此類似。
            抓住機(jī)會(huì),說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過程。
            (2)函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小;。
            從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì)。從列表中也可以看出這樣的變化趨勢(shì)。有理數(shù)除法說明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小。由此可歸納出,當(dāng)k0時(shí),函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小。
            同樣可以推出的圖象的性質(zhì)。
            (3)函數(shù)的圖象不經(jīng)過原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來越大時(shí),y的值越來越小,趨近于零;如果x取負(fù)值且越來越小時(shí),y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子。同理,抽象出圖象的性質(zhì)。
            函數(shù)的圖象性質(zhì)的討論與次類似。
            4、小結(jié):
            本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中。
            5、布置作業(yè)習(xí)題13.81-4。