亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        職業(yè)中專高一數(shù)學(xué)教案(優(yōu)質(zhì)20篇)

        字號(hào):

            針對(duì)不同的教學(xué)內(nèi)容和學(xué)生特點(diǎn),教案的形式和種類也會(huì)有所不同。教案的編寫應(yīng)注重培養(yǎng)學(xué)生的學(xué)習(xí)興趣,增加教學(xué)的趣味性和吸引力。貼心分享一些教案的參考,為大家提供教學(xué)思路和方法。
            職業(yè)中專高一數(shù)學(xué)教案篇一
            所謂三維目標(biāo)是是指:“知識(shí)與技能”,“過程和方法”、“情感、態(tài)度、價(jià)值觀”。
            知識(shí)與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們?cè)诮虒W(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點(diǎn)掌握,哪些只需簡(jiǎn)單理解;技能是會(huì)與不會(huì)的問題。屬顯性范疇,具有可測(cè)性,大都采用定量分析與評(píng)價(jià)、知識(shí)與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國(guó)傳統(tǒng)教育教學(xué)的優(yōu)勢(shì),應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
            過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的過程的體驗(yàn)、方法的選擇,是在知識(shí)與能力目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個(gè)體驗(yàn)的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
            情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)?!扒楦?、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識(shí)與能力、過程與方法目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識(shí)到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來(lái)回報(bào)社會(huì)。
            三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
            職業(yè)中專高一數(shù)學(xué)教案篇二
            使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來(lái)公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。
            1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
            2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
            3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡(jiǎn)單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
            4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
            5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。 6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
            我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(a版)》,它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
            1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
            2.問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識(shí),孕育創(chuàng)新精神。
            3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
            4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。
            1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語(yǔ)言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
            2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
            3. 在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
            兩個(gè)班一個(gè)普高一個(gè)職高,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級(jí)存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭(zhēng)取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。
            1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
            2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的`知識(shí)出發(fā),啟發(fā)學(xué)生思考。
            3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
            4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
            5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。
            6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
            俗話說(shuō)的好,好的教學(xué)計(jì)劃是教學(xué)成功的一半,作為一名優(yōu)異的教師,做好一定的教學(xué)計(jì)劃很有必要。
            總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。希望上面的,能受到大家的歡迎!
            職業(yè)中專高一數(shù)學(xué)教案篇三
            掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
            向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。
            (一)主要知識(shí):
            1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
            (二)例題分析:略。
            四、小結(jié):
            1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的`知識(shí)解決有關(guān)應(yīng)用問題,
            2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。
            職業(yè)中專高一數(shù)學(xué)教案篇四
            突出重點(diǎn).培養(yǎng)能力.。
            三、課堂練習(xí)。
            教材第13頁(yè)練習(xí)1、2、3、4.。
            【助練習(xí)】第13頁(yè)練習(xí)4(1)中用一個(gè)方向的斜平行線段表示,用另一方向的平行線段表示如圖:
            凡有陰影部分即為所求.。
            四、小結(jié)。
            提綱式(略).再一次突出交集和并集兩個(gè)概念中“且”,“或”的含義的不同.。
            五、作業(yè)。
            習(xí)題1至8.。
            筆練結(jié)合板書.。
            傾聽.修改練習(xí).掌握方法.。
            觀察.思考.傾聽.理解.記憶.。
            傾聽.理解.記憶.。
            回憶、再現(xiàn)內(nèi)容.。
            落實(shí)。
            介紹解題技能技巧.。
            內(nèi)容條理化.。
            課堂教學(xué)設(shè)計(jì)說(shuō)明。
            2.反演律可根據(jù)學(xué)生實(shí)際酌情使用.。
            職業(yè)中專高一數(shù)學(xué)教案篇五
            2、實(shí)際問題中的有關(guān)術(shù)語(yǔ)、名稱:
            (1)仰角與俯角:均是指視線與水平線所成的角;
            (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
            (3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
            3、用正弦余弦定理解實(shí)際問題的常見題型有:
            測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問題、物理問題等;
            2、實(shí)際問題中的有關(guān)術(shù)語(yǔ)、名稱:
            (1)仰角與俯角:均是指視線與水平線所成的角;
            (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
            (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
            3、用正弦余弦定理解實(shí)際問題的常見題型有:
            測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問題、物理問題等;
            一、知識(shí)歸納
            2、實(shí)際問題中的有關(guān)術(shù)語(yǔ)、名稱:
            (1)仰角與俯角:均是指視線與水平線所成的角;
            (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
            (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
            3、用正弦余弦定理解實(shí)際問題的常見題型有:
            測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問題、物理問題等;
            二、例題討論
            一)利用方向角構(gòu)造三角形
            四)測(cè)量角度問題
            例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)e正北55海里處有一個(gè)雷達(dá)觀測(cè)站a.某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)a北偏東。
            職業(yè)中專高一數(shù)學(xué)教案篇六
            (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
            (3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;
            (4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;
            (5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;
            (6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.。
            重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.。
            1.新課導(dǎo)入。
            初一平面幾何中曾學(xué)過命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書:命題.)。
            (從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)。
            學(xué)生舉例:平行四邊形的對(duì)角線互相平.……(1)。
            兩直線平行,同位角相等.…………(2)。
            教師提問:“……相等的角是對(duì)頂角”是不是命題?……(3)。
            (同學(xué)議論結(jié)果,答案是肯定的.)。
            教師提問:什么是命題?
            (學(xué)生進(jìn)行回憶、思考.)。
            概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.。
            (教師肯定了同學(xué)的回答,并作板書.)。
            (教師利用投影片,和學(xué)生討論以下問題.)。
            例1判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:
            2.講授新課。
            (片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問題.師生一道歸納如下.)。
            (1)什么叫做命題?
            可以判斷真假的語(yǔ)句叫做命題.。
            (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.。
            命題可分為簡(jiǎn)單命題和復(fù)合命題.。
            (4)命題的表示:用p,q,r,s,……來(lái)表示.。
            (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開.)。
            對(duì)于給出“若p則q”形式的復(fù)合命題,應(yīng)能找到條件p和結(jié)論q.。
            3.鞏固新課。
            (1)5;
            (2)0.5非整數(shù);
            (3)內(nèi)錯(cuò)角相等,兩直線平行;
            (4)菱形的對(duì)角線互相垂直且平分;
            (5)平行線不相交;
            (6)若ab=0,則a=0.。
            (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)。
            職業(yè)中專高一數(shù)學(xué)教案篇七
            通過一系列的猜想得出德.摩根律,但是這個(gè)結(jié)論僅僅是猜想,數(shù)學(xué)是一門科學(xué),所以需要論證它的正確性,因此本節(jié)通過剖析維恩圖的四部分來(lái)驗(yàn)證猜想的正確性,并對(duì)德摩根律進(jìn)行簡(jiǎn)單的應(yīng)用,因此我們制作了本微課.
            一、片頭。
            內(nèi)容:現(xiàn)在讓我們一起來(lái)學(xué)習(xí)《集合的運(yùn)算——自己探索也能發(fā)現(xiàn)的'數(shù)學(xué)規(guī)律(第二講)》。
            二、正文講解。
            1.引入:牛頓曾說(shuō)過:“沒有大膽的猜測(cè),就做不出偉大的發(fā)現(xiàn)。”
            那么,這個(gè)規(guī)律是偶然的.,還是一個(gè)恒等式呢?
            2.規(guī)律的驗(yàn)證:。
            3.抽象概括:通過我們的觀察和驗(yàn)證,我們發(fā)現(xiàn)這個(gè)規(guī)律是一個(gè)恒等式。
            而這個(gè)規(guī)律就是180年前的英國(guó)數(shù)學(xué)家德摩根發(fā)現(xiàn)的。
            為了紀(jì)念他,我們將它稱為德摩根律。
            原來(lái)我們通過自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學(xué)規(guī)律。
            三、結(jié)尾。
            通過這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運(yùn)算問題提供了更為簡(jiǎn)便的方法。
            希望你在今后的學(xué)習(xí)中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。
            職業(yè)中專高一數(shù)學(xué)教案篇八
            2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
            3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問題。
            1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
            2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
            3、雙曲線的漸進(jìn)線方程為、
            4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是、
            探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說(shuō)出它們的不同、
            探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
            練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
            例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
            (1)過點(diǎn),離心率、
            (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
            例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
            2、橢圓的離心率為,則雙曲線的離心率為、
            3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
            4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、
            將本文的word文檔下載到電腦,方便收藏和打印。
            職業(yè)中專高一數(shù)學(xué)教案篇九
            3、了解集合元素個(gè)數(shù)問題的討論說(shuō)明
            通過提問匯總練習(xí)提煉的形式來(lái)發(fā)掘?qū)W生學(xué)習(xí)方法
            培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維
            [教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實(shí)物投影儀
            [教學(xué)方法]:講練結(jié)合法
            [授課類型]:復(fù)習(xí)課
            [課時(shí)安排]:1課時(shí)
            [教學(xué)過程]:集合部分匯總
            本單元主要介紹了以下三個(gè)問題:
            1,集合的含義與特征
            2,集合的表示與轉(zhuǎn)化
            3,集合的基本運(yùn)算
            一,集合的含義與表示(含分類)
            1,具有共同特征的對(duì)象的全體,稱一個(gè)集合
            2,集合按元素的個(gè)數(shù)分為:有限集和無(wú)窮集兩類
            職業(yè)中專高一數(shù)學(xué)教案篇十
            本節(jié)的重點(diǎn)是二次根式的化簡(jiǎn).本章自始至終圍繞著二次根式的化簡(jiǎn)與計(jì)算進(jìn)行,而二次根式的化簡(jiǎn)不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對(duì)值以及各種非負(fù)數(shù)、因式分解等知識(shí),在應(yīng)用中常常需要對(duì)字母進(jìn)行分類討論.
            本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對(duì)學(xué)生來(lái)說(shuō),比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對(duì)字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.
            教法建議
            1.性質(zhì)的引入方法很多,以下2種比較常用:
            (1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題
            1)、、各等于什么?
            2)、、各等于什么?
            啟發(fā)、引導(dǎo)學(xué)生猜想出
            (2)從算術(shù)平方根的意義引入.
            2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
            (1)注意與性質(zhì)進(jìn)行對(duì)比,可出幾道類型不同的題進(jìn)行比較;
            (2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
            (第1課時(shí))
            1.掌握二次根式的性質(zhì)
            2.能夠利用二次根式的性質(zhì)化簡(jiǎn)二次根式
            3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
            對(duì)比、歸納、總結(jié)
            1.重點(diǎn):理解并掌握二次根式的性質(zhì)
            2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡(jiǎn)有關(guān)的二次根式.
            1課時(shí)
            五、教b具學(xué)具準(zhǔn)備
            投影儀、膠片、多媒體
            復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主
            一、導(dǎo)入新課
            我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
            問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
            答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
            二、新課
            計(jì)算下列各題,并回答以下問題:
            (1);(2);(3);
            1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
            2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
            3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語(yǔ)言敘述你的結(jié)論.
            職業(yè)中專高一數(shù)學(xué)教案篇十一
            (1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
            (2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
            (3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
            (4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。
            (1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
            (2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
            (1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
            (2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
            重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
            (1)學(xué)法:觀察、思考、交流、討論、概括。
            (2)實(shí)物模型、投影儀四、教學(xué)思路。
            1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。
            2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
            1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
            3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
            (1)有兩個(gè)面互相平行;
            (2)其余各面都是平行四邊形;
            (3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
            4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
            5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?
            6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
            7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
            8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
            9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。
            1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)。
            2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
            3、課本p8,習(xí)題1.1a組第1題。
            5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
            由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容六、布置作業(yè)。
            課本p8練習(xí)題1.1b組第1題。
            課外練習(xí)課本p8習(xí)題1.1b組第2題。
            職業(yè)中專高一數(shù)學(xué)教案篇十二
            概念抽象、符號(hào)術(shù)語(yǔ)多是集合單元的一個(gè)顯著特點(diǎn),例如交集、并集、補(bǔ)集的概念及其表示方法,集合與元素的關(guān)系及其表示方法,集合與集合的關(guān)系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關(guān)系和表示方法,都可以作為求解集合問題的依據(jù)、出發(fā)點(diǎn)甚至是突破口。因此,要想學(xué)好集合的內(nèi)容,就必須在準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題上下功夫。
            二、注意弄清集合元素的性質(zhì),學(xué)會(huì)運(yùn)用元素分析法審視集合的有關(guān)問題。
            眾所周知,集合可以看成是一些對(duì)象的全體,其中的每一個(gè)對(duì)象叫做這個(gè)集合的元素。集合中的元素具有“三性”:
            (1)、確定性:集合中的元素應(yīng)該是確定的,不能模棱兩可。
            (2)、互異性:集合中的元素應(yīng)該是互不相同的,相同的元素在集合中只能算作一個(gè)。
            (3)、無(wú)序性:集合中的元素是無(wú)次序關(guān)系的。
            集合的關(guān)系、集合的運(yùn)算等等都是從元素的角度予以定義的。因此,求解集合問題時(shí),抓住元素的特征進(jìn)行分析,就相當(dāng)于牽牛抓住了牛鼻子。
            三、體會(huì)集合問題中蘊(yùn)含的數(shù)學(xué)思想方法,掌握解決集合問題的基本規(guī)律。
            布魯納說(shuō)過,掌握數(shù)學(xué)思想可使得數(shù)學(xué)更容易理解和記憶,領(lǐng)會(huì)數(shù)學(xué)思想是通向遷移大道的“光明之路”。集合單元中,含有豐富的數(shù)學(xué)思想內(nèi)容,例如數(shù)形結(jié)合的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想、正難則反的思想等等,顯得十分活躍。在學(xué)習(xí)過程中,注意對(duì)這些數(shù)學(xué)思想進(jìn)行挖掘、提煉和滲透,不僅可以有效地掌握集合的知識(shí),駕馭集合問題的求解,而且對(duì)于開發(fā)智力、培養(yǎng)能力、優(yōu)化思維品質(zhì),都具有十分重要的意義。
            四、重視空集的特殊性,防止由于忽視空集這一特殊情況導(dǎo)致的解題失誤。
            空集是一個(gè)十分重要的特殊集合,它具備“空集雖空,但空有所為”的功能。在解題的過程中,要時(shí)刻注意有無(wú)可能存在空集的情況,否則極易導(dǎo)致解題失誤。這一點(diǎn),必須引起我們的高度重視。
            一、轉(zhuǎn)變觀念,化被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí)。
            初中階段,特別是初中三年級(jí),老師會(huì)通過大量的練習(xí),學(xué)生自己也會(huì)查找很多資料,這樣就會(huì)把自己的數(shù)學(xué)成績(jī)得到明顯的提高,這樣的學(xué)習(xí)方式是一種被動(dòng)式的學(xué)習(xí)也叫題海戰(zhàn)術(shù),學(xué)生只是簡(jiǎn)單的接受數(shù)學(xué)知識(shí),并且初中數(shù)學(xué)的知識(shí)相對(duì)比較淺顯,學(xué)生很快就能掌握知識(shí)??墒堑搅烁咧幸院笸ㄟ^題海戰(zhàn)術(shù)是能提高一些對(duì)數(shù)學(xué)知識(shí)的掌握,可是對(duì)于這個(gè)知識(shí)中的為什么就不能說(shuō)出其所以然,就不能對(duì)相關(guān)的知識(shí)進(jìn)行創(chuàng)新。所以高中數(shù)學(xué)的學(xué)習(xí)不只是單純的做題就可以掌握其知識(shí),而是要弄得其所以然才行,這樣就需要學(xué)生自己去主動(dòng)發(fā)掘知識(shí)的內(nèi)涵,在老師的指導(dǎo)下把數(shù)學(xué)知識(shí)進(jìn)行擴(kuò)展,達(dá)到觸類旁通。要做到這樣就需要學(xué)生本身更加主動(dòng)的學(xué)習(xí),這樣才能更加的發(fā)現(xiàn)數(shù)學(xué)中的樂趣。
            二、學(xué)會(huì)聽課,盡可能掌握更多的知識(shí)。
            數(shù)學(xué)的學(xué)習(xí)是需要老師的引導(dǎo),在引導(dǎo)下,學(xué)生根據(jù)自己的情況做一些相應(yīng)的練習(xí)來(lái)掌握知識(shí),鞏固知識(shí),要想提高學(xué)習(xí)效率,就需要學(xué)生做到以下一些:
            1、做好預(yù)習(xí),提出問題,進(jìn)行多次閱讀課本,查閱相關(guān)資料,回答自己提出的問題,力爭(zhēng)在老師講新課前盡可能的掌握更多的知識(shí),如果不能回答的問題可以在老師講課中去解決。
            2、學(xué)會(huì)聽課,在初中的教學(xué)中老師經(jīng)常會(huì)把一個(gè)知識(shí)點(diǎn)進(jìn)行多次的講解和通過大量的練習(xí)讓學(xué)生去掌握,可是到高中以后,老師對(duì)于一個(gè)知識(shí)點(diǎn)就不會(huì)再通過大量的練習(xí)來(lái)讓學(xué)生去掌握,而是通過一些相關(guān)知識(shí)的講解去引導(dǎo)學(xué)生明白這個(gè)知識(shí)是怎么來(lái)的,又如何用這個(gè)知識(shí)解答一些相關(guān)的疑惑,如果學(xué)生能明白的話就能在自己的知識(shí)下通過課后的練習(xí)去鞏固這些知識(shí),同時(shí)學(xué)生也可以根據(jù)老師的引導(dǎo)去擴(kuò)展知識(shí)。
            當(dāng)然,對(duì)于自己在聽課過程中一下子不能明白的知識(shí),可以通過舉手讓老師再進(jìn)行一次分析講解,也同時(shí)做好相關(guān)的記錄,以備在課后去進(jìn)一步弄明白;對(duì)于自己在預(yù)習(xí)中提出的問題,如果老師沒有解決的話,可以利用課余時(shí)間請(qǐng)教老師解答,這樣學(xué)習(xí)就可能學(xué)習(xí)到更多的知識(shí)。
            3、敢于發(fā)表自己的想法,在高中數(shù)學(xué)學(xué)習(xí)中,學(xué)生會(huì)遇到很多解題技巧,可能這種方法你知道,另外的人不是很熟悉。那么就需要學(xué)生敢于發(fā)表自己的想法,這樣就能讓大家掌握更多的技巧。也同樣能激發(fā)同學(xué)學(xué)習(xí)的興趣,如果一節(jié)課都是老師講的話,課堂氣氛也是很悶的,學(xué)生學(xué)習(xí)的效率也是很低的。
            4、聽好每一分鐘,尤其是老師講課的開頭和結(jié)束。
            老師講課開頭,一般是概括前節(jié)課的要點(diǎn)指出本節(jié)課要講的內(nèi)容,是把舊知識(shí)和新知識(shí)聯(lián)系起來(lái)的環(huán)節(jié),結(jié)尾常常是對(duì)一節(jié)課所講知識(shí)的歸納總結(jié),具有高度的概括性,是在理解的基礎(chǔ)上掌握本節(jié)知識(shí)方法的綱要。
            三、課后鞏固。
            很多學(xué)生在學(xué)習(xí)過程中沒有重視課后的鞏固,只是覺得在課堂上掌握一些知識(shí)就夠了,其實(shí)這是錯(cuò)誤的。高中數(shù)學(xué)的知識(shí)很多,并且不像初中數(shù)學(xué)那么淺顯,而是有很多的內(nèi)涵,如果不能進(jìn)一步挖掘其內(nèi)涵,那么只是掌握這個(gè)知識(shí)的表面,于是在自己做練習(xí)時(shí)就不知道如何去解了,也不能運(yùn)用這個(gè)知識(shí)的。
            做練習(xí)是需要的,可是有些學(xué)生只是為了練習(xí)去做練習(xí),而不是為了鞏固這個(gè)知識(shí),擴(kuò)展這個(gè)知識(shí)去做練習(xí),經(jīng)常是做完這個(gè)練習(xí)后算做完了,這樣跟初中的做題是沒有區(qū)別的。其實(shí),我們還應(yīng)該把這個(gè)練習(xí)中使用到的知識(shí)串起來(lái),這樣我們就能明白那些知識(shí)在運(yùn)用,也能掌握更多的知識(shí)。也同樣能發(fā)現(xiàn)那個(gè)知識(shí)點(diǎn)是重點(diǎn),也能發(fā)現(xiàn)難題是如何把相關(guān)知識(shí)串起來(lái)的。
            四、學(xué)會(huì)看題、學(xué)會(huì)選做題。
            高中的相關(guān)資料比初中更多,高考是全社會(huì)都關(guān)注的問題,所以高中的練習(xí)也特別多,有些學(xué)生買的資料也多,于是如何利用題目來(lái)掌握我們學(xué)習(xí)的知識(shí),擴(kuò)展我們學(xué)習(xí)的知識(shí)就成為學(xué)習(xí)的關(guān)鍵。我覺得題目要多看,多想,看資料中的解題方法,想方法中的為什么,這樣就可以借鑒更多的方法。方法多了,可以也要消化。于是我們要會(huì)有選擇的做題,達(dá)到事半功倍。我建議每天一小練,每周做一套完整的考題,看2~3套考題,從中去發(fā)現(xiàn)那些是這段時(shí)間數(shù)學(xué)學(xué)習(xí)的重點(diǎn)知識(shí),那些是我們常用的解題方法以及使用什么方法能優(yōu)化解題。
            五、重視每一次測(cè)試,認(rèn)真分析考試中丟分的原因,并對(duì)丟分的地方做出相關(guān)的措施。
            數(shù)學(xué)的學(xué)習(xí)技巧有很多,每一個(gè)人都有自己的不同技巧,我自己根據(jù)自己讀書時(shí)期的一些體會(huì)和現(xiàn)在教學(xué)過程中的體會(huì),歸納出幾點(diǎn)技巧與大家共勉。
            一記內(nèi)容提綱。
            老師講課大多有提綱,并且講課時(shí)老師會(huì)將一堂課的線索脈絡(luò)、重點(diǎn)難點(diǎn)等,簡(jiǎn)明清晰地呈現(xiàn)在黑板上。同時(shí),教師會(huì)使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識(shí)框架,對(duì)所學(xué)知識(shí)做到胸有成竹、清晰完整。
            二記疑難問題。
            將課堂上未聽懂的問題及時(shí)記下來(lái),便于課后請(qǐng)教同學(xué)或老師,把問題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問題對(duì)部分學(xué)生來(lái)說(shuō),是屬于疑難問題,由于課堂上來(lái)不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識(shí)的斷層、方法的缺陷。
            三記思路方法。
            對(duì)老師在課堂上介紹的解題方法和分析思路也應(yīng)及時(shí)記下,課后加以消化,若有疑惑,先作獨(dú)立分析,因?yàn)橛锌赡苁亲约豪斫忮e(cuò)誤造成的,也有可能是老師講課疏忽造成的,記下來(lái)后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對(duì)于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對(duì)提高解題水平大有益處。在這基礎(chǔ)上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。
            四記歸納總結(jié)。
            注意記下老師的課后總結(jié),這對(duì)于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會(huì)貫通課堂內(nèi)容都很有作用。同時(shí),很多有經(jīng)驗(yàn)的老師在課后小結(jié)時(shí),一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點(diǎn)明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動(dòng)權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。
            五記體會(huì)感受。
            數(shù)學(xué)學(xué)習(xí)是智、情、意、行的綜合。數(shù)學(xué)學(xué)習(xí)過程伴隨著積極的情感體驗(yàn)、意志體驗(yàn)過程,記下自己學(xué)習(xí)過程的感受,可以用來(lái)更好地調(diào)控自己的學(xué)習(xí)行為。譬如,一道運(yùn)算很繁雜的習(xí)題,依靠堅(jiān)強(qiáng)的意志獲得解題成功后,可在旁邊寫上“功夫不負(fù)有心人”等自勉的語(yǔ)句,用來(lái)激勵(lì)自己。
            六記錯(cuò)誤反思。
            學(xué)習(xí)過程中不可避免地會(huì)犯這樣或那樣的錯(cuò)誤,“聰明人不犯或少犯相同的錯(cuò)誤”,記下自己所犯的錯(cuò)誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時(shí)也應(yīng)注明錯(cuò)誤成因,正確思路及方法,在反思中成熟,在反思中提高。
            將本文的word文檔下載到電腦,方便收藏和打印。
            職業(yè)中專高一數(shù)學(xué)教案篇十三
            1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系。
            2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的`一般思想。
            3、了解集合元素個(gè)數(shù)問題的討論說(shuō)明。
            通過提問匯總練習(xí)提煉的形式來(lái)發(fā)掘?qū)W生學(xué)習(xí)方法。
            培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維。
            [教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實(shí)物投影儀。
            [教學(xué)方法]:講練結(jié)合法。
            [授課類型]:復(fù)習(xí)課。
            [課時(shí)安排]:1課時(shí)。
            [教學(xué)過程]:集合部分匯總。
            本單元主要介紹了以下三個(gè)問題:
            1,集合的含義與特征。
            2,集合的表示與轉(zhuǎn)化。
            3,集合的基本運(yùn)算。
            一,集合的含義與表示(含分類)。
            1,具有共同特征的對(duì)象的全體,稱一個(gè)集合。
            2,集合按元素的個(gè)數(shù)分為:有限集和無(wú)窮集兩類。
            職業(yè)中專高一數(shù)學(xué)教案篇十四
            解決集合元素的問題時(shí),我們一定要注意集合中的元素要滿足互異性,以免產(chǎn)生增根。
            3、注意特殊集合——空集。
            空集是不含任何元素的集合。我們規(guī)定空集是任何集合的子集,是任何非空集合的真子集。因而,在涉及集合之間關(guān)系的問題時(shí)要特別注意空集。
            4、利用特殊工具——韋恩圖和數(shù)軸。
            集合的表示方法可分為列舉法、描述法、圖示法。列舉法一般表示有限集,描述法一般表示無(wú)限集,用于書寫最終結(jié)果。在運(yùn)算過程中,一般用數(shù)軸表示連續(xù)型元素的集合,用韋恩圖表示離散型元素的集合。圖形語(yǔ)言可以幫我們快捷而直觀的找出答案,提高解題速度。
            職業(yè)中專高一數(shù)學(xué)教案篇十五
            (1)掌握斜二測(cè)畫法畫水平設(shè)置的平面圖形的直觀圖。
            (2)采用對(duì)比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。
            2.過程與方法。
            學(xué)生通過觀察和類比,利用斜二測(cè)畫法畫出空間幾何體的直觀圖。
            3.情感態(tài)度與價(jià)值觀。
            (1)提高空間想象力與直觀感受。
            (2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。
            (3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
            職業(yè)中專高一數(shù)學(xué)教案篇十六
            (5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)。
            初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)。引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義。根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號(hào)。最后主要是借助有向線段進(jìn)一步認(rèn)識(shí)三角函數(shù)。講解例題,總結(jié)方法,鞏固練習(xí)。
            任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn)。過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來(lái)定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對(duì)準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對(duì)應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對(duì)應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會(huì)影響學(xué)生對(duì)三角函數(shù)概念的理解。
            本節(jié)利用單位圓上點(diǎn)的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù)。這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對(duì)應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系。
            教學(xué)重難點(diǎn)。
            重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));終邊相同的角的同一三角函數(shù)值相等(公式一).
            難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));三角函數(shù)線的正確理解。
            職業(yè)中專高一數(shù)學(xué)教案篇十七
            把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。
            2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
            (二)研探新知。
            1.例1,用斜二測(cè)畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評(píng)。
            畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測(cè)畫法的步驟。
            練習(xí)反饋。
            根據(jù)斜二測(cè)畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
            2.例2,用斜二測(cè)畫法畫水平放置的圓的直觀圖。
            教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
            教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。
            3.探求空間幾何體的直觀圖的畫法。
            (1)例3,用斜二測(cè)畫法畫長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體abcd-a’b’c’d’的直觀圖。
            教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
            (2)投影出示幾何體的三視圖。
            請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
            4.平行投影與中心投影。
            投影出示課本p23圖,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。
            5.鞏固練習(xí),課本p25練習(xí)1,2,3。
            三、歸納整理。
            學(xué)生回顧斜二測(cè)畫法的關(guān)鍵與步驟。
            四、作業(yè)。
            1.書畫作業(yè),課本p25習(xí)題1—3a組和b組。
            職業(yè)中專高一數(shù)學(xué)教案篇十八
            “解三角形”既是高中數(shù)學(xué)的.基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來(lái),并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn)“觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。
            二、學(xué)情分析。
            我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。
            1、知識(shí)和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問題。
            過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。
            情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來(lái)體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。
            2、教學(xué)重點(diǎn)、難點(diǎn)。
            教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。
            教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。
            四、教學(xué)方法與手段。
            為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來(lái)激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。
            為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:
            (一)創(chuàng)設(shè)情景,揭示課題。
            問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)。
            [設(shè)計(jì)說(shuō)明]引用教材本章引言,制造知識(shí)與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。
            (二)特殊入手,發(fā)現(xiàn)規(guī)律。
            引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。
            (三)類比歸納,嚴(yán)格證明。
            職業(yè)中專高一數(shù)學(xué)教案篇十九
            1.知識(shí)與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。
            2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
            3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。
            二、教學(xué)重點(diǎn):畫出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;
            難點(diǎn):識(shí)別三視圖所表示的空間幾何體。
            三、學(xué)法指導(dǎo):觀察、動(dòng)手實(shí)踐、討論、類比。
            四、教學(xué)過程。
            (一)創(chuàng)設(shè)情景,揭開課題。
            展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說(shuō)明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。
            (二)講授新課。
            1、中心投影與平行投影:
            中心投影:光由一點(diǎn)向外散射形成的投影;
            平行投影:在一束平行光線照射下形成的投影。
            正投影:在平行投影中,投影線正對(duì)著投影面。
            2、三視圖:
            正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
            側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
            俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
            三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
            三視圖的畫法規(guī)則:長(zhǎng)對(duì)正,高平齊,寬相等。
            長(zhǎng)對(duì)正:正視圖與俯視圖的長(zhǎng)相等,且相互對(duì)正;
            高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;
            寬相等:俯視圖與側(cè)視圖的寬度相等。
            3、畫長(zhǎng)方體的三視圖:
            正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
            長(zhǎng)方體的三視圖都是長(zhǎng)方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長(zhǎng)相等。
            4、畫圓柱、圓錐的三視圖:
            5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
            (三)鞏固練習(xí)。
            課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。
            (四)歸納整理。
            請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖。
            (五)布置作業(yè)。
            課本p20習(xí)題1.2[a組]1。
            職業(yè)中專高一數(shù)學(xué)教案篇二十
            學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數(shù)列,希望對(duì)您有所幫助!
            1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).
            (1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
            (2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式.
            (3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng).
            2.通過對(duì)一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
            3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
            (1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的.計(jì)算等.
            (2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
            (3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助.
            (4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來(lái)調(diào)整等.如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
            (5)對(duì)每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
            (6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.
            上述提供的:數(shù)列希望能夠符合大家的實(shí)際需要!