每次總結(jié)都是我們逐步走向成功的里程碑,也是對自己成長的見證??偨Y(jié)需要客觀、真實地概括自己的表現(xiàn)和收獲。以下是小編為大家收集的范文,希望對大家寫作總結(jié)有所幫助。
一元二次方程的解法教學(xué)設(shè)計篇一
本節(jié)主要內(nèi)容是用函數(shù)的觀念看一元二次方程,探討二次函數(shù)與一元二次方程的關(guān)系。教材從一次函數(shù)與一元一次方程的關(guān)系入手,通過類比引出二次函數(shù)與一元二次方程之間的關(guān)系問題,并結(jié)合一個具體的實例討論了一元二次方程的實根與二次函數(shù)圖象之間的聯(lián)系,然后介紹了用圖象法求一元二次方程近似解的過程。這一節(jié)是反映函數(shù)與方程這兩個重要數(shù)學(xué)概念之間的聯(lián)系的內(nèi)容。
由于九年級學(xué)生已經(jīng)具備一定的抽象思維能力,再者,在八年級時已經(jīng)學(xué)習(xí)了一次函數(shù)與一元一次方程的關(guān)系,因而,采用類比的方法在學(xué)生預(yù)習(xí)自學(xué)的基礎(chǔ)上放手讓學(xué)生大膽地猜想、交流,分組合作,同時設(shè)定一定的問題環(huán)境來引導(dǎo)學(xué)生的探究過程,最后在老師的釋疑、歸納、拓展、總結(jié)的過程中結(jié)束本節(jié)課的教學(xué)。在知識掌握上,學(xué)生對二次函數(shù)的圖象及其性質(zhì)和一元二次方程的解的情況都有所了解,對于本節(jié)所要學(xué)習(xí)的二次函數(shù)與一元二次方程之間的關(guān)系利用類比的方法讓學(xué)生在自學(xué)的基礎(chǔ)上進(jìn)行交流合作學(xué)習(xí)應(yīng)該不是難題。本節(jié)課的知識障礙,本節(jié)課的主要目的在于建立二次函數(shù)與一元二次方程之間的聯(lián)系,滲透數(shù)形結(jié)合的思想,而不僅僅是利用函數(shù)的圖象求一元二次方程的近似解。
總之,在教學(xué)過程中,我始終遵循著“有效的數(shù)學(xué)學(xué)習(xí)活動不能單獨地依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)習(xí)數(shù)學(xué)的重要方式?!边@一《新課程標(biāo)準(zhǔn)》的精神,注意發(fā)揮學(xué)生的主體作用,讓學(xué)生通過自主探究、合作學(xué)習(xí)來主動發(fā)現(xiàn)問題、提出問題、解決問題,實現(xiàn)師生互動,通過這樣的教學(xué)實踐取得了一定的教學(xué)效果,我再次認(rèn)識到教師不僅要教給學(xué)生知識,更要培養(yǎng)學(xué)生良好的數(shù)學(xué)素養(yǎng)和學(xué)習(xí)習(xí)慣,讓學(xué)生學(xué)會學(xué)習(xí),使他們能夠在獨立思考與合作學(xué)習(xí)交流中解決學(xué)習(xí)中的問題。
一元二次方程的解法教學(xué)設(shè)計篇二
《用函數(shù)的觀點看一元二次方程》內(nèi)容比較多,而課時安排只一節(jié),為了在一節(jié)課的時間里更有效地突出重點,突破難點,按照學(xué)生的認(rèn)知規(guī)律遵循教師為主導(dǎo)、學(xué)生為主體的指導(dǎo)思想,本節(jié)課給學(xué)生布置的預(yù)習(xí)作業(yè),從學(xué)生已有的經(jīng)驗出發(fā)引發(fā)學(xué)生觀察、分析、類比、聯(lián)想、歸納、總結(jié)獲得新的知識,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)中,對新的知識的獲得覺得不意外,讓學(xué)生“跳一跳就可以摘到桃子”。
探究拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系及其應(yīng)用的過程中,引導(dǎo)學(xué)生觀察圖形,從圖象與x軸交點的個數(shù)與方程的根之間進(jìn)行分析、猜想、歸納、總結(jié),這是重要的數(shù)學(xué)中數(shù)形結(jié)合的思想方法,在整個教學(xué)過程中始終貫穿的是類比思想方法。這些方法的使用對學(xué)生良好思維品質(zhì)的形成有重要的作用,對學(xué)生的終身發(fā)展也有一定的作用。
2.關(guān)注學(xué)生學(xué)習(xí)的過程。
在教學(xué)過程中,教師作為引導(dǎo)者,為學(xué)生創(chuàng)設(shè)問題情境、提供問題串、給學(xué)生提供廣闊的思考空間、活動空間、為學(xué)生搭建自主學(xué)習(xí)的平臺;學(xué)生則在老師的指導(dǎo)下經(jīng)歷操作、實踐、思考、交流、合作的過程,其知識的.形成和能力的培養(yǎng)相伴而行,創(chuàng)造“海闊憑魚躍,天高任鳥飛”的課堂境界。
3.強化行為反思。
“反思是數(shù)學(xué)的重要活動,是數(shù)學(xué)活動的核心和動力”,本節(jié)課在教學(xué)過程中始終融入反思的環(huán)節(jié),用問題的設(shè)計,課堂小結(jié),課后的數(shù)學(xué)日記等方式引發(fā)學(xué)生反思,使學(xué)生在掌握知識的同時,領(lǐng)悟解決問題的策略,積累學(xué)習(xí)方法。說到數(shù)學(xué)日記,“數(shù)學(xué)日記”就是學(xué)生以日記的形式,記述學(xué)生在數(shù)學(xué)學(xué)習(xí)和應(yīng)用過程中的感受與體會。通過日記的方式,學(xué)生可以對他所學(xué)的數(shù)學(xué)內(nèi)容進(jìn)行總結(jié),寫出自己的收獲與困惑?!皵?shù)學(xué)日記”該如何寫,寫什么呢?開始摸索寫數(shù)學(xué)日記的時候,我根據(jù)課程標(biāo)準(zhǔn)的內(nèi)容給學(xué)生提出寫數(shù)學(xué)日記的簡單模式:日記參考格式:課題;所涉及的重要數(shù)學(xué)概念或規(guī)律;理解得最好的地方;不明白的或還需要進(jìn)一步理解的地方;所涉及的數(shù)學(xué)思想方法;所學(xué)內(nèi)容能否應(yīng)用在日常生活中,舉例說明。通過這兩年的摸索,我把數(shù)學(xué)日記大致分為:課堂日記、復(fù)習(xí)日記、錯題日記。
4.優(yōu)化作業(yè)設(shè)計。
作業(yè)的設(shè)計分必做題和選做題,必做題鞏固本課基礎(chǔ)知識,基本要求;選做題屬于拓廣探索題目,培養(yǎng)學(xué)生的創(chuàng)新能力和實踐能力。
一元二次方程的解法教學(xué)設(shè)計篇三
一元二次方程概念及一元二次方程一般式及有關(guān)概念.。
教學(xué)目標(biāo)。
1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.。
3.解決一些概念性的題目.。
4.態(tài)度、情感、價值觀。
4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的'問題來激發(fā)學(xué)生的學(xué)習(xí)熱情.。
重難點關(guān)鍵。
教學(xué)過程。
一、復(fù)習(xí)引入。
學(xué)生活動:列方程.。
問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
整理、化簡,得:__________.。
問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點.。
整理得:_________.。
整理,得:________.。
二、探索新知。
學(xué)生活動:請口答下面問題.。
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
一元二次方程的解法教學(xué)設(shè)計篇四
在“一次函數(shù)”一章時已經(jīng)了解了一次函數(shù)與一元一次方程,一元一次不等式(組),二元一次方程組的聯(lián)系。本章專門設(shè)一節(jié),通過探討二次函數(shù)與一元二次方程的關(guān)系,再次展示函數(shù)與方程的聯(lián)系。一方面可以深化我們對一元二次方程的.認(rèn)識,另一方面又可以運用一元二次方程解決二次函數(shù)的有關(guān)問題。
本節(jié)通過畫圖,看圖,分析圖,列表對比,抽象概括進(jìn)行教學(xué),讓每個學(xué)生動手,動口,動腦,積極參與,提高教學(xué)效率和教學(xué)質(zhì)量(此文來自優(yōu)秀),使學(xué)生進(jìn)一步理解數(shù)形結(jié)合和從特殊到一般的思想方法。不足之處是:有少部分學(xué)生對函數(shù)與方程之間的關(guān)系有點費解。通過了解發(fā)現(xiàn):這部分同學(xué)對一次函數(shù)和方程的關(guān)系也不熟悉,也就是數(shù)學(xué)基礎(chǔ)不扎實,還有就是數(shù)形結(jié)合能力差,也就是不能建立數(shù)與形之間的聯(lián)系。他們?yōu)槭裁床荒芎芎玫淖龅竭@些呢?我想,這正是本節(jié)課的要點所在。在今后的教學(xué)中,一定關(guān)注這一點,解決之。
一元二次方程的解法教學(xué)設(shè)計篇五
通過本節(jié)課的教學(xué),使我真正認(rèn)識到了自己課堂教學(xué)的成功與失敗。下面我就談?wù)勛约簩@節(jié)課的反思。這節(jié)課是一元二次方程解法的復(fù)習(xí)課,復(fù)習(xí)的思路是概念的梳理(方法的回憶)__實踐(方法的選擇)__應(yīng)用(方法的融合)。由于課前我做了精心準(zhǔn)備,所以整個課堂流暢、緊湊容量大。整節(jié)課充滿著”自主、合作、探究,交流“的教學(xué)理念,使學(xué)生在主動思考探究的過程中自然的獲得新的知識。
需要改進(jìn)的方面:
1、設(shè)計的問題太多,學(xué)生在課堂上沒有辦法消化。
2、學(xué)生的積極性沒有調(diào)動起來。
通過本節(jié)課的教學(xué),我覺得課堂就應(yīng)該交給學(xué)生,而不是一味的填鴨式灌輸給學(xué)生,這樣反而達(dá)不到預(yù)期的效果。
一元二次方程的解法教學(xué)設(shè)計篇六
這是一節(jié)復(fù)習(xí)一元二次方程解法的課,主要通過復(fù)習(xí)一元二次方程的解法,了解學(xué)生對知識的掌握情況,加強對學(xué)生的學(xué)法指導(dǎo)。
本章內(nèi)容中重點為一元二次方程的解法和應(yīng)用。我將復(fù)習(xí)設(shè)為兩節(jié),第一節(jié)重點講解法。思路:以學(xué)生為主體,注重學(xué)生自我發(fā)現(xiàn),了解自己的不足,同時,注意加強運算??偟腵設(shè)計思路較好,過程中有一個地方費時較多,主要是我沒有吃透“課標(biāo)”,對于一元二次方程公式法的推導(dǎo)過程不應(yīng)讓學(xué)生推導(dǎo),因為在此費時過多,所以最后的小測試沒來得及做。另為,在練習(xí)中解方程時,由于時間關(guān)系,沒有讓學(xué)生比較,而是由我代辦,這樣效果反而不好。
一元二次方程的解法教學(xué)設(shè)計篇七
本節(jié)內(nèi)容是初中數(shù)學(xué)九年級上冊教材第二十三章第二節(jié)。在此之前,學(xué)生已經(jīng)學(xué)習(xí)了一元二次方程的直接開平方法和完全平方公式,這為過渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。配方法雖然不是解一元二次方程的主要方法,但是通過配方法可以推導(dǎo)出公式法的求根公式,并且是今后運用配方的思想解決一些數(shù)學(xué)問題的基礎(chǔ)。所以,本節(jié)內(nèi)容在教材中起到承前啟后的作用,在整個初中的數(shù)學(xué)學(xué)習(xí)都起到至關(guān)重要的作用。
配方法是初中數(shù)學(xué)教學(xué)中的`重要內(nèi)容,也是數(shù)學(xué)學(xué)習(xí)的主要思想方法。本節(jié)課我在教材的處理上,既注意到新教材、新理念的實施,又考慮到傳統(tǒng)教學(xué)優(yōu)勢的傳承,使自主探究、合作交流的學(xué)習(xí)方式與數(shù)學(xué)基礎(chǔ)知識、基本技能的牢固掌握、靈活應(yīng)用有效結(jié)合。新的課程標(biāo)準(zhǔn)突出了數(shù)學(xué)知識的實際應(yīng)用,所以在教學(xué)實際中,我力求將解方程的基本技能訓(xùn)練與實際問題的解決融為一體,在解決實際問題的過程中提高學(xué)生的解題能力。因此,我先創(chuàng)設(shè)了一個實際問題的情境,讓學(xué)生感受到“生活中處處有數(shù)學(xué)”。
為了突破本節(jié)課的難點,我在教學(xué)中注意找準(zhǔn)學(xué)生的最近發(fā)展區(qū),主要以啟發(fā)學(xué)生進(jìn)行探究的形式展開。在知識探究的過程中,設(shè)計了幾個既有聯(lián)系又層層遞進(jìn)的問題,使學(xué)生在探究的過程中能體會到成功的喜悅。本節(jié)的重點是配方法解一元二次方程的探究,讓學(xué)生體會從特殊到一般,從具體到抽象的思維過程。在教學(xué)中,自主探究,合作交流,學(xué)生在探究的過程中掌握了和理解了配方法。
小結(jié)的時候教師要根據(jù)實際情況進(jìn)行補充和強調(diào),主要是以下兩個方面:在知識方面,要回顧配方法解方程的一般步驟和依據(jù);在方法方面,注意解一元二次方程的思想是“降次”。課后作業(yè)注重基礎(chǔ)知識和基本技能的訓(xùn)練,又注意為下一節(jié)學(xué)習(xí)做準(zhǔn)備。
一元二次方程的解法教學(xué)設(shè)計篇八
教學(xué)目標(biāo)。
知識技能。
2、掌握一元二次方程的一般形式,正確認(rèn)識二次項系數(shù)、一次項系數(shù)及常數(shù)項。
教學(xué)思考。
1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力。
2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性。
3、由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,從而進(jìn)一步提高學(xué)生分析問題、解決問題的能力。
解決問題。
在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,增加對一元二次方程的感性認(rèn)識。
情感態(tài)度。
1、培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識。
2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識。
重點。
難點。
1、由實際問題向數(shù)學(xué)問題的.轉(zhuǎn)化過程。
2、正確識別一般式中的“項”及“系數(shù)”。
教學(xué)流程安排。
活動流程圖。
活動內(nèi)容和目的。
活動1。
創(chuàng)設(shè)情境引入新課。
活動2。
啟發(fā)探究獲得新知。
活動3。
運用新知體驗成功。
活動4。
歸納小結(jié)拓展提高。
活動5。
布置作業(yè)分層落實。
復(fù)習(xí)一元一次方程有關(guān)概念;通過實際問題引入新知。
通過類比一元一次方程的概念和一般形式,讓學(xué)生獲得一元二次方程的有關(guān)概念。
回顧梳理本節(jié)內(nèi)容,拓展提高學(xué)生對知識的理解。
分層次布置作業(yè),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
一元二次方程的解法教學(xué)設(shè)計篇九
5.?通過對一元二次方程解法的,使學(xué)生進(jìn)一步理解“降次”的數(shù)學(xué)方法,進(jìn)一步獲得對事物可以轉(zhuǎn)化的認(rèn)識。
重點和難點。
建議:
一、教材分析:
1.知識結(jié)構(gòu):
2.重點、難點分析。
用開平方法解一元二次方程,一種是直接開平方法,另一種是配方法。
如果一元二次方程的一邊是未知數(shù)的平方或含有未知數(shù)的一次式的平方,另一邊是一個非負(fù)數(shù),或完全平方式,如方程,和方程就可以直接開平方法求解,在開平方時注意取正、負(fù)兩個平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,轉(zhuǎn)化為的形式來求解。配方時要注意把二次項系數(shù)化為1和方程兩邊都加上一次項系數(shù)一半的平方這兩個關(guān)鍵步驟。
(2)熟記求根公式()和公式中字母的意義在使用求根公式時要注意以下三點:
1)把方程化為一般形式,并做到、、之間沒有公因數(shù),且二次項系數(shù)為正整數(shù),這樣代入公式計算較為簡便。
3)當(dāng)時,才能求出方程的兩根。
(3)抓住方程特點,選用因式分解法解一元二次方程。
如果一個一元二次方程的一邊是零,另一邊易于分解成兩個一次因式時,就可以用因式分解法求解。這時只要使每個一次因式等于零,分別解兩個一元一次方程,得到兩個根就是一元二次方程的解。
我們共學(xué)習(xí)了四種解一元二次方程的方法:直接開平方法;配方法;公式法和因式分解法。解方程時,要認(rèn)真觀察方程的特征,選用適當(dāng)?shù)姆椒ㄇ蠼狻?BR> 二、教法建議。
1.方法建議采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,學(xué)生獲取知識必須通過學(xué)生自己一系列思維活動完成,啟發(fā)誘導(dǎo)學(xué)生深入思考問題,有利于培養(yǎng)學(xué)生思維靈活、嚴(yán)謹(jǐn)、深刻等良好思維品質(zhì).
2.注意培養(yǎng)應(yīng)用意識.中應(yīng)不失時機地使學(xué)生認(rèn)識到數(shù)學(xué)源于實踐并反作用于實踐.
第12頁?。
一元二次方程的解法教學(xué)設(shè)計篇十
一、教材分析:
《用函數(shù)的觀點看一元二次方程》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗教科書(五四學(xué)制)《數(shù)學(xué)》(人教版)九年級上冊第二十一章第二節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象、性質(zhì)及其相關(guān)應(yīng)用的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實際情境,創(chuàng)設(shè)三個問題,這三個問題對應(yīng)了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學(xué)生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識與實際問題的聯(lián)系。
本節(jié)教學(xué)時間安排1課時。
二、教學(xué)目標(biāo):
知識技能:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.。
數(shù)學(xué)思考:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.。
2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.。
3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
解決問題:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
情感態(tài)度:
1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會學(xué)習(xí)數(shù)學(xué)的價值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識。
三、教學(xué)重點、難點:
教學(xué)重點:
1.體會方程與函數(shù)之間的聯(lián)系。
教學(xué)難點:
1.探索方程與函數(shù)之間關(guān)系的過程。
四、教學(xué)方法:啟發(fā)引導(dǎo)合作交流。
五:教具、學(xué)具:課件。
六、教學(xué)媒體:計算機、實物投影。
七、教學(xué)過程:
[活動1]檢查預(yù)習(xí)引出課題。
預(yù)習(xí)作業(yè):
1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。
教師重點關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
設(shè)計意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
[活動2]創(chuàng)設(shè)情境探究新知。
問題。
1.課本p94問題.
3.結(jié)合預(yù)習(xí)題1,完成課本p94觀察中的題目。
師生行為:教師提出問題1,給學(xué)生獨立思考的時間,教師可適當(dāng)引導(dǎo),對學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問題2學(xué)生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進(jìn)行點撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
教師重點關(guān)注:1.學(xué)生能否把實際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;
2.學(xué)生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;
3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。
設(shè)計意圖:由現(xiàn)實中的實際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動中去,體會二次函數(shù)與實際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗。
[活動3]例題學(xué)習(xí)鞏固提高。
問題。
例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).
師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨立完成,師生互相訂正。
教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
設(shè)計意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
[活動4]練習(xí)反饋鞏固新知。
問題:
(1)p97.習(xí)題1、2(1)。
師生行為:教師提出問題,學(xué)生獨立思考后寫出答案,師生共同評價;問題(2)學(xué)生獨立思考后同桌交流,實物投影出學(xué)生解題過程,教師強調(diào)正確解題思路。
教師關(guān)注:學(xué)生能否準(zhǔn)確應(yīng)用本節(jié)課的知識解決問題;學(xué)生解題時候暴露的共性問題作針對性的點評,積累解題經(jīng)驗。
設(shè)計意圖:這兩個題目就是對本節(jié)課知識的鞏固應(yīng)用,讓新知識內(nèi)化升華,培養(yǎng)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。
八、自主小結(jié),深化提高:
1.通過這節(jié)課的學(xué)習(xí),你獲得了哪些數(shù)學(xué)知識和方法?
2.這節(jié)課你參與了哪些數(shù)學(xué)活動?談?wù)勀惬@得知識的方法和經(jīng)驗。
師生活動:學(xué)生思考后回答,教師對學(xué)生的錯誤予以糾正,不足的予以補充,精彩的適當(dāng)表揚。
設(shè)計意圖:
1.題促使學(xué)生反思在知識和技能方面的收獲;
2.題讓學(xué)生反思自己的學(xué)習(xí)活動、認(rèn)知過程,總結(jié)解決問題的策略,積累學(xué)習(xí)知識的方法,力求不同的學(xué)生有不同的發(fā)展。
九、分層作業(yè),發(fā)展個性:
作業(yè)設(shè)計:(必做題)。
1.閱讀教材并完成p97習(xí)題21。2:3、4.。
2.寫好數(shù)學(xué)日記。
(備選題)p97習(xí)題21。2:5、6。
設(shè)計意圖:分層作業(yè),使不同層次的學(xué)生都能有所收獲。
十、教學(xué)反思:
1.注重知識的發(fā)生過程與思想方法的應(yīng)用。
《用函數(shù)的觀點看一元二次方程》內(nèi)容比較多,而課時安排只一節(jié),為了在一節(jié)課的時間里更有效地突出重點,突破難點,按照學(xué)生的認(rèn)知規(guī)律遵循教師為主導(dǎo)、學(xué)生為主體的指導(dǎo)思想,本節(jié)課給學(xué)生布置的預(yù)習(xí)作業(yè),從學(xué)生已有的經(jīng)驗出發(fā)引發(fā)學(xué)生觀察、分析、類比、聯(lián)想、歸納、總結(jié)獲得新的知識,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)中,對新的知識的獲得覺得不意外,讓學(xué)生“跳一跳就可以摘到桃子”。
探究拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系及其應(yīng)用的過程中,引導(dǎo)學(xué)生觀察圖形,從圖象與x軸交點的個數(shù)與方程的根之間進(jìn)行分析、猜想、歸納、總結(jié),這是重要的數(shù)學(xué)中數(shù)形結(jié)合的思想方法,在整個教學(xué)過程中始終貫穿的是類比思想方法。這些方法的使用對學(xué)生良好思維品質(zhì)的形成有重要的作用,對學(xué)生的終身發(fā)展也有一定的作用。
2.關(guān)注學(xué)生學(xué)習(xí)的過程。
在教學(xué)過程中,教師作為引導(dǎo)者,為學(xué)生創(chuàng)設(shè)問題情境、提供問題串、給學(xué)生提供廣闊的思考空間、活動空間、為學(xué)生搭建自主學(xué)習(xí)的平臺;學(xué)生則在老師的指導(dǎo)下經(jīng)歷操作、實踐、思考、交流、合作的過程,其知識的形成和能力的培養(yǎng)相伴而行,創(chuàng)造“海闊憑魚躍,天高任鳥飛”的課堂境界。
3.強化行為反思。
一元二次方程的解法教學(xué)設(shè)計篇十一
一元二次方程是整個初中階段所有方程的核心。它與二次函數(shù)有密切的聯(lián)系,在以后將應(yīng)用于解分式方程、無理方程及有關(guān)應(yīng)用性問題中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的基礎(chǔ)上,因此我采取讓學(xué)生帶著問題自學(xué)課本,尋找因式分解法解一元二次方程的形式特征,即等號右邊必須為零,左邊必須為兩個一次因式的乘積(不能是加減運算),利用零的特性,將求一元二次方程的解,通過因式分解法,轉(zhuǎn)化為求兩個一元一次方程的解,將未知領(lǐng)域轉(zhuǎn)化為已知領(lǐng)域,滲透了化歸數(shù)學(xué)思想,讓班上中等偏下學(xué)生先上黑板解題,將暴露出來的問題,在全班及時糾正。本節(jié)課較好地完成了教學(xué)目標(biāo),同時還培養(yǎng)了學(xué)生看書自學(xué)的能力,取得較好的教學(xué)效果。
老師提示:。
1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;。
2.關(guān)鍵是熟練掌握因式分解的知識;。
3.理論依舊是“如果兩個因式的積等于零,那么至少有一個因式等于零.
一元二次方程的解法教學(xué)設(shè)計篇十二
教學(xué)目標(biāo)。
知識技能。
教學(xué)思考。
1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力。
2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性。
3、由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,從而進(jìn)一步提高學(xué)生分析問題、解決問題的能力。
解決問題。
在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,增加對一元二次方程的感性認(rèn)識。
情感態(tài)度。
1、培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識。
2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識。
重點。
難點。
1、由實際問題向數(shù)學(xué)問題的.轉(zhuǎn)化過程。
2、正確識別一般式中的“項”及“系數(shù)”。
教學(xué)流程安排。
活動流程圖。
活動內(nèi)容和目的。
活動1。
創(chuàng)設(shè)情境引入新課。
活動2。
啟發(fā)探究獲得新知。
活動3。
運用新知體驗成功。
活動4。
歸納小結(jié)拓展提高。
活動5。
布置作業(yè)分層落實。
復(fù)習(xí)一元一次方程有關(guān)概念;通過實際問題引入新知。
通過類比一元一次方程的概念和一般形式,讓學(xué)生獲得一元二次方程的有關(guān)概念。
回顧梳理本節(jié)內(nèi)容,拓展提高學(xué)生對知識的理解。
分層次布置作業(yè),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
一元二次方程的解法教學(xué)設(shè)計篇十三
一元二次方程是一種數(shù)學(xué)建模的方法,它有著廣泛的實際背景,可以作為許多實際問題的數(shù)學(xué)模型。它體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,一元二次方程是高中數(shù)學(xué)的奠基工程。是本書的重點內(nèi)容,為后續(xù)學(xué)習(xí)打下良好的基礎(chǔ)。
1、經(jīng)過兩年的合作,我們班的學(xué)生已比較配合我上課,同時初三學(xué)生觀察、類比、概括、歸納能力也都比較強,不過對應(yīng)用題的分析他們還是覺得很頭疼,在今后應(yīng)用題的教學(xué)中需進(jìn)一步加強。
2、一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,一元二次方程是一次方程向二次方程的轉(zhuǎn)化,是低次方程轉(zhuǎn)向高次方程求解方法的階梯。一元二次方程又是二次函數(shù)的特例。
一、知識目標(biāo)。
1、在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中,使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,,增加對一元二次方程的感性認(rèn)識。
二、能力目標(biāo)。
1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力。
2、由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,進(jìn)一步提高學(xué)生分析問題、解決問題的能力。
四、情感目標(biāo)。
1、培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識。
2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識。
難點:1、從實際問題中抽象出一元二次方程。2、正確識別一般式中的“項”及“系數(shù)”
一元二次方程的解法教學(xué)設(shè)計篇十四
3、通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
1、教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
2)重點、難點分析。
是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。
一元二次方程的解法教學(xué)設(shè)計篇十五
(2)掌握的一般形式,會判斷的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
(2)會用因式分解法解。
教學(xué)重點:的概念、的一般形式。
教學(xué)難點:因式分解法解。
教學(xué)過程:
(一)創(chuàng)設(shè)情景,引入新課。
由學(xué)生說出這幾個方程的共同特征,從而引出的概念。
(二)新授。
1:的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
練習(xí)。
2:的一般形式(形如ax+bx+c=0)。
任一個都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零。
3:講解例子。
4:利用因式分解法解。
5:講解例子。
6:一般步驟。
練習(xí)。
(三)小結(jié)。
(四)布置作業(yè)。
板書設(shè)計。
一元二次方程的解法教學(xué)設(shè)計篇十六
1、將二次項系數(shù)化為1,即化為x+bx+c=0的形式。
2、將常數(shù)項移到方程右邊。
3、方程兩邊都加上一次項系數(shù)一半的.平方。
4、等式左邊寫成完全平方形式,右邊合并同類項。
5、等式兩邊同時開方。
解一元二次方程的基本思想方法是通過“降次”將它化為兩個一元一次方程。
1、直接開平方法;
2、配方法;
3、公式法;
4、因式分解法。
一元二次方程的解法教學(xué)設(shè)計篇十七
1、找出a,b,c的相應(yīng)的數(shù)值。
2、驗判別式是否大于等于0。
3、當(dāng)判別式的數(shù)值符合條件,可以利用公式求根、
2、求根公式本身就很難,形式復(fù)雜,代入數(shù)值后出錯很多、
通過本節(jié)課的教學(xué),總體感覺調(diào)動了學(xué)生的積極性,能夠充分發(fā)揮學(xué)生的主體作用,激發(fā)了學(xué)生思維的火花,具體有以下幾個特點:
本節(jié)課第一個例題,我在引導(dǎo)解決此題之后,總結(jié)了利用求根公式解一元二次方程的一般步驟,不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。
例2、3是例1的變式與提高,通過變式訓(xùn)練,讓學(xué)生由淺入深,由易到難,也讓學(xué)生解決問題的能力提高,這是這節(jié)課中的一大亮點,在講完例題的基礎(chǔ)上,將更多的時間留給學(xué)生,這樣學(xué)生感覺到成功的機會增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時學(xué)生在學(xué)習(xí)中相互交流,相互學(xué)習(xí),共同提高。
課堂上多給學(xué)生展示的機會,讓學(xué)生走上講臺,向同學(xué)們展示自己的聰明才智??傊ㄟ^各種激勵的教學(xué)手段,幫助學(xué)生形成積極的學(xué)習(xí)態(tài)度,課堂收效大。
需要改進(jìn)的方面,由于怕完不成任務(wù),教師講的還是多了些,以后應(yīng)最大限度的發(fā)揮學(xué)生的主體作用。
一元二次方程的解法教學(xué)設(shè)計篇一
本節(jié)主要內(nèi)容是用函數(shù)的觀念看一元二次方程,探討二次函數(shù)與一元二次方程的關(guān)系。教材從一次函數(shù)與一元一次方程的關(guān)系入手,通過類比引出二次函數(shù)與一元二次方程之間的關(guān)系問題,并結(jié)合一個具體的實例討論了一元二次方程的實根與二次函數(shù)圖象之間的聯(lián)系,然后介紹了用圖象法求一元二次方程近似解的過程。這一節(jié)是反映函數(shù)與方程這兩個重要數(shù)學(xué)概念之間的聯(lián)系的內(nèi)容。
由于九年級學(xué)生已經(jīng)具備一定的抽象思維能力,再者,在八年級時已經(jīng)學(xué)習(xí)了一次函數(shù)與一元一次方程的關(guān)系,因而,采用類比的方法在學(xué)生預(yù)習(xí)自學(xué)的基礎(chǔ)上放手讓學(xué)生大膽地猜想、交流,分組合作,同時設(shè)定一定的問題環(huán)境來引導(dǎo)學(xué)生的探究過程,最后在老師的釋疑、歸納、拓展、總結(jié)的過程中結(jié)束本節(jié)課的教學(xué)。在知識掌握上,學(xué)生對二次函數(shù)的圖象及其性質(zhì)和一元二次方程的解的情況都有所了解,對于本節(jié)所要學(xué)習(xí)的二次函數(shù)與一元二次方程之間的關(guān)系利用類比的方法讓學(xué)生在自學(xué)的基礎(chǔ)上進(jìn)行交流合作學(xué)習(xí)應(yīng)該不是難題。本節(jié)課的知識障礙,本節(jié)課的主要目的在于建立二次函數(shù)與一元二次方程之間的聯(lián)系,滲透數(shù)形結(jié)合的思想,而不僅僅是利用函數(shù)的圖象求一元二次方程的近似解。
總之,在教學(xué)過程中,我始終遵循著“有效的數(shù)學(xué)學(xué)習(xí)活動不能單獨地依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)習(xí)數(shù)學(xué)的重要方式?!边@一《新課程標(biāo)準(zhǔn)》的精神,注意發(fā)揮學(xué)生的主體作用,讓學(xué)生通過自主探究、合作學(xué)習(xí)來主動發(fā)現(xiàn)問題、提出問題、解決問題,實現(xiàn)師生互動,通過這樣的教學(xué)實踐取得了一定的教學(xué)效果,我再次認(rèn)識到教師不僅要教給學(xué)生知識,更要培養(yǎng)學(xué)生良好的數(shù)學(xué)素養(yǎng)和學(xué)習(xí)習(xí)慣,讓學(xué)生學(xué)會學(xué)習(xí),使他們能夠在獨立思考與合作學(xué)習(xí)交流中解決學(xué)習(xí)中的問題。
一元二次方程的解法教學(xué)設(shè)計篇二
《用函數(shù)的觀點看一元二次方程》內(nèi)容比較多,而課時安排只一節(jié),為了在一節(jié)課的時間里更有效地突出重點,突破難點,按照學(xué)生的認(rèn)知規(guī)律遵循教師為主導(dǎo)、學(xué)生為主體的指導(dǎo)思想,本節(jié)課給學(xué)生布置的預(yù)習(xí)作業(yè),從學(xué)生已有的經(jīng)驗出發(fā)引發(fā)學(xué)生觀察、分析、類比、聯(lián)想、歸納、總結(jié)獲得新的知識,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)中,對新的知識的獲得覺得不意外,讓學(xué)生“跳一跳就可以摘到桃子”。
探究拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系及其應(yīng)用的過程中,引導(dǎo)學(xué)生觀察圖形,從圖象與x軸交點的個數(shù)與方程的根之間進(jìn)行分析、猜想、歸納、總結(jié),這是重要的數(shù)學(xué)中數(shù)形結(jié)合的思想方法,在整個教學(xué)過程中始終貫穿的是類比思想方法。這些方法的使用對學(xué)生良好思維品質(zhì)的形成有重要的作用,對學(xué)生的終身發(fā)展也有一定的作用。
2.關(guān)注學(xué)生學(xué)習(xí)的過程。
在教學(xué)過程中,教師作為引導(dǎo)者,為學(xué)生創(chuàng)設(shè)問題情境、提供問題串、給學(xué)生提供廣闊的思考空間、活動空間、為學(xué)生搭建自主學(xué)習(xí)的平臺;學(xué)生則在老師的指導(dǎo)下經(jīng)歷操作、實踐、思考、交流、合作的過程,其知識的.形成和能力的培養(yǎng)相伴而行,創(chuàng)造“海闊憑魚躍,天高任鳥飛”的課堂境界。
3.強化行為反思。
“反思是數(shù)學(xué)的重要活動,是數(shù)學(xué)活動的核心和動力”,本節(jié)課在教學(xué)過程中始終融入反思的環(huán)節(jié),用問題的設(shè)計,課堂小結(jié),課后的數(shù)學(xué)日記等方式引發(fā)學(xué)生反思,使學(xué)生在掌握知識的同時,領(lǐng)悟解決問題的策略,積累學(xué)習(xí)方法。說到數(shù)學(xué)日記,“數(shù)學(xué)日記”就是學(xué)生以日記的形式,記述學(xué)生在數(shù)學(xué)學(xué)習(xí)和應(yīng)用過程中的感受與體會。通過日記的方式,學(xué)生可以對他所學(xué)的數(shù)學(xué)內(nèi)容進(jìn)行總結(jié),寫出自己的收獲與困惑?!皵?shù)學(xué)日記”該如何寫,寫什么呢?開始摸索寫數(shù)學(xué)日記的時候,我根據(jù)課程標(biāo)準(zhǔn)的內(nèi)容給學(xué)生提出寫數(shù)學(xué)日記的簡單模式:日記參考格式:課題;所涉及的重要數(shù)學(xué)概念或規(guī)律;理解得最好的地方;不明白的或還需要進(jìn)一步理解的地方;所涉及的數(shù)學(xué)思想方法;所學(xué)內(nèi)容能否應(yīng)用在日常生活中,舉例說明。通過這兩年的摸索,我把數(shù)學(xué)日記大致分為:課堂日記、復(fù)習(xí)日記、錯題日記。
4.優(yōu)化作業(yè)設(shè)計。
作業(yè)的設(shè)計分必做題和選做題,必做題鞏固本課基礎(chǔ)知識,基本要求;選做題屬于拓廣探索題目,培養(yǎng)學(xué)生的創(chuàng)新能力和實踐能力。
一元二次方程的解法教學(xué)設(shè)計篇三
一元二次方程概念及一元二次方程一般式及有關(guān)概念.。
教學(xué)目標(biāo)。
1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.。
3.解決一些概念性的題目.。
4.態(tài)度、情感、價值觀。
4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的'問題來激發(fā)學(xué)生的學(xué)習(xí)熱情.。
重難點關(guān)鍵。
教學(xué)過程。
一、復(fù)習(xí)引入。
學(xué)生活動:列方程.。
問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
整理、化簡,得:__________.。
問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點.。
整理得:_________.。
整理,得:________.。
二、探索新知。
學(xué)生活動:請口答下面問題.。
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
一元二次方程的解法教學(xué)設(shè)計篇四
在“一次函數(shù)”一章時已經(jīng)了解了一次函數(shù)與一元一次方程,一元一次不等式(組),二元一次方程組的聯(lián)系。本章專門設(shè)一節(jié),通過探討二次函數(shù)與一元二次方程的關(guān)系,再次展示函數(shù)與方程的聯(lián)系。一方面可以深化我們對一元二次方程的.認(rèn)識,另一方面又可以運用一元二次方程解決二次函數(shù)的有關(guān)問題。
本節(jié)通過畫圖,看圖,分析圖,列表對比,抽象概括進(jìn)行教學(xué),讓每個學(xué)生動手,動口,動腦,積極參與,提高教學(xué)效率和教學(xué)質(zhì)量(此文來自優(yōu)秀),使學(xué)生進(jìn)一步理解數(shù)形結(jié)合和從特殊到一般的思想方法。不足之處是:有少部分學(xué)生對函數(shù)與方程之間的關(guān)系有點費解。通過了解發(fā)現(xiàn):這部分同學(xué)對一次函數(shù)和方程的關(guān)系也不熟悉,也就是數(shù)學(xué)基礎(chǔ)不扎實,還有就是數(shù)形結(jié)合能力差,也就是不能建立數(shù)與形之間的聯(lián)系。他們?yōu)槭裁床荒芎芎玫淖龅竭@些呢?我想,這正是本節(jié)課的要點所在。在今后的教學(xué)中,一定關(guān)注這一點,解決之。
一元二次方程的解法教學(xué)設(shè)計篇五
通過本節(jié)課的教學(xué),使我真正認(rèn)識到了自己課堂教學(xué)的成功與失敗。下面我就談?wù)勛约簩@節(jié)課的反思。這節(jié)課是一元二次方程解法的復(fù)習(xí)課,復(fù)習(xí)的思路是概念的梳理(方法的回憶)__實踐(方法的選擇)__應(yīng)用(方法的融合)。由于課前我做了精心準(zhǔn)備,所以整個課堂流暢、緊湊容量大。整節(jié)課充滿著”自主、合作、探究,交流“的教學(xué)理念,使學(xué)生在主動思考探究的過程中自然的獲得新的知識。
需要改進(jìn)的方面:
1、設(shè)計的問題太多,學(xué)生在課堂上沒有辦法消化。
2、學(xué)生的積極性沒有調(diào)動起來。
通過本節(jié)課的教學(xué),我覺得課堂就應(yīng)該交給學(xué)生,而不是一味的填鴨式灌輸給學(xué)生,這樣反而達(dá)不到預(yù)期的效果。
一元二次方程的解法教學(xué)設(shè)計篇六
這是一節(jié)復(fù)習(xí)一元二次方程解法的課,主要通過復(fù)習(xí)一元二次方程的解法,了解學(xué)生對知識的掌握情況,加強對學(xué)生的學(xué)法指導(dǎo)。
本章內(nèi)容中重點為一元二次方程的解法和應(yīng)用。我將復(fù)習(xí)設(shè)為兩節(jié),第一節(jié)重點講解法。思路:以學(xué)生為主體,注重學(xué)生自我發(fā)現(xiàn),了解自己的不足,同時,注意加強運算??偟腵設(shè)計思路較好,過程中有一個地方費時較多,主要是我沒有吃透“課標(biāo)”,對于一元二次方程公式法的推導(dǎo)過程不應(yīng)讓學(xué)生推導(dǎo),因為在此費時過多,所以最后的小測試沒來得及做。另為,在練習(xí)中解方程時,由于時間關(guān)系,沒有讓學(xué)生比較,而是由我代辦,這樣效果反而不好。
一元二次方程的解法教學(xué)設(shè)計篇七
本節(jié)內(nèi)容是初中數(shù)學(xué)九年級上冊教材第二十三章第二節(jié)。在此之前,學(xué)生已經(jīng)學(xué)習(xí)了一元二次方程的直接開平方法和完全平方公式,這為過渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。配方法雖然不是解一元二次方程的主要方法,但是通過配方法可以推導(dǎo)出公式法的求根公式,并且是今后運用配方的思想解決一些數(shù)學(xué)問題的基礎(chǔ)。所以,本節(jié)內(nèi)容在教材中起到承前啟后的作用,在整個初中的數(shù)學(xué)學(xué)習(xí)都起到至關(guān)重要的作用。
配方法是初中數(shù)學(xué)教學(xué)中的`重要內(nèi)容,也是數(shù)學(xué)學(xué)習(xí)的主要思想方法。本節(jié)課我在教材的處理上,既注意到新教材、新理念的實施,又考慮到傳統(tǒng)教學(xué)優(yōu)勢的傳承,使自主探究、合作交流的學(xué)習(xí)方式與數(shù)學(xué)基礎(chǔ)知識、基本技能的牢固掌握、靈活應(yīng)用有效結(jié)合。新的課程標(biāo)準(zhǔn)突出了數(shù)學(xué)知識的實際應(yīng)用,所以在教學(xué)實際中,我力求將解方程的基本技能訓(xùn)練與實際問題的解決融為一體,在解決實際問題的過程中提高學(xué)生的解題能力。因此,我先創(chuàng)設(shè)了一個實際問題的情境,讓學(xué)生感受到“生活中處處有數(shù)學(xué)”。
為了突破本節(jié)課的難點,我在教學(xué)中注意找準(zhǔn)學(xué)生的最近發(fā)展區(qū),主要以啟發(fā)學(xué)生進(jìn)行探究的形式展開。在知識探究的過程中,設(shè)計了幾個既有聯(lián)系又層層遞進(jìn)的問題,使學(xué)生在探究的過程中能體會到成功的喜悅。本節(jié)的重點是配方法解一元二次方程的探究,讓學(xué)生體會從特殊到一般,從具體到抽象的思維過程。在教學(xué)中,自主探究,合作交流,學(xué)生在探究的過程中掌握了和理解了配方法。
小結(jié)的時候教師要根據(jù)實際情況進(jìn)行補充和強調(diào),主要是以下兩個方面:在知識方面,要回顧配方法解方程的一般步驟和依據(jù);在方法方面,注意解一元二次方程的思想是“降次”。課后作業(yè)注重基礎(chǔ)知識和基本技能的訓(xùn)練,又注意為下一節(jié)學(xué)習(xí)做準(zhǔn)備。
一元二次方程的解法教學(xué)設(shè)計篇八
教學(xué)目標(biāo)。
知識技能。
2、掌握一元二次方程的一般形式,正確認(rèn)識二次項系數(shù)、一次項系數(shù)及常數(shù)項。
教學(xué)思考。
1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力。
2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性。
3、由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,從而進(jìn)一步提高學(xué)生分析問題、解決問題的能力。
解決問題。
在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,增加對一元二次方程的感性認(rèn)識。
情感態(tài)度。
1、培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識。
2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識。
重點。
難點。
1、由實際問題向數(shù)學(xué)問題的.轉(zhuǎn)化過程。
2、正確識別一般式中的“項”及“系數(shù)”。
教學(xué)流程安排。
活動流程圖。
活動內(nèi)容和目的。
活動1。
創(chuàng)設(shè)情境引入新課。
活動2。
啟發(fā)探究獲得新知。
活動3。
運用新知體驗成功。
活動4。
歸納小結(jié)拓展提高。
活動5。
布置作業(yè)分層落實。
復(fù)習(xí)一元一次方程有關(guān)概念;通過實際問題引入新知。
通過類比一元一次方程的概念和一般形式,讓學(xué)生獲得一元二次方程的有關(guān)概念。
回顧梳理本節(jié)內(nèi)容,拓展提高學(xué)生對知識的理解。
分層次布置作業(yè),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
一元二次方程的解法教學(xué)設(shè)計篇九
5.?通過對一元二次方程解法的,使學(xué)生進(jìn)一步理解“降次”的數(shù)學(xué)方法,進(jìn)一步獲得對事物可以轉(zhuǎn)化的認(rèn)識。
重點和難點。
建議:
一、教材分析:
1.知識結(jié)構(gòu):
2.重點、難點分析。
用開平方法解一元二次方程,一種是直接開平方法,另一種是配方法。
如果一元二次方程的一邊是未知數(shù)的平方或含有未知數(shù)的一次式的平方,另一邊是一個非負(fù)數(shù),或完全平方式,如方程,和方程就可以直接開平方法求解,在開平方時注意取正、負(fù)兩個平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,轉(zhuǎn)化為的形式來求解。配方時要注意把二次項系數(shù)化為1和方程兩邊都加上一次項系數(shù)一半的平方這兩個關(guān)鍵步驟。
(2)熟記求根公式()和公式中字母的意義在使用求根公式時要注意以下三點:
1)把方程化為一般形式,并做到、、之間沒有公因數(shù),且二次項系數(shù)為正整數(shù),這樣代入公式計算較為簡便。
3)當(dāng)時,才能求出方程的兩根。
(3)抓住方程特點,選用因式分解法解一元二次方程。
如果一個一元二次方程的一邊是零,另一邊易于分解成兩個一次因式時,就可以用因式分解法求解。這時只要使每個一次因式等于零,分別解兩個一元一次方程,得到兩個根就是一元二次方程的解。
我們共學(xué)習(xí)了四種解一元二次方程的方法:直接開平方法;配方法;公式法和因式分解法。解方程時,要認(rèn)真觀察方程的特征,選用適當(dāng)?shù)姆椒ㄇ蠼狻?BR> 二、教法建議。
1.方法建議采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,學(xué)生獲取知識必須通過學(xué)生自己一系列思維活動完成,啟發(fā)誘導(dǎo)學(xué)生深入思考問題,有利于培養(yǎng)學(xué)生思維靈活、嚴(yán)謹(jǐn)、深刻等良好思維品質(zhì).
2.注意培養(yǎng)應(yīng)用意識.中應(yīng)不失時機地使學(xué)生認(rèn)識到數(shù)學(xué)源于實踐并反作用于實踐.
第12頁?。
一元二次方程的解法教學(xué)設(shè)計篇十
一、教材分析:
《用函數(shù)的觀點看一元二次方程》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗教科書(五四學(xué)制)《數(shù)學(xué)》(人教版)九年級上冊第二十一章第二節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象、性質(zhì)及其相關(guān)應(yīng)用的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實際情境,創(chuàng)設(shè)三個問題,這三個問題對應(yīng)了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學(xué)生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識與實際問題的聯(lián)系。
本節(jié)教學(xué)時間安排1課時。
二、教學(xué)目標(biāo):
知識技能:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.。
數(shù)學(xué)思考:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.。
2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.。
3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
解決問題:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
情感態(tài)度:
1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會學(xué)習(xí)數(shù)學(xué)的價值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識。
三、教學(xué)重點、難點:
教學(xué)重點:
1.體會方程與函數(shù)之間的聯(lián)系。
教學(xué)難點:
1.探索方程與函數(shù)之間關(guān)系的過程。
四、教學(xué)方法:啟發(fā)引導(dǎo)合作交流。
五:教具、學(xué)具:課件。
六、教學(xué)媒體:計算機、實物投影。
七、教學(xué)過程:
[活動1]檢查預(yù)習(xí)引出課題。
預(yù)習(xí)作業(yè):
1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。
教師重點關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
設(shè)計意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
[活動2]創(chuàng)設(shè)情境探究新知。
問題。
1.課本p94問題.
3.結(jié)合預(yù)習(xí)題1,完成課本p94觀察中的題目。
師生行為:教師提出問題1,給學(xué)生獨立思考的時間,教師可適當(dāng)引導(dǎo),對學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問題2學(xué)生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進(jìn)行點撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
教師重點關(guān)注:1.學(xué)生能否把實際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;
2.學(xué)生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;
3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。
設(shè)計意圖:由現(xiàn)實中的實際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動中去,體會二次函數(shù)與實際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗。
[活動3]例題學(xué)習(xí)鞏固提高。
問題。
例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).
師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨立完成,師生互相訂正。
教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
設(shè)計意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
[活動4]練習(xí)反饋鞏固新知。
問題:
(1)p97.習(xí)題1、2(1)。
師生行為:教師提出問題,學(xué)生獨立思考后寫出答案,師生共同評價;問題(2)學(xué)生獨立思考后同桌交流,實物投影出學(xué)生解題過程,教師強調(diào)正確解題思路。
教師關(guān)注:學(xué)生能否準(zhǔn)確應(yīng)用本節(jié)課的知識解決問題;學(xué)生解題時候暴露的共性問題作針對性的點評,積累解題經(jīng)驗。
設(shè)計意圖:這兩個題目就是對本節(jié)課知識的鞏固應(yīng)用,讓新知識內(nèi)化升華,培養(yǎng)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。
八、自主小結(jié),深化提高:
1.通過這節(jié)課的學(xué)習(xí),你獲得了哪些數(shù)學(xué)知識和方法?
2.這節(jié)課你參與了哪些數(shù)學(xué)活動?談?wù)勀惬@得知識的方法和經(jīng)驗。
師生活動:學(xué)生思考后回答,教師對學(xué)生的錯誤予以糾正,不足的予以補充,精彩的適當(dāng)表揚。
設(shè)計意圖:
1.題促使學(xué)生反思在知識和技能方面的收獲;
2.題讓學(xué)生反思自己的學(xué)習(xí)活動、認(rèn)知過程,總結(jié)解決問題的策略,積累學(xué)習(xí)知識的方法,力求不同的學(xué)生有不同的發(fā)展。
九、分層作業(yè),發(fā)展個性:
作業(yè)設(shè)計:(必做題)。
1.閱讀教材并完成p97習(xí)題21。2:3、4.。
2.寫好數(shù)學(xué)日記。
(備選題)p97習(xí)題21。2:5、6。
設(shè)計意圖:分層作業(yè),使不同層次的學(xué)生都能有所收獲。
十、教學(xué)反思:
1.注重知識的發(fā)生過程與思想方法的應(yīng)用。
《用函數(shù)的觀點看一元二次方程》內(nèi)容比較多,而課時安排只一節(jié),為了在一節(jié)課的時間里更有效地突出重點,突破難點,按照學(xué)生的認(rèn)知規(guī)律遵循教師為主導(dǎo)、學(xué)生為主體的指導(dǎo)思想,本節(jié)課給學(xué)生布置的預(yù)習(xí)作業(yè),從學(xué)生已有的經(jīng)驗出發(fā)引發(fā)學(xué)生觀察、分析、類比、聯(lián)想、歸納、總結(jié)獲得新的知識,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)中,對新的知識的獲得覺得不意外,讓學(xué)生“跳一跳就可以摘到桃子”。
探究拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系及其應(yīng)用的過程中,引導(dǎo)學(xué)生觀察圖形,從圖象與x軸交點的個數(shù)與方程的根之間進(jìn)行分析、猜想、歸納、總結(jié),這是重要的數(shù)學(xué)中數(shù)形結(jié)合的思想方法,在整個教學(xué)過程中始終貫穿的是類比思想方法。這些方法的使用對學(xué)生良好思維品質(zhì)的形成有重要的作用,對學(xué)生的終身發(fā)展也有一定的作用。
2.關(guān)注學(xué)生學(xué)習(xí)的過程。
在教學(xué)過程中,教師作為引導(dǎo)者,為學(xué)生創(chuàng)設(shè)問題情境、提供問題串、給學(xué)生提供廣闊的思考空間、活動空間、為學(xué)生搭建自主學(xué)習(xí)的平臺;學(xué)生則在老師的指導(dǎo)下經(jīng)歷操作、實踐、思考、交流、合作的過程,其知識的形成和能力的培養(yǎng)相伴而行,創(chuàng)造“海闊憑魚躍,天高任鳥飛”的課堂境界。
3.強化行為反思。
一元二次方程的解法教學(xué)設(shè)計篇十一
一元二次方程是整個初中階段所有方程的核心。它與二次函數(shù)有密切的聯(lián)系,在以后將應(yīng)用于解分式方程、無理方程及有關(guān)應(yīng)用性問題中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的基礎(chǔ)上,因此我采取讓學(xué)生帶著問題自學(xué)課本,尋找因式分解法解一元二次方程的形式特征,即等號右邊必須為零,左邊必須為兩個一次因式的乘積(不能是加減運算),利用零的特性,將求一元二次方程的解,通過因式分解法,轉(zhuǎn)化為求兩個一元一次方程的解,將未知領(lǐng)域轉(zhuǎn)化為已知領(lǐng)域,滲透了化歸數(shù)學(xué)思想,讓班上中等偏下學(xué)生先上黑板解題,將暴露出來的問題,在全班及時糾正。本節(jié)課較好地完成了教學(xué)目標(biāo),同時還培養(yǎng)了學(xué)生看書自學(xué)的能力,取得較好的教學(xué)效果。
老師提示:。
1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;。
2.關(guān)鍵是熟練掌握因式分解的知識;。
3.理論依舊是“如果兩個因式的積等于零,那么至少有一個因式等于零.
一元二次方程的解法教學(xué)設(shè)計篇十二
教學(xué)目標(biāo)。
知識技能。
教學(xué)思考。
1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力。
2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性。
3、由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,從而進(jìn)一步提高學(xué)生分析問題、解決問題的能力。
解決問題。
在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,增加對一元二次方程的感性認(rèn)識。
情感態(tài)度。
1、培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識。
2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識。
重點。
難點。
1、由實際問題向數(shù)學(xué)問題的.轉(zhuǎn)化過程。
2、正確識別一般式中的“項”及“系數(shù)”。
教學(xué)流程安排。
活動流程圖。
活動內(nèi)容和目的。
活動1。
創(chuàng)設(shè)情境引入新課。
活動2。
啟發(fā)探究獲得新知。
活動3。
運用新知體驗成功。
活動4。
歸納小結(jié)拓展提高。
活動5。
布置作業(yè)分層落實。
復(fù)習(xí)一元一次方程有關(guān)概念;通過實際問題引入新知。
通過類比一元一次方程的概念和一般形式,讓學(xué)生獲得一元二次方程的有關(guān)概念。
回顧梳理本節(jié)內(nèi)容,拓展提高學(xué)生對知識的理解。
分層次布置作業(yè),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
一元二次方程的解法教學(xué)設(shè)計篇十三
一元二次方程是一種數(shù)學(xué)建模的方法,它有著廣泛的實際背景,可以作為許多實際問題的數(shù)學(xué)模型。它體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,一元二次方程是高中數(shù)學(xué)的奠基工程。是本書的重點內(nèi)容,為后續(xù)學(xué)習(xí)打下良好的基礎(chǔ)。
1、經(jīng)過兩年的合作,我們班的學(xué)生已比較配合我上課,同時初三學(xué)生觀察、類比、概括、歸納能力也都比較強,不過對應(yīng)用題的分析他們還是覺得很頭疼,在今后應(yīng)用題的教學(xué)中需進(jìn)一步加強。
2、一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,一元二次方程是一次方程向二次方程的轉(zhuǎn)化,是低次方程轉(zhuǎn)向高次方程求解方法的階梯。一元二次方程又是二次函數(shù)的特例。
一、知識目標(biāo)。
1、在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中,使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,,增加對一元二次方程的感性認(rèn)識。
二、能力目標(biāo)。
1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力。
2、由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,進(jìn)一步提高學(xué)生分析問題、解決問題的能力。
四、情感目標(biāo)。
1、培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識。
2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識。
難點:1、從實際問題中抽象出一元二次方程。2、正確識別一般式中的“項”及“系數(shù)”
一元二次方程的解法教學(xué)設(shè)計篇十四
3、通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
1、教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
2)重點、難點分析。
是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。
一元二次方程的解法教學(xué)設(shè)計篇十五
(2)掌握的一般形式,會判斷的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
(2)會用因式分解法解。
教學(xué)重點:的概念、的一般形式。
教學(xué)難點:因式分解法解。
教學(xué)過程:
(一)創(chuàng)設(shè)情景,引入新課。
由學(xué)生說出這幾個方程的共同特征,從而引出的概念。
(二)新授。
1:的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
練習(xí)。
2:的一般形式(形如ax+bx+c=0)。
任一個都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零。
3:講解例子。
4:利用因式分解法解。
5:講解例子。
6:一般步驟。
練習(xí)。
(三)小結(jié)。
(四)布置作業(yè)。
板書設(shè)計。
一元二次方程的解法教學(xué)設(shè)計篇十六
1、將二次項系數(shù)化為1,即化為x+bx+c=0的形式。
2、將常數(shù)項移到方程右邊。
3、方程兩邊都加上一次項系數(shù)一半的.平方。
4、等式左邊寫成完全平方形式,右邊合并同類項。
5、等式兩邊同時開方。
解一元二次方程的基本思想方法是通過“降次”將它化為兩個一元一次方程。
1、直接開平方法;
2、配方法;
3、公式法;
4、因式分解法。
一元二次方程的解法教學(xué)設(shè)計篇十七
1、找出a,b,c的相應(yīng)的數(shù)值。
2、驗判別式是否大于等于0。
3、當(dāng)判別式的數(shù)值符合條件,可以利用公式求根、
2、求根公式本身就很難,形式復(fù)雜,代入數(shù)值后出錯很多、
通過本節(jié)課的教學(xué),總體感覺調(diào)動了學(xué)生的積極性,能夠充分發(fā)揮學(xué)生的主體作用,激發(fā)了學(xué)生思維的火花,具體有以下幾個特點:
本節(jié)課第一個例題,我在引導(dǎo)解決此題之后,總結(jié)了利用求根公式解一元二次方程的一般步驟,不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。
例2、3是例1的變式與提高,通過變式訓(xùn)練,讓學(xué)生由淺入深,由易到難,也讓學(xué)生解決問題的能力提高,這是這節(jié)課中的一大亮點,在講完例題的基礎(chǔ)上,將更多的時間留給學(xué)生,這樣學(xué)生感覺到成功的機會增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時學(xué)生在學(xué)習(xí)中相互交流,相互學(xué)習(xí),共同提高。
課堂上多給學(xué)生展示的機會,讓學(xué)生走上講臺,向同學(xué)們展示自己的聰明才智??傊ㄟ^各種激勵的教學(xué)手段,幫助學(xué)生形成積極的學(xué)習(xí)態(tài)度,課堂收效大。
需要改進(jìn)的方面,由于怕完不成任務(wù),教師講的還是多了些,以后應(yīng)最大限度的發(fā)揮學(xué)生的主體作用。