亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        初一數(shù)學(xué)有理數(shù)的乘法教案(精選18篇)

        字號(hào):

            在制定教案的過(guò)程中,教師需要充分考慮學(xué)生的特點(diǎn)和需求。教案要注重評(píng)價(jià)和反思,及時(shí)調(diào)整教學(xué)策略和教學(xué)效果。通過(guò)分析優(yōu)秀教案,我們可以總結(jié)出一些教學(xué)方法和策略的有效運(yùn)用。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇一
            (二)能力訓(xùn)練目標(biāo):
            1、經(jīng)歷探索有理數(shù)乘法的運(yùn)算律的過(guò)程,發(fā)展觀察、歸納的能力。
            2、能運(yùn)用乘法運(yùn)算律簡(jiǎn)化計(jì)算。
            (三)情感與價(jià)值觀要求:
            1、在共同探索、共同發(fā)現(xiàn)、共同交流的過(guò)程中分享成功的喜悅。
            2、在討論的過(guò)程中,使學(xué)生感受集體的力量,培養(yǎng)團(tuán)隊(duì)意識(shí)。
            乘法運(yùn)算律的運(yùn)用。
            乘法運(yùn)算律的運(yùn)用。
            探究交流相結(jié)合。
            創(chuàng)設(shè)問(wèn)題情境,引入新課。
            問(wèn)題2:計(jì)算下列各題:
            (1)(一7)×8;。
            (2)8×(一7);
            (5)[3×(一4)]×(一5);
            (6)3×[(一4)×(一5)];
            [師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。
            像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過(guò)問(wèn)題2來(lái)檢驗(yàn)。(略)。
            [師]同學(xué)們自己采用上面的方法來(lái)探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
            [生]例如:5×[3十(一7)]和5×3十5×(一7);(略)。
            [師](一5)×(3一7)和(一5)×3一5×7的結(jié)果相等嗎?
            (注意:(一5)×(3一7)中的3一7應(yīng)看作3與(一7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因?yàn)闇p法沒(méi)有分配律。)。
            講授新課:
            用文字語(yǔ)言和字母把乘法交換律、結(jié)合律、分配律表達(dá)出來(lái)。
            應(yīng)得出:
            1、一般地,有理數(shù)乘法中,兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。
            2、三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。
            3、一般地,一個(gè)數(shù)同兩個(gè)數(shù)的'和相乘,等于這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。
            [師生]教師引導(dǎo)學(xué)生討論、交流,從中體會(huì)學(xué)習(xí)的快樂(lè)。
            3、用簡(jiǎn)便方法計(jì)算:
            練習(xí)(教科書(shū)第42頁(yè))。
            這節(jié)課我們學(xué)習(xí)乘法的運(yùn)算律及它們的運(yùn)用,使我們體驗(yàn)到了掌握一般的正常運(yùn)算外,還要靈活運(yùn)用運(yùn)算律,能簡(jiǎn)便的一定要簡(jiǎn)便,這樣做既快又準(zhǔn)。
            課后作業(yè):課本習(xí)題1.4的第7題(3)、(6)。
            用簡(jiǎn)便方法計(jì)算:
            (1)6.868×(一5)十6.868×(一12)十6.868×(十17)。
            (2)[(4×8)×25一8]×125。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇二
            3、通過(guò)對(duì)問(wèn)題的探索,培養(yǎng)觀察、分析和概括的能力。
            (一)、學(xué)前準(zhǔn)備。
            結(jié)果怎么樣,你能明白其中的數(shù)學(xué)道理嗎?
            (二)、探究新知。
            1、觀察:下列各式的積是正的還是負(fù)的?
            234(-5),
            23(-4)(-5),
            2(3)(4)(-5),
            (-2)(-3)(-4)(-5)。
            思考:幾個(gè)不是0的數(shù)相乘,積的'符號(hào)與負(fù)因數(shù)的個(gè)數(shù)之間有什么關(guān)系?
            分組討論交流,再用自己的語(yǔ)言表達(dá)所發(fā)現(xiàn)的規(guī)律:
            幾個(gè)不是0的數(shù)相乘,負(fù)因數(shù)的個(gè)數(shù)是偶數(shù)時(shí),積是正數(shù);負(fù)因數(shù)的個(gè)數(shù)是奇數(shù)時(shí),積是負(fù)數(shù)。
            2、利用所得到的規(guī)律,看看翻牌游戲中的數(shù)學(xué)道理。
            (三)、新知應(yīng)用。
            1、例題3,(30頁(yè))例3,
            例:7.8(-8.1)o(-19.6)。
            師生小結(jié):幾個(gè)數(shù)相乘,如果其中又因數(shù)為0,積等于0。
            2、練習(xí)。
            通過(guò)這節(jié)課的學(xué)習(xí),我的感受是:幾個(gè)數(shù)相乘,如果其中又因數(shù)為0,積等于0。
            1、如果兩個(gè)有理數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)在原點(diǎn)的同側(cè),那么這兩個(gè)有理數(shù)的積(___)。
            a.一定為正b.一定為負(fù)c.為零d.可能為正,也可能為負(fù)。
            2、若干個(gè)不等于0的有理數(shù)相乘,積的符號(hào)(____)。
            a.由因數(shù)的個(gè)數(shù)決定b.由正因數(shù)的個(gè)數(shù)決定。
            c.由負(fù)因數(shù)的個(gè)數(shù)決定d.由負(fù)因數(shù)和正因數(shù)個(gè)數(shù)的差為決定。
            3、下列運(yùn)算結(jié)果為負(fù)值的是(____)。
            a.(-7)(-6)b.(-6)+(-4);c.0(-2)(-3)d.(-7)-(-15)。
            4、下列運(yùn)算錯(cuò)誤的是()。
            a.(-2)(-3)=6b.
            c.(-5)(-2)(-4)=-40d.(-3)(-2)(-4)=-24。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇三
            經(jīng)歷探索有理數(shù)乘法法則過(guò)程,掌握有理數(shù)的乘法法則,能用法則進(jìn)行有理數(shù)的乘法。
            經(jīng)歷探索有理數(shù)乘法法則的過(guò)程,發(fā)展學(xué)生歸納、猜想、驗(yàn)證等能力。
            培養(yǎng)學(xué)生積極探索精神,感受數(shù)學(xué)與實(shí)際生活的聯(lián)系。
            教學(xué)重、難點(diǎn)與關(guān)鍵
            1.重點(diǎn):應(yīng)用法則正確地進(jìn)行有理數(shù)乘法運(yùn)算。
            2.難點(diǎn):兩負(fù)數(shù)相乘,積的符號(hào)為正與兩負(fù)數(shù)相加和的符號(hào)為負(fù)號(hào)容易混淆。
            3.關(guān)鍵:積的符號(hào)的確定。
            教具準(zhǔn)備
            投影儀。
            一、引入新課
            五、新授
            課本第28頁(yè)圖1.4-1,一只蝸牛沿直線l爬行,它現(xiàn)在的位置恰在l上的點(diǎn)o.
            (1)如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
            (2)如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
            (3)如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
            (4)如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
            分析:以上4個(gè)問(wèn)題涉及2組相反意義的量:向右和向左爬行,3分鐘后與3分鐘前,為了區(qū)分方向,我們規(guī)定:向左為負(fù),向右為正;為區(qū)分時(shí)間,我們規(guī)定:現(xiàn)在前為負(fù),現(xiàn)在后為正,那么(1)中2cm記作+2cm,3分后記作+3分。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇四
            3、經(jīng)歷利用已有知識(shí)解決新問(wèn)題的探索過(guò)程。
            教學(xué)難點(diǎn):理解商的符號(hào)及其絕對(duì)值與被除數(shù)和除數(shù)的關(guān)系。
            (一)、學(xué)前準(zhǔn)備。
            1、師生活動(dòng)。
            1)、小明從家里到學(xué)校,每分鐘走50米,共走了20分鐘。
            問(wèn)小明家離學(xué)校有1000米,列出的算式為50×20=1000.
            2)放學(xué)時(shí),小明仍然以每分鐘50米的速度回家,應(yīng)該走20分鐘。
            列出的算式為1000=20。
            從上面這個(gè)例子你可以發(fā)現(xiàn),有理數(shù)除法與乘法之間的關(guān)系互為逆運(yùn)算。
            (二)、合作交流、探究新知。
            1、小組合作完成。
            再相互交流、并與小學(xué)里學(xué)習(xí)的乘除方法進(jìn)行類比與對(duì)比,歸納有理數(shù)的除法法則:
            1)、除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。
            2)、兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相加減,0除以任何一個(gè)不等于0的數(shù),都得0.
            2、運(yùn)用法則計(jì)算:
            (1)(-15)(-3);(2)(-12)(一);(3)(-8)(一)。
            3、師生共同完成p34例5.
            (三)練習(xí):p35。
            通過(guò)這節(jié)課的學(xué)習(xí),你的收獲是:
            1)、除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。
            2)、兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相加減,0除以任何一個(gè)不等于0的數(shù),都得0.
            五。作業(yè)布置。
            1、計(jì)算。
            (1)(+48)(+6);(2);
            (3)4(-2);(4)0(-1000)。
            2、計(jì)算。
            (1)(-1155)[(-11)(+3)(-5)];(2)375。
            1、p39第1、2、3、4題。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇五
            5、本節(jié)課通過(guò)行程問(wèn)題說(shuō)明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識(shí)來(lái)源于生活,并應(yīng)用于生活。
            本節(jié)的教學(xué)重點(diǎn)是能夠熟練進(jìn)行有理數(shù)的乘法運(yùn)算。依據(jù)有理數(shù)的乘法法則和運(yùn)算律靈活進(jìn)行有理數(shù)乘法運(yùn)算是進(jìn)一步學(xué)習(xí)除法運(yùn)算和乘方運(yùn)算的基礎(chǔ)。有理數(shù)的乘法運(yùn)算和加法運(yùn)算一樣,都包括符號(hào)判定與絕對(duì)值運(yùn)算兩個(gè)步驟。因數(shù)不包含0的乘法運(yùn)算中積的符號(hào)取決于因數(shù)中所含負(fù)號(hào)的個(gè)數(shù)。當(dāng)負(fù)號(hào)的個(gè)數(shù)為奇數(shù)時(shí),積的符號(hào)為負(fù)號(hào);當(dāng)負(fù)號(hào)的個(gè)數(shù)為偶數(shù)時(shí),積的符號(hào)為正數(shù)。積的絕對(duì)值是各個(gè)因數(shù)的絕對(duì)值的積。運(yùn)用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡(jiǎn)化運(yùn)算過(guò)程。
            本節(jié)的難點(diǎn)是對(duì)有理數(shù)的乘法法則的理解。有理數(shù)的乘法法則中的“同號(hào)得正,異號(hào)得負(fù)”只是針對(duì)兩個(gè)因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號(hào)和積的絕對(duì)值的方法。即兩個(gè)因數(shù)符號(hào)相同,積的符號(hào)是正號(hào);兩個(gè)因數(shù)符號(hào)不同,積的符號(hào)是負(fù)號(hào)。積的絕對(duì)值是這兩個(gè)因數(shù)的絕對(duì)值的積。
            a·b=b·a;
            (a·b)·c=a·(b·c);
            (a+b)·c=a·c+b·c。
            1、有理數(shù)乘法法則,實(shí)際上是一種規(guī)定。行程問(wèn)題是為了了解這種規(guī)定的合理性。
            2、兩數(shù)相乘時(shí),確定符號(hào)的依據(jù)是“同號(hào)得正,異號(hào)得負(fù)”,絕對(duì)值相乘也就是小學(xué)學(xué)過(guò)的算術(shù)乘法。
            3、基礎(chǔ)較差的同學(xué),要注意乘法求積的符號(hào)法則與加法求和的符號(hào)法則的區(qū)別。
            4、幾個(gè)數(shù)相乘,如果有一個(gè)因數(shù)為0,那么積就等于0。反之,如果積為0,那么,至少有一個(gè)因數(shù)為0。
            5、小學(xué)學(xué)過(guò)的乘法交換律、結(jié)合律、分配律對(duì)有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。
            6、如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇六
            能運(yùn)用有理數(shù)加法法則,正確進(jìn)行有理數(shù)加法運(yùn)算。
            經(jīng)歷探索有理數(shù)加法法則的過(guò)程,感受數(shù)學(xué)學(xué)習(xí)的方法。
            一、創(chuàng)設(shè)情境。
            小學(xué)里,我們學(xué)過(guò)加法和減法運(yùn)算,引進(jìn)負(fù)數(shù)后,怎樣進(jìn)行有理數(shù)的加法和減法運(yùn)算呢?
            1、試一試。
            你能把上面比賽的過(guò)程及結(jié)果用有理數(shù)的算式表示出來(lái)嗎?
            做一做:比賽中勝負(fù)難料,兩場(chǎng)比賽的結(jié)果還可能有哪些情況呢?動(dòng)動(dòng)手填表。
            你還能舉出一些應(yīng)用有理數(shù)加法的實(shí)際例子嗎?
            二、探究歸納。
            用數(shù)軸和算式可以將以上過(guò)程及結(jié)果分別表示為:
            算式:________________________。
            用數(shù)軸和算式可以將以上過(guò)程及結(jié)果分別表示為:
            算式:________________________。
            請(qǐng)用數(shù)軸和算式分別表示以上過(guò)程及結(jié)果:
            算式:________________________。
            仿照上面的做法,請(qǐng)?jiān)跀?shù)軸上呈現(xiàn)下面的算式所表示的筆尖運(yùn)動(dòng)的過(guò)程和結(jié)果。
            4、觀察、思考、討論、交流并得出有理數(shù)加法法則。
            (1)通過(guò)計(jì)算說(shuō)明小蟲(chóng)是否回到起點(diǎn)p。
            (2)如果小蟲(chóng)爬行的速度為0.5厘米/秒,那么小蟲(chóng)共爬行了多長(zhǎng)時(shí)間。
            1、高速公路養(yǎng)護(hù)小組,乘車(chē)沿東西向公路巡視維護(hù),如果約定向東為正,向西為負(fù),當(dāng)天的行駛記錄如下(單位:km)。
            +17,-9,+7,-15,-3,+11,-6,-8,+5,+16。
            (1)養(yǎng)護(hù)小組最后到達(dá)的地方在出發(fā)點(diǎn)的哪個(gè)方向?距出發(fā)點(diǎn)多遠(yuǎn)?
            (2)養(yǎng)護(hù)過(guò)程中,最遠(yuǎn)外離出發(fā)點(diǎn)有多遠(yuǎn)?
            (3)若汽車(chē)耗油量為0.09升/km,則這次養(yǎng)護(hù)共耗油多少升?
            初一數(shù)學(xué)有理數(shù)的乘法教案篇七
            3、通過(guò)探究、練習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
            2、學(xué)習(xí)難點(diǎn):運(yùn)算順序的確定與性質(zhì)符號(hào)的處理。
            (一)、學(xué)前準(zhǔn)備。
            1、計(jì)算。
            1)(0.0318)(1.4)。
            2)2+(8)×2。
            (二)、探究新知。
            1、由上面的問(wèn)題1,計(jì)算方便嗎?想過(guò)別的方法嗎?
            2、由上面的問(wèn)題2,你的計(jì)算方法是先算乘除法,再算加減法。
            3、結(jié)合問(wèn)題1,閱讀課本p36p37頁(yè)內(nèi)容(帶計(jì)算器的同學(xué)跟著操作、練習(xí))。
            4、結(jié)合問(wèn)題2,你先猜想,有理數(shù)的混合運(yùn)算順序應(yīng)該是先算乘除法,再算加減法。
            5、閱讀p36,并動(dòng)手做做。
            1、計(jì)算。
            1)、186(2)。
            2)11+(22)3(11)。
            3)(0.1)(100)。
            1、有理數(shù)的混合運(yùn)算順序應(yīng)該是先算乘除法,再算加減法。
            2、計(jì)算器的使用。
            p39第7題(4、5、7、8)、第8題。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇八
            1、知識(shí)與技能目標(biāo):經(jīng)歷有理數(shù)乘法法則探究的過(guò)程,學(xué)習(xí)兩個(gè)有理數(shù)相乘的法則。
            3、情感目標(biāo):通過(guò)小組合作,培養(yǎng)與他人合作的精神。
            教學(xué)難點(diǎn):如何觀察給定的乘法算式,從哪幾個(gè)角度概況算式的規(guī)律。
            2、出幾道小學(xué)里已經(jīng)做過(guò)的兩數(shù)相乘的題目,并計(jì)算。
            (一)創(chuàng)設(shè)情境,引入新知。
            問(wèn)題:根據(jù)課前準(zhǔn)備,小學(xué)我們計(jì)算的兩個(gè)數(shù)相乘都是正數(shù)乘正數(shù)或者正數(shù)乘零,現(xiàn)在我們知道有理數(shù)包括正數(shù)、負(fù)數(shù)和零三類,根據(jù)這種分類,你能說(shuō)出兩個(gè)有理數(shù)相乘會(huì)出現(xiàn)哪幾種情況?(根據(jù)學(xué)生回答板書(shū)各種類型)。
            預(yù)設(shè):學(xué)生可能會(huì)把正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘正數(shù)當(dāng)作一種情況,教師可引導(dǎo)為兩種。
            (二)觀察歸納,學(xué)習(xí)法則(設(shè)計(jì)說(shuō)明:法則的得出分兩部分)。
            第一部分分類探究(說(shuō)明:3組探究重點(diǎn)是探究1)。
            探究1(師生共同活動(dòng))。
            問(wèn)題1、觀察下面熟識(shí)的算式,你能發(fā)現(xiàn)什么規(guī)律?
            3×3=9。
            3×2=6。
            3×1=3。
            3×0=0。
            預(yù)設(shè):如果學(xué)生有困難,可以提示學(xué)生觀察兩個(gè)因數(shù)有什么變化規(guī)律,積有什么變化規(guī)律。
            這樣會(huì)得到規(guī)律:左邊因數(shù)都是3,右邊因數(shù)依次減1,而積依次減3。
            問(wèn)題2、根據(jù)這個(gè)規(guī)律,你能填寫(xiě)下面的結(jié)論嗎?
            3×(-1)=。
            3×(-2)=。
            3×(-3)=。
            問(wèn)題3這組數(shù)據(jù)的規(guī)律,對(duì)其他組類似規(guī)律的數(shù)據(jù)也成立嗎?自己根據(jù)這個(gè)規(guī)律構(gòu)造一組數(shù)試一試。
            歸納可得:(板書(shū))正數(shù)乘正數(shù),結(jié)果為正,絕對(duì)值相乘;正數(shù)乘負(fù)數(shù),結(jié)果為負(fù),絕對(duì)值相乘。
            階段性學(xué)習(xí)方法小結(jié):回想探究1的結(jié)論,我們是怎樣一步步得到的?
            (讓學(xué)生充分發(fā)表見(jiàn)解,教師適當(dāng)引導(dǎo),得出主要環(huán)節(jié):觀察-猜想-歸納)。
            (說(shuō)明:設(shè)計(jì)意圖有兩個(gè),一是初一學(xué)生學(xué)法意識(shí)的形成,二是為探究2,3的學(xué)習(xí)做好引導(dǎo))。
            探究2(小組討論)。
            根據(jù)剛才得到的規(guī)律,你能得出下面的結(jié)果嗎?能據(jù)此總結(jié)出規(guī)律嗎?
            3×3=9。
            2×3=6。
            1×3=3。
            0×3=0。
            (-1)×3=。
            (-2)×3=。
            (-3)×3=。
            (選一組代表上講臺(tái)分析,得出結(jié)論)。
            歸納小結(jié):(負(fù)數(shù)乘正數(shù),結(jié)果為負(fù),絕對(duì)值相乘)。
            探究3(同桌交流)、
            利用上面的規(guī)律填空,并說(shuō)出其中的規(guī)律。
            (-3)×3=。
            (-3)×2=。
            (-3)×1=。
            (-3)×0=。
            (-3)×(-1)=。
            (-3)×(-2)=。
            (-3)×(-3)=。
            由學(xué)生總結(jié)得出:負(fù)數(shù)乘負(fù)數(shù),結(jié)果為正,絕對(duì)值相乘。
            第二部分歸納總結(jié)。
            問(wèn)題1:總結(jié)上面所有的情況,你能試著說(shuō)出有理數(shù)乘法的法則嗎?
            兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),再把絕對(duì)值相乘。任何數(shù)與0相乘,都得0。
            問(wèn)題2:你認(rèn)為根據(jù)有理數(shù)乘法法則進(jìn)行有理數(shù)乘法運(yùn)算時(shí),應(yīng)按照怎樣的步驟進(jìn)行運(yùn)算?可類比加法的運(yùn)算方法。
            (說(shuō)明:向?qū)W生滲透分類討論及類比思想,再次形成學(xué)法體系)。
            (三)例題示范,學(xué)會(huì)應(yīng)用。
            說(shuō)說(shuō)這節(jié)課你有什么收獲?你還有什么問(wèn)題存在?
            初一數(shù)學(xué)有理數(shù)的乘法教案篇九
            2、使學(xué)生更多經(jīng)歷有關(guān)知識(shí)發(fā)生、規(guī)律發(fā)現(xiàn)過(guò)程。
            重點(diǎn):對(duì)乘法運(yùn)算法則的運(yùn)用,對(duì)積的確定。
            難點(diǎn):如何在該知識(shí)中注重知識(shí)體系的延續(xù)。
            一、知識(shí)導(dǎo)向:
            有理數(shù)的乘法是小學(xué)所學(xué)乘法運(yùn)算的延續(xù),也是在學(xué)習(xí)了有理數(shù)的加法法則與有理數(shù)的減法法則的基礎(chǔ)上所學(xué)習(xí)的,所以應(yīng)注意到各種法則間的必然聯(lián)系,在本節(jié)中應(yīng)注重學(xué)生學(xué)習(xí)的過(guò)程,多讓學(xué)生經(jīng)歷知識(shí)、規(guī)律發(fā)現(xiàn)的過(guò)程。在學(xué)習(xí)中應(yīng)掌握有理數(shù)的乘法法則。
            二、新課:
            1、知識(shí)基礎(chǔ):
            其一:小學(xué)所學(xué)過(guò)的乘法運(yùn)算方法;
            其二:有關(guān)在加法運(yùn)算中結(jié)果的確定方法與步驟。
            2、知識(shí)形成:
            (引例)一只小蟲(chóng)沿一條東西向的跑道,以每分鐘3米的速度爬行。
            列式:
            即:小蟲(chóng)位于原來(lái)出發(fā)位置的東方6米處。
            拓展:如果規(guī)定向東為正,向西為負(fù)。
            列式:
            即:小蟲(chóng)位于原來(lái)出發(fā)位置的西方6米處。
            概括:把一個(gè)因數(shù)換成它的相反數(shù),所得的積是原來(lái)的積的相反數(shù)。
            3、設(shè)疑:
            如果我們把中的一個(gè)因數(shù)2換成它的相。
            反數(shù)-2時(shí),所得的積又會(huì)有什么變化?
            當(dāng)然,當(dāng)其中的一個(gè)因數(shù)為0時(shí),所得的積還是等于0。
            兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘;
            任何數(shù)與零相乘,都得零。
            例:計(jì)算:
            (1)(2)。
            三、鞏固訓(xùn)練:
            p52.1、2、3。
            四、知識(shí)小結(jié):
            本節(jié)課從實(shí)際情形入手,對(duì)多種情形進(jìn)行分析,從一般中找到規(guī)律,從而得到有關(guān)有理數(shù)乘法的運(yùn)算法則。在運(yùn)算中應(yīng)強(qiáng)調(diào)注意如何正確得到積的結(jié)果。
            五、家庭作業(yè):
            p57.1、2、3。
            六、每日預(yù)題:
            2、在對(duì)有理數(shù)的簡(jiǎn)便運(yùn)算中,一般應(yīng)考慮到哪些可能的情況?
            初一數(shù)學(xué)有理數(shù)的乘法教案篇十
            (1)能確定多個(gè)因數(shù)相乘時(shí),積的符號(hào),并能用法則進(jìn)行多個(gè)因數(shù)的乘積運(yùn)算。
            經(jīng)歷探索幾個(gè)不為0的數(shù)相乘,積的符號(hào)問(wèn)題的過(guò)程,發(fā)展觀察、歸納驗(yàn)證等能力。
            培養(yǎng)學(xué)生主動(dòng)探索,積極思考的學(xué)習(xí)興趣。
            教學(xué)重、難點(diǎn)與關(guān)鍵。
            1.重點(diǎn):能用法則進(jìn)行多個(gè)因數(shù)的乘積運(yùn)算。
            2.難點(diǎn):積的符號(hào)的確定。
            3.關(guān)鍵:讓學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律。
            教具準(zhǔn)備。
            投影儀。
            2.計(jì)算:(1)│-5│(-2);(2)(-)(3)0(-99.9)。
            1.多個(gè)有理數(shù)相乘,可以把它們按順序依次相乘。
            例如:計(jì)算:1(-1)(-7)=-(-7)=-2(-7)=14;。
            又如:(+2)[(-78)]=(+2)(-26)=-52.
            我們知道計(jì)算有理數(shù)的乘法,關(guān)鍵是確定積的符號(hào)。
            觀察:下列各式的積是正的還是負(fù)的?
            (1)234(2)234(-4)。
            (3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。
            易得出:(1)、(3)式積為負(fù),(2)、(4)式積為正,積的符號(hào)與負(fù)因數(shù)的個(gè)數(shù)有關(guān)。
            教師問(wèn):幾個(gè)不是0的數(shù)相乘,積的符號(hào)與負(fù)因數(shù)的個(gè)數(shù)之間有什么關(guān)系?
            學(xué)生完成思考后,教師指出:幾個(gè)不是0的數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,與正因數(shù)的個(gè)數(shù)無(wú)關(guān),當(dāng)負(fù)因數(shù)的個(gè)數(shù)為負(fù)數(shù)時(shí),積為負(fù)數(shù);當(dāng)負(fù)因數(shù)的個(gè)數(shù)為偶數(shù)時(shí),積為正數(shù)。
            2.多個(gè)不是0的有理數(shù)相乘,先由負(fù)因數(shù)的個(gè)數(shù)確定積的符號(hào)再求各個(gè)絕對(duì)值的積。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇十一
            1.一個(gè)數(shù),如果不是正數(shù),必定就是負(fù)數(shù)。()。
            2.正整數(shù)和負(fù)整數(shù)統(tǒng)稱整數(shù)。()。
            3.絕對(duì)值最小的有理數(shù)是0()。
            4.-a是負(fù)數(shù)。()。
            5.若兩個(gè)數(shù)的絕對(duì)值相等,則這兩個(gè)數(shù)也相等.()。
            6.若兩個(gè)數(shù)相等,則這兩個(gè)數(shù)的絕對(duì)值也相等.()。
            7.一個(gè)數(shù)的相反數(shù)是本身,則這個(gè)數(shù)一定是0。()。
            8.一個(gè)數(shù)必小于它的絕對(duì)值。()。
            二、填空。
            1、如果盈利350元記作+350元,那么-80元表示__________________。
            2、如果+7℃表示零上7℃,則零下5℃表示為;。
            3、有理數(shù)中,最大的負(fù)整數(shù)是________,小于3的非負(fù)整數(shù)有____________________。
            4、把下列各數(shù)填在相應(yīng)的集合內(nèi),-23,0.5,-,28,0,4,,-5.2.
            整數(shù)集合{……}正數(shù)集合{……}。
            負(fù)分?jǐn)?shù)集合{……}。
            7,,-6,0,3.1415,-,-0.62,-11.
            6、數(shù)軸上離表示-2的點(diǎn)的距離等于3個(gè)單位長(zhǎng)度的點(diǎn)表示數(shù)是。
            7、大于-2而小于3的.整數(shù)分別是___________________、
            8、用“”連結(jié)下列各數(shù):0,-3.4,,-3,0.5_____________________________。
            9、-7的絕對(duì)值的相反數(shù)是________。-0.5的絕對(duì)值的相反數(shù)是________。
            10、-(-2)的相反數(shù)是________。
            11、-a的相反數(shù)是________.-a的相反數(shù)是-5,則a=。
            12、在數(shù)軸上a點(diǎn)表示-,b點(diǎn)表示,則離原點(diǎn)較近的點(diǎn)是___點(diǎn).
            13、在數(shù)軸上距離原點(diǎn)為2.5的點(diǎn)所對(duì)應(yīng)的數(shù)為_(kāi)____,它們互為_(kāi)____.
            14、若|-x|=,則x的值是_______.如果|x-3|=0,那么x=________.
            初一數(shù)學(xué)有理數(shù)的乘法教案篇十二
            求數(shù)的平方根和立方根的運(yùn)算是數(shù)學(xué)的基本運(yùn)算之一,在根式運(yùn)算、解方程及幾何圖形解法等問(wèn)題中經(jīng)常要用到。學(xué)習(xí)立方根的意義在于:(1)它有著廣泛應(yīng)用,因?yàn)榭臻g形體都是三維的,關(guān)于有關(guān)體積的計(jì)算經(jīng)常涉及開(kāi)立方。(2)立方根是奇次方根的特例,就像平方根是偶次方的特例一樣,立方根對(duì)進(jìn)一步研究奇次方根的性質(zhì)具有典型意義。
            教學(xué)目標(biāo):1、能說(shuō)出開(kāi)立方、立方根的定義,記住正數(shù)、零、負(fù)數(shù)的立方根的不同結(jié)論;能用符號(hào)表示a的立方根,并指出被開(kāi)方數(shù)、根指數(shù),會(huì)正確讀出符號(hào),知道開(kāi)立方與立方互為逆運(yùn)算。2、能依據(jù)立方根的定義求完全立方數(shù)的立方根。教學(xué)重點(diǎn)是:立方根相關(guān)概念的理解和求法。在教學(xué)中突出立方根與平方根的對(duì)比,弄清兩者的區(qū)別與聯(lián)系,這樣做既有利于鞏固平方根的概念,又便于加深對(duì)立方根的理解。
            在教學(xué)過(guò)程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位。本節(jié)是新課內(nèi)容的學(xué)習(xí)。教學(xué)過(guò)程中盡力引導(dǎo)學(xué)生成為知識(shí)的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問(wèn)題結(jié)合起來(lái),為學(xué)生創(chuàng)設(shè)情境。
            在課堂的引入上采用了一個(gè)求立方根的實(shí)際應(yīng)用問(wèn)題,已知體積,求正方體的棱長(zhǎng)。由實(shí)際應(yīng)用問(wèn)題是學(xué)生易于接受。再對(duì)已學(xué)過(guò)的相似運(yùn)算---平方根進(jìn)行復(fù)習(xí),為接下來(lái)與立方根進(jìn)行比較打下基礎(chǔ)。為培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,我為他們布置了問(wèn)題,讓他們帶著問(wèn)題看書(shū)。自己找出立方根的基本概念。關(guān)于立方根的個(gè)數(shù)的討論,是本節(jié)的一個(gè)難點(diǎn)??紤]到這個(gè)結(jié)論與平方根的相應(yīng)結(jié)論不同,采用了先啟發(fā)學(xué)生思考的辦法,用“想一想”提出有關(guān)正數(shù)、0、負(fù)數(shù)立方根個(gè)數(shù)的思考題,接著安排一個(gè)例題,求一些具體數(shù)的立方根,在學(xué)生經(jīng)過(guò)思考并有了一些感性認(rèn)識(shí)之后,自己總結(jié)出結(jié)論。其后,引導(dǎo)學(xué)生自己總結(jié)平方根與立方根的區(qū)別,強(qiáng)調(diào):用根號(hào)式子表示立方根時(shí),根指數(shù)不能省略;以及立方根的性??紤]到如果教學(xué)計(jì)劃提前完成,我在練習(xí)卷之外,還準(zhǔn)備了一些易混淆的命題讓學(xué)生判斷、區(qū)分,鞏固所學(xué)內(nèi)容。
            本節(jié)內(nèi)容設(shè)計(jì)了兩課時(shí)完成,在第二課時(shí)進(jìn)一步深入學(xué)習(xí)立方根在解方程,以及與平方根部分的綜合應(yīng)用。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇十三
            2,了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;。
            3,體驗(yàn)分類是數(shù)學(xué)上的常用處理問(wèn)題的方法。
            正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進(jìn)行分類。
            正確理解有理數(shù)的概念。
            設(shè)計(jì)理念。
            探索新知在前兩個(gè)學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過(guò)上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請(qǐng)同學(xué)們?cè)诓莞寮埳先我鈱?xiě)出3個(gè)數(shù)(同時(shí)請(qǐng)3個(gè)同學(xué)在黑板上寫(xiě)出).
            問(wèn)題1:觀察黑板上的9個(gè)數(shù),并給它們進(jìn)行分類.
            學(xué)生思考討論和交流分類的情況.
            學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時(shí),教師應(yīng)給予引導(dǎo)和鼓勵(lì).
            例如,
            對(duì)于數(shù)5,可這樣問(wèn):5和5.1有相同的類型嗎?5可以表示5個(gè)人,而5.1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個(gè)的數(shù),我們就稱它為“正整數(shù)”,而5.1不是整個(gè)的數(shù),稱為“正分?jǐn)?shù),,.??…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))。
            通過(guò)教師的引導(dǎo)、鼓勵(lì)和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過(guò)的5類不同的'數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù),’.
            按照書(shū)本的說(shuō)法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.
            看書(shū)了解有理數(shù)名稱的由來(lái).
            “統(tǒng)稱”是指“合起來(lái)總的名稱”的意思.
            學(xué)生自己嘗試分類時(shí),可能會(huì)很粗略,教師給予引導(dǎo)和鼓勵(lì),劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
            有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會(huì)。
            練一練1,任意寫(xiě)出三個(gè)有理數(shù),并說(shuō)出是什么類型的數(shù),與同伴進(jìn)行交流.
            2,教科書(shū)第10頁(yè)練習(xí).
            此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說(shuō)明.
            數(shù)集一般用圓圈或大括號(hào)表示,因?yàn)榧现械臄?shù)是無(wú)限的,而本題中只填了所給的幾個(gè)數(shù),所以應(yīng)該加上省略號(hào).
            思考:上面練習(xí)中的四個(gè)集合合并在一起就是全體有理數(shù)的集合嗎?
            也可以教師說(shuō)出一些數(shù),讓學(xué)生進(jìn)行判斷。
            集合的概念不必深入展開(kāi)。
            創(chuàng)新探究問(wèn)題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對(duì)嗎?為什么?
            教學(xué)時(shí),要讓學(xué)生總結(jié)已經(jīng)學(xué)過(guò)的數(shù),鼓勵(lì)學(xué)生概括,通過(guò)交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。
            有理數(shù)這個(gè)分類可視學(xué)生的程度確定是否有必要教學(xué)。
            課堂小結(jié)到現(xiàn)在為止我們學(xué)過(guò)的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進(jìn)行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。
            本課作業(yè)。
            1,必做題:教科書(shū)第18頁(yè)習(xí)題1.2第1題。
            2,教師自行準(zhǔn)備。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇十四
            2.內(nèi)容解析。
            有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運(yùn)算。有理數(shù)乘法既是有理數(shù)運(yùn)算的深入,又是進(jìn)一步學(xué)習(xí)有理數(shù)的除法、乘方的基礎(chǔ),對(duì)后續(xù)代數(shù)學(xué)習(xí)是至關(guān)重要的。
            與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運(yùn)算律保持不變”。本節(jié)課要在小學(xué)已掌握的乘法運(yùn)算的基礎(chǔ)上,通過(guò)合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘負(fù)數(shù)時(shí)仍然成立,那么運(yùn)算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學(xué)生體會(huì)乘法法則的合理性。與加法法則一樣,正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘負(fù)數(shù)的法則,也要從符號(hào)和絕對(duì)值來(lái)分析。由于絕對(duì)值相乘就是非負(fù)數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負(fù)數(shù)的兩數(shù)相乘之積的符號(hào),這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心。
            基于以上分析,可以確定本課的教學(xué)重點(diǎn)是兩個(gè)有理數(shù)相乘的符號(hào)法則。
            1.目標(biāo)。
            (1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計(jì)算兩個(gè)數(shù)的乘法。
            (2)能說(shuō)出有理數(shù)乘法的符號(hào)法則,能用例子說(shuō)明法則的合理性。
            2.目標(biāo)解析。
            達(dá)成目標(biāo)(2)的標(biāo)志是學(xué)生能通過(guò)具體例子說(shuō)明有理數(shù)乘法的符號(hào)法則的歸納過(guò)程。
            有理數(shù)的乘法與小學(xué)學(xué)習(xí)的乘法的區(qū)別在于負(fù)數(shù)參與了運(yùn)算。本課要以正數(shù)、0之間的運(yùn)算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學(xué)生從算式左右各數(shù)的符號(hào)和絕對(duì)值兩個(gè)角度觀察這些算式的共同特點(diǎn)并得出規(guī)律,再以問(wèn)題“要使這個(gè)規(guī)律在引入負(fù)數(shù)后仍然成立,那么應(yīng)有……”為引導(dǎo),讓學(xué)生思考在這樣的規(guī)律下,正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘正數(shù)、兩個(gè)負(fù)數(shù)相乘各應(yīng)有什么運(yùn)算結(jié)果,并從積的符號(hào)和絕對(duì)值兩個(gè)角度總結(jié)出規(guī)律,進(jìn)而給出有理數(shù)乘法法則,在這個(gè)過(guò)程中體會(huì)規(guī)定的合理性。上述過(guò)程中,學(xué)生對(duì)于為什么要討論這些問(wèn)題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會(huì)出現(xiàn)困難。為了解決這些困難,教師應(yīng)該在“如何觀察”上加強(qiáng)指導(dǎo),并明確提出“從符號(hào)和絕對(duì)值兩個(gè)角度看規(guī)律”的要求。
            本課的教學(xué)難點(diǎn)是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律。
            教師引導(dǎo)學(xué)生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘正數(shù)、負(fù)數(shù)乘負(fù)數(shù)。
            設(shè)計(jì)意圖:有理數(shù)分為正數(shù)、零、負(fù)數(shù),由此引出兩個(gè)有理數(shù)相乘的幾種情況,既復(fù)習(xí)有關(guān)知識(shí),為下面的教學(xué)做好準(zhǔn)備,又滲透了分類討論思想。
            問(wèn)題2下面從我們熟悉的乘法運(yùn)算開(kāi)始。觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
            3×3=9,
            3×2=6,
            3×1=3,
            3×0=0.
            追問(wèn)1:你認(rèn)為問(wèn)題要我們“觀察”什么?應(yīng)該從哪幾個(gè)角度去觀察、發(fā)現(xiàn)規(guī)律?
            如果學(xué)生仍然有困難,教師給予提示:
            (1)四個(gè)算式有什么共同點(diǎn)?——左邊都有一個(gè)乘數(shù)3.
            (2)其他兩個(gè)數(shù)有什么變化規(guī)律?——隨著后一個(gè)乘數(shù)逐次遞減1,積逐次遞減3.
            設(shè)計(jì)意圖:構(gòu)造這組有規(guī)律的算式,為通過(guò)合情推理,得到正數(shù)乘負(fù)數(shù)的法則做準(zhǔn)備。通過(guò)追問(wèn)、提示,使學(xué)生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”。
            教師:要使這個(gè)規(guī)律在引入負(fù)數(shù)后仍然成立,那么,3×(-1)=-3,這是因?yàn)楹笠怀藬?shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.
            追問(wèn)2:根據(jù)這個(gè)規(guī)律,下面的兩個(gè)積應(yīng)該是什么?
            3×(-2)=,
            3×(-3)=.
            練習(xí):請(qǐng)你模仿上面的過(guò)程,自己構(gòu)造出一組算式,并說(shuō)出它的變化規(guī)律。
            設(shè)計(jì)意圖:讓學(xué)生自主構(gòu)造算式,加深對(duì)運(yùn)算規(guī)律的理解。
            先讓學(xué)生觀察、敘述、補(bǔ)充,教師再總結(jié):都是正數(shù)乘負(fù)數(shù),積都為負(fù)數(shù),積的絕對(duì)值等于各乘數(shù)絕對(duì)值的積。
            設(shè)計(jì)意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時(shí)也為后面的學(xué)習(xí)奠定基礎(chǔ)。
            問(wèn)題3觀察下列算式,類比上述過(guò)程,你又能發(fā)現(xiàn)什么規(guī)律?
            3×3=9,
            2×3=6,
            1×3=3,
            0×3=0.
            鼓勵(lì)學(xué)生模仿正數(shù)乘負(fù)數(shù)的過(guò)程,自己獨(dú)立得出規(guī)律。
            設(shè)計(jì)意圖:為得到負(fù)數(shù)乘正數(shù)的結(jié)論做準(zhǔn)備;培養(yǎng)學(xué)生的模仿、概括的能力。
            追問(wèn)1:要使這個(gè)規(guī)律在引入負(fù)數(shù)后仍然成立,你認(rèn)為下面的空格應(yīng)各填什么數(shù)?
            (-1)×3=,
            (-2)×3=,
            (-3)×3=.
            練習(xí):請(qǐng)你模仿上面的過(guò)程,自己構(gòu)造出一組算式,并說(shuō)出它的變化規(guī)律。
            先讓學(xué)生觀察、敘述、補(bǔ)充,教師再總結(jié):都是負(fù)數(shù)乘正數(shù),積都為負(fù)數(shù),積的絕對(duì)值等于各乘數(shù)絕對(duì)值的積。
            追問(wèn)3:正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來(lái)嗎?
            設(shè)計(jì)意圖:讓學(xué)生模仿已有的討論過(guò)程,自己得出負(fù)數(shù)乘正數(shù)的結(jié)論,并進(jìn)一步概括出“異號(hào)兩數(shù)相乘,積的符號(hào)為負(fù),積的絕對(duì)值等于各乘數(shù)絕對(duì)值的積”。既使學(xué)生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力。
            問(wèn)題4利用上面歸納的結(jié)論計(jì)算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
            (-3)×3=,
            (-3)×2=,
            (-3)×1=,
            (-3)×0=.
            追問(wèn)1:按照上述規(guī)律填空,并說(shuō)說(shuō)其中有什么規(guī)律?
            (-3)×(-1)=,
            (-3)×(-2)=,
            (-3)×(-3)=.
            設(shè)計(jì)意圖:由學(xué)生自主探究得出負(fù)數(shù)乘負(fù)數(shù)的結(jié)論。因?yàn)橛星懊娣e累的豐富經(jīng)驗(yàn),學(xué)生能獨(dú)立完成。
            問(wèn)題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
            學(xué)生獨(dú)立思考后進(jìn)行課堂交流,師生共同完成,得出結(jié)論后再讓學(xué)生看教科書(shū)。
            學(xué)生獨(dú)立思考、回答。如果有困難,可先讓學(xué)生看課本第29頁(yè)有理數(shù)乘法法則后面的一段文字。
            設(shè)計(jì)意圖:讓學(xué)生嘗試歸納乘法法則,明確按法則計(jì)算的關(guān)鍵步驟。
            例1計(jì)算:
            學(xué)生獨(dú)立完成后,全班交流。
            教師說(shuō)明:在(3)中,我們得到了。
            =1.與以前學(xué)習(xí)過(guò)的倒數(shù)概念一樣,我們說(shuō)。
            與-2互為倒數(shù)。一般地,在有理數(shù)中仍然有:乘積是1的兩個(gè)數(shù)互為倒數(shù)。
            追問(wèn):在(2)中,8和-8互為相反數(shù)。由此,你能說(shuō)說(shuō)如何得到一個(gè)數(shù)的相反數(shù)嗎?
            設(shè)計(jì)意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因?yàn)檫@個(gè)概念很容易理解),同時(shí)說(shuō)明了求一個(gè)數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過(guò)來(lái)有-8=8×(―1)).
            設(shè)計(jì)意圖:利用有理數(shù)乘法解決實(shí)際問(wèn)題,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值。
            小結(jié)、布置作業(yè)。
            請(qǐng)同學(xué)們帶著下列問(wèn)題回顧本節(jié)課的內(nèi)容:
            (2)用有理數(shù)乘法法則進(jìn)行兩個(gè)有理數(shù)的乘法運(yùn)算的基本步驟是什么?
            (3)舉例說(shuō)明如何從正數(shù)、0的乘法運(yùn)算出發(fā),歸納出正數(shù)乘負(fù)數(shù)的法則。
            (4)你能舉例說(shuō)明符號(hào)法則“負(fù)負(fù)得正”的合理性嗎?
            設(shè)計(jì)意圖:引導(dǎo)學(xué)生從知識(shí)內(nèi)容和學(xué)習(xí)過(guò)程兩個(gè)方面進(jìn)行小結(jié)。
            作業(yè):教科書(shū)第30頁(yè),練習(xí)1,2,3;第37頁(yè),習(xí)題1.4第1題。
            五、目標(biāo)檢測(cè)設(shè)計(jì)。
            1.判斷下列運(yùn)算結(jié)果的符號(hào):
            (1)5×(-3);。
            (2)(-3)×3;。
            (3)(-2)×(-7);。
            (4)(+0.5)×(+0.7).
            設(shè)計(jì)意圖:檢測(cè)學(xué)生對(duì)有理數(shù)乘法的符號(hào)法則的理解。
            2計(jì)算:
            (1)6×(-9);。
            (2)(-6)×0.25;。
            (3)(-0.5)×(-8);。
            (4)0×(-6);。
            設(shè)計(jì)意圖:檢測(cè)學(xué)生對(duì)有理數(shù)乘法法則的理解情況。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇十五
            2,了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;。
            3,體驗(yàn)分類是數(shù)學(xué)上的常用處理問(wèn)題的方法。
            教學(xué)難點(diǎn)正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進(jìn)行分類。
            知識(shí)重點(diǎn)正確理解有理數(shù)的概念。
            教學(xué)過(guò)程(師生活動(dòng))設(shè)計(jì)理念。
            探索新知在前兩個(gè)學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過(guò)上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請(qǐng)同學(xué)們?cè)诓莞寮埳先我鈱?xiě)出3個(gè)數(shù)(同時(shí)請(qǐng)3個(gè)同學(xué)在黑板上寫(xiě)出).
            問(wèn)題1:觀察黑板上的9個(gè)數(shù),并給它們進(jìn)行分類.
            學(xué)生思考討論和交流分類的情況.
            學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時(shí),教師應(yīng)給予引導(dǎo)和鼓勵(lì).
            例如,
            對(duì)于數(shù)5,可這樣問(wèn):5和5.1有相同的類型嗎?5可以表示5個(gè)人,而5.1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個(gè)的數(shù),我們就稱它為“正整數(shù)”,而5.1不是整個(gè)的數(shù),稱為“正分?jǐn)?shù),,.…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))。
            通過(guò)教師的引導(dǎo)、鼓勵(lì)和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過(guò)的5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù),’.
            按照書(shū)本的說(shuō)法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.
            看書(shū)了解有理數(shù)名稱的由來(lái).
            “統(tǒng)稱”是指“合起來(lái)總的名稱”的意思.
            學(xué)生自己嘗試分類時(shí),可能會(huì)很粗略,教師給予引導(dǎo)和鼓勵(lì),劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
            有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會(huì)。
            練一練1,任意寫(xiě)出三個(gè)有理數(shù),并說(shuō)出是什么類型的數(shù),與同伴進(jìn)行交流.
            2,教科書(shū)第10頁(yè)練習(xí).
            此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說(shuō)明.
            數(shù)集一般用圓圈或大括號(hào)表示,因?yàn)榧现械臄?shù)是無(wú)限的,而本題中只填了所給的幾個(gè)數(shù),所以應(yīng)該加上省略號(hào).
            思考:上面練習(xí)中的四個(gè)集合合并在一起就是全體有理數(shù)的集合嗎?
            也可以教師說(shuō)出一些數(shù),讓學(xué)生進(jìn)行判斷。
            集合的概念不必深入展開(kāi)。
            創(chuàng)新探究問(wèn)題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對(duì)嗎?為什么?
            教學(xué)時(shí),要讓學(xué)生總結(jié)已經(jīng)學(xué)過(guò)的數(shù),鼓勵(lì)學(xué)生概括,通過(guò)交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。
            有理數(shù)這個(gè)分類可視學(xué)生的程度確定是否有必要教學(xué)。
            小結(jié)與作業(yè)。
            課堂小結(jié)到現(xiàn)在為止我們學(xué)過(guò)的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進(jìn)行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。
            本課作業(yè)1,必做題:教科書(shū)第18頁(yè)習(xí)題1.2第1題。
            2,教師自行準(zhǔn)備。
            本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)。
            1,本課在引人了負(fù)數(shù)后對(duì)所學(xué)過(guò)的數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概。
            念.分類是數(shù)學(xué)中解決問(wèn)題的常用手段,通過(guò)本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進(jìn)。
            行簡(jiǎn)單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標(biāo)準(zhǔn)與分。
            類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長(zhǎng)的過(guò)程,本課不要過(guò)多展開(kāi)。
            2,本課具有開(kāi)放性的特點(diǎn),給學(xué)生提供了較大的思維空間,能促進(jìn)學(xué)生積極主動(dòng)地參加學(xué)習(xí),親自體驗(yàn)知識(shí)的形成過(guò)程,可避免直接進(jìn)行分類所帶來(lái)的枯燥性;同時(shí)還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點(diǎn),對(duì)學(xué)生分類能力的養(yǎng)成有很好的作用。
            3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進(jìn)行。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇十六
            1、明白生活中存在著無(wú)數(shù)表示相反意義的量,能舉例說(shuō)明;。
            2、能體會(huì)引進(jìn)負(fù)數(shù)的必要性和意義,建立正數(shù)和負(fù)數(shù)的數(shù)感。
            通過(guò)列舉現(xiàn)實(shí)世界中的“相反意義的量”的例子來(lái)引進(jìn)正數(shù)和負(fù)數(shù),要求學(xué)生理解正數(shù)和負(fù)數(shù)的意義,為以后通過(guò)實(shí)例引進(jìn)有理數(shù)的大小比較、加法和乘法法則打基礎(chǔ)。
            對(duì)負(fù)數(shù)的意義的理解。
            一、知識(shí)導(dǎo)向:
            本節(jié)課是一個(gè)從小學(xué)過(guò)渡的知識(shí)點(diǎn),主要是要抓緊在數(shù)范圍上擴(kuò)充,對(duì)引進(jìn)“負(fù)數(shù)”這一概念的必要性及意義的理解。
            二、新課拆析:
            1、回顧小學(xué)中有關(guān)數(shù)的范圍及數(shù)的分類,指出小學(xué)中的“數(shù)”是為了滿足生產(chǎn)和生活的需要而產(chǎn)生發(fā)展起來(lái)的。
            如:0,1,2,3。
            2、能讓學(xué)生舉例出更多的有關(guān)生活中表示相反意義的量,能發(fā)現(xiàn)事物之間存在的'對(duì)立面。
            如:汽車(chē)向東行駛3千米和向西行駛2千米。
            溫度是零上10°c和零下5°c;。
            收入500元和支出237元;。
            水位升高1.2米和下降0.7米;。
            3、上面所列舉的表示相反意義量,我們也許就會(huì)發(fā)現(xiàn):如果只用原來(lái)所學(xué)過(guò)的數(shù)很難區(qū)分具有相反意義的量。
            一般地,對(duì)于具有相反意義的量,我們可把其中一種意義的量規(guī)定為正的,用過(guò)去學(xué)過(guò)的數(shù)表示;把與它意義相反的量規(guī)定為負(fù)的,用過(guò)去學(xué)過(guò)的數(shù)(零除外)前面放上一個(gè)“—”號(hào)來(lái)表示。
            概括:我們把這一種新數(shù),叫做負(fù)數(shù),如:-3,-45…。
            過(guò)去學(xué)過(guò)的那些數(shù)(零除外)叫做正數(shù),如:1,2.2…。
            零既不是正數(shù),也不是負(fù)數(shù) 。
            三、階梯訓(xùn)練: 。
            p18練習(xí):1,2,3,4。
            四、知識(shí)小結(jié):
            從本節(jié)課所學(xué)的內(nèi)容中,應(yīng)能從數(shù)的角度來(lái)區(qū)分小學(xué)與初中的異同點(diǎn),通過(guò)運(yùn)用發(fā)現(xiàn)相反意義量,能理解引進(jìn)“負(fù)數(shù)”的必要性及其意義。
            五、作業(yè)鞏固:
            1、每個(gè)同學(xué)分別舉出5個(gè)生活中表示相反意義量的的例子;并用正、負(fù)數(shù)來(lái)表示;。
            2、分別舉出幾個(gè)正數(shù)與負(fù)數(shù)(最少6個(gè))。
            3、p20習(xí)題2.1:1題。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇十七
            3、 體驗(yàn)分類是數(shù)學(xué)上的常用處理問(wèn)題的方法。
            正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進(jìn)行分類
            正確理解有理數(shù)的概念
            設(shè)計(jì)理念
            探索新知
            在前兩個(gè)學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過(guò)上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請(qǐng)同學(xué)們?cè)诓莞寮埳先我鈱?xiě)出3個(gè)數(shù)(同時(shí)請(qǐng)3個(gè)同學(xué)在黑板上寫(xiě)出).
            問(wèn)題1:觀察黑板上的9個(gè)數(shù),并給它們進(jìn)行分類.
            學(xué)生思考討論和交流分類的情況.
            學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時(shí),教師應(yīng)給予引導(dǎo)和鼓勵(lì).
            例如:
            對(duì)于數(shù)5,可這樣問(wèn):5和5. 1有相同的類型嗎?5可以表示5個(gè)人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個(gè)的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個(gè)的數(shù),稱為“正分?jǐn)?shù),,.??…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))
            通過(guò)教師的引導(dǎo)、鼓勵(lì)和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過(guò)的5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù).
            按照書(shū)本的說(shuō)法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.
            看書(shū)了解有理數(shù)名稱的由來(lái).
            “統(tǒng)稱”是指“合起來(lái)總的名稱”的意思.
            試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說(shuō)出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的嗎?(是按照整數(shù)和分?jǐn)?shù)來(lái)劃分的)
            分類是數(shù)學(xué)中解決問(wèn)題的常用手段,這個(gè)引入具有開(kāi)放的特點(diǎn),學(xué)生樂(lè)于參與
            學(xué)生自己嘗試分類時(shí),可能會(huì)很粗略,教師給予引導(dǎo)和鼓勵(lì),劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
            有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會(huì)
            練一練
            1、任意寫(xiě)出三個(gè)有理數(shù),并說(shuō)出是什么類型的數(shù),與同伴進(jìn)行交流.
            2、教科書(shū)第10頁(yè)練習(xí).
            此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說(shuō)明.
            數(shù)集一般用圓圈或大括號(hào)表示,因?yàn)榧现械臄?shù)是無(wú)限的,而本題中只填了所給的幾個(gè)數(shù),所以應(yīng)該加上省略號(hào).
            思考:上面練習(xí)中的四個(gè)集合合并在一起就是全體有理數(shù)的集合嗎?
            也可以教師說(shuō)出一些數(shù),讓學(xué)生進(jìn)行判斷。
            集合的概念不必深入展開(kāi)。
            創(chuàng)新探究
            問(wèn)題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對(duì)嗎?為什么?
            教學(xué)時(shí),要讓學(xué)生總結(jié)已經(jīng)學(xué)過(guò)的數(shù),鼓勵(lì)學(xué)生概括,通過(guò)交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。
            有理數(shù) 這個(gè)分類可視學(xué)生的程度確定是否有必要教學(xué)。
            小結(jié)與作業(yè)
            課堂小結(jié) 到現(xiàn)在為止我們學(xué)過(guò)的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的`標(biāo)準(zhǔn)進(jìn)行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。
            本課作業(yè)
            1、 必做題:教科書(shū)第18頁(yè)習(xí)題1.2第1題
            2、 教師自行準(zhǔn)備
            本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)
            1、本課在引人了負(fù)數(shù)后對(duì)所學(xué)過(guò)的數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概念.分類是數(shù)學(xué)中解決問(wèn)題的常用手段,通過(guò)本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進(jìn)行簡(jiǎn)單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長(zhǎng)的過(guò)程,本課不要過(guò)多展開(kāi)。
            2、本課具有開(kāi)放性的特點(diǎn),給學(xué)生提供了較大的思維空間,能促進(jìn)學(xué)生積極主動(dòng)地參加學(xué)習(xí),親自體驗(yàn)知識(shí)的形成過(guò)程,可避免直接進(jìn)行分類所帶來(lái)的枯燥性;同時(shí)還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點(diǎn),對(duì)學(xué)生分類能力的養(yǎng)成有很好的作用。
            3、兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進(jìn)行。
            初一數(shù)學(xué)有理數(shù)的乘法教案篇十八
            2、了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;。
            3、體驗(yàn)分類是數(shù)學(xué)上的常用處理問(wèn)題的方法。
            正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進(jìn)行分類。
            正確理解有理數(shù)的概念。
            設(shè)計(jì)理念。
            探索新知。
            在前兩個(gè)學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過(guò)上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請(qǐng)同學(xué)們?cè)诓莞寮埳先我鈱?xiě)出3個(gè)數(shù)(同時(shí)請(qǐng)3個(gè)同學(xué)在黑板上寫(xiě)出).
            問(wèn)題1:觀察黑板上的9個(gè)數(shù),并給它們進(jìn)行分類.
            學(xué)生思考討論和交流分類的情況.
            學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時(shí),教師應(yīng)給予引導(dǎo)和鼓勵(lì).
            例如:
            對(duì)于數(shù)5,可這樣問(wèn):5和5.1有相同的類型嗎?5可以表示5個(gè)人,而5.1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個(gè)的數(shù),我們就稱它為“正整數(shù)”,而5.1不是整個(gè)的數(shù),稱為“正分?jǐn)?shù),,.??…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))。
            通過(guò)教師的引導(dǎo)、鼓勵(lì)和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過(guò)的5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù).
            按照書(shū)本的說(shuō)法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.
            看書(shū)了解有理數(shù)名稱的由來(lái).
            “統(tǒng)稱”是指“合起來(lái)總的名稱”的意思.
            試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說(shuō)出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的嗎?(是按照整數(shù)和分?jǐn)?shù)來(lái)劃分的)。
            分類是數(shù)學(xué)中解決問(wèn)題的常用手段,這個(gè)引入具有開(kāi)放的特點(diǎn),學(xué)生樂(lè)于參與。
            學(xué)生自己嘗試分類時(shí),可能會(huì)很粗略,教師給予引導(dǎo)和鼓勵(lì),劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
            有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會(huì)。
            練一練。
            1、任意寫(xiě)出三個(gè)有理數(shù),并說(shuō)出是什么類型的數(shù),與同伴進(jìn)行交流.
            2、教科書(shū)第10頁(yè)練習(xí).
            此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說(shuō)明.
            數(shù)集一般用圓圈或大括號(hào)表示,因?yàn)榧现械臄?shù)是無(wú)限的,而本題中只填了所給的幾個(gè)數(shù),所以應(yīng)該加上省略號(hào).
            思考:上面練習(xí)中的四個(gè)集合合并在一起就是全體有理數(shù)的集合嗎?
            也可以教師說(shuō)出一些數(shù),讓學(xué)生進(jìn)行判斷。
            集合的概念不必深入展開(kāi)。
            創(chuàng)新探究。
            問(wèn)題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對(duì)嗎?為什么?
            教學(xué)時(shí),要讓學(xué)生總結(jié)已經(jīng)學(xué)過(guò)的數(shù),鼓勵(lì)學(xué)生概括,通過(guò)交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。
            有理數(shù)這個(gè)分類可視學(xué)生的程度確定是否有必要教學(xué)。
            小結(jié)與作業(yè)。
            課堂小結(jié)到現(xiàn)在為止我們學(xué)過(guò)的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進(jìn)行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。
            本課作業(yè)。
            1、必做題:教科書(shū)第18頁(yè)習(xí)題1.2第1題。
            2、教師自行準(zhǔn)備。
            本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)。
            1、本課在引人了負(fù)數(shù)后對(duì)所學(xué)過(guò)的數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概念.分類是數(shù)學(xué)中解決問(wèn)題的常用手段,通過(guò)本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進(jìn)行簡(jiǎn)單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長(zhǎng)的過(guò)程,本課不要過(guò)多展開(kāi)。
            2、本課具有開(kāi)放性的特點(diǎn),給學(xué)生提供了較大的思維空間,能促進(jìn)學(xué)生積極主動(dòng)地參加學(xué)習(xí),親自體驗(yàn)知識(shí)的形成過(guò)程,可避免直接進(jìn)行分類所帶來(lái)的枯燥性;同時(shí)還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點(diǎn),對(duì)學(xué)生分類能力的養(yǎng)成有很好的作用。
            3、兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進(jìn)行。