亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        2023年初三數(shù)學(xué)二次函數(shù)教案(通用16篇)

        字號(hào):

            教案是教學(xué)活動(dòng)設(shè)計(jì)的重要組成部分,它起到指導(dǎo)教師教學(xué)和學(xué)生學(xué)習(xí)的作用。教案中的教學(xué)步驟要詳細(xì)具體,確保教師能夠有條不紊地進(jìn)行教學(xué)活動(dòng)。以下是小編為大家整理的教案范例,僅供參考,希望能給大家提供一些啟示。大家可以參考其中的教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法等,進(jìn)行借鑒和思考,提高自己的教學(xué)水平。教案是教學(xué)中的重要依據(jù),希望大家能夠重視起來,不斷改進(jìn)和完善自己的教學(xué)設(shè)計(jì),提高教學(xué)質(zhì)量。
            初三數(shù)學(xué)二次函數(shù)教案篇一
            通過學(xué)生的討論,使學(xué)生更清楚以下事實(shí):
            (1)分解因式與整式的乘法是一種互逆關(guān)系;。
            (2)分解因式的結(jié)果要以積的形式表示;。
            (3)每個(gè)因式必須是整式,且每個(gè)因式的次數(shù)都必須低于原來的多項(xiàng)式的次數(shù);。
            (4)必須分解到每個(gè)多項(xiàng)式不能再分解為止。
            活動(dòng)5:應(yīng)用新知。
            例題學(xué)習(xí):
            p166例1、例2(略)。
            在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。
            讓學(xué)生進(jìn)一步理解提公因式法進(jìn)行因式分解。
            活動(dòng)6:課堂練習(xí)。
            1.p167練習(xí);。
            2.看誰連得準(zhǔn)。
            x2-y2(x+1)2。
            9-25x2y(x-y)。
            x2+2x+1(3-5x)(3+5x)。
            xy-y2(x+y)(x-y)。
            3.下列哪些變形是因式分解,為什么?
            (1)(a+3)(a-3)=a2-9。
            (2)a2-4=(a+2)(a-2)。
            (3)a2-b2+1=(a+b)(a-b)+1。
            (4)2πr+2πr=2π(r+r)。
            學(xué)生自主完成練習(xí)。
            通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。
            活動(dòng)7:課堂小結(jié)。
            從今天的課程中,你學(xué)到了哪些知識(shí)?掌握了哪些方法?明白了哪些道理?
            學(xué)生發(fā)言。
            通過學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對(duì)類比的數(shù)學(xué)思想的理解。
            活動(dòng)8:課后作業(yè)。
            課本p170習(xí)題的第1、4大題。
            學(xué)生自主完成。
            通過作業(yè)的鞏固對(duì)因式分解,特別是提公因式法理解并學(xué)會(huì)應(yīng)用。
            板書設(shè)計(jì)(需要一直留在黑板上主板書)。
            15.4.1提公因式法例題。
            1.因式分解的定義。
            2.提公因式法。
            初三數(shù)學(xué)二次函數(shù)教案篇二
            二次函數(shù)的最大值,最小值及增減性的理解和求法·。
            三、解答題。
            7·(1)請(qǐng)?jiān)谧鴺?biāo)系中畫出二次函數(shù)y=x2—2x的大致圖象;
            (3)觀察圖象,直接寫出方程x2—2x=1的根(精確到0·1)·。
            (1)當(dāng)t=3時(shí),求足球距離地面的高度;
            (2)當(dāng)足球距離地面的高度為10米時(shí),求t;
            初三數(shù)學(xué)二次函數(shù)教案篇三
            二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對(duì)題目的重組。
            三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有獨(dú)立思考、合作探究交流的過程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果.
            四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要.因此,我們?cè)谑谡n的過程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗(yàn)成功的快感.這樣他們才會(huì)更有興趣的學(xué)習(xí)下去.
            初三數(shù)學(xué)二次函數(shù)教案篇四
            在整個(gè)中學(xué)數(shù)學(xué)知識(shí)體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點(diǎn),也是線性數(shù)學(xué)知識(shí)的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
            一、重視每一堂復(fù)習(xí)課數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。
            四、要多了解學(xué)生。你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
            二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海。教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對(duì)題目的重組。
            三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有獨(dú)立思考、合作探究交流的過程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果。
            四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要。因此,我們?cè)谑谡n的過程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗(yàn)成功的快感。這樣他們才會(huì)更有興趣的學(xué)習(xí)下去。
            1、質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識(shí),必須鼓勵(lì)學(xué)生質(zhì)疑問難。教師要?jiǎng)?chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時(shí)“插嘴”、提問、爭(zhēng)辯,甚至提出與教師不同的看法。
            2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
            3、學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動(dòng)探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵(lì)和贊揚(yáng)?,F(xiàn)在對(duì)學(xué)生的隨時(shí)“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵(lì)的態(tài)度給與肯定,并做出正確的解釋。
            4、初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識(shí)分析和解決簡(jiǎn)單的實(shí)際問題。
            1、教學(xué)案例、教學(xué)設(shè)計(jì)、教學(xué)實(shí)錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計(jì))是事先設(shè)想的教育教學(xué)思路,是對(duì)準(zhǔn)備實(shí)施的教育措施的簡(jiǎn)要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對(duì)已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
            2、教學(xué)案例與教學(xué)實(shí)錄:它們同樣是對(duì)教育教學(xué)情境的描述,但教學(xué)實(shí)錄是有聞必錄(事實(shí)判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價(jià)值判斷)。
            4、教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識(shí)地選擇有關(guān)信息,必須事先進(jìn)行實(shí)地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
            初三數(shù)學(xué)二次函數(shù)教案篇五
            一、教材分析:
            《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書《數(shù)學(xué)》(冀教版)九年級(jí)上冊(cè)第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實(shí)際情境,創(chuàng)設(shè)三個(gè)問題,這三個(gè)問題對(duì)應(yīng)了一元二次方程有兩個(gè)不等實(shí)根、有兩個(gè)相等實(shí)根、沒有實(shí)根的三種情況。這樣,學(xué)生結(jié)合問題實(shí)際意義就能對(duì)二次函數(shù)與一元二次方程的關(guān)系有很好的體會(huì);從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識(shí)與實(shí)際問題的聯(lián)系。
            本節(jié)教學(xué)時(shí)間安排1課時(shí)。
            二、教學(xué)目標(biāo):
            知識(shí)技能:
            1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.
            2.理解拋物線交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.
            3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
            數(shù)學(xué)思考:
            1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
            2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn).
            3.通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
            解決問題:
            1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
            2.通過利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
            情感態(tài)度:
            1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會(huì)學(xué)習(xí)數(shù)學(xué)的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
            2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識(shí)。
            三、教學(xué)重點(diǎn)、難點(diǎn):
            教學(xué)重點(diǎn):
            1.體會(huì)方程與函數(shù)之間的聯(lián)系。
            2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
            教學(xué)難點(diǎn):
            1.探索方程與函數(shù)之間關(guān)系的過程。
            2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。
            四、教學(xué)方法:?jiǎn)l(fā)引導(dǎo)合作交流。
            五:教具、學(xué)具:課件。
            六、教學(xué)過程:
            [活動(dòng)1]檢查預(yù)習(xí)引出課題。
            預(yù)習(xí)作業(yè):
            1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
            2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
            師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。
            教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來,2題的格式要規(guī)范。
            設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識(shí)類比探究本課新知識(shí)。
            [活動(dòng)2]創(chuàng)設(shè)情境探究新知。
            問題。
            1.課本p94問題.
            3.結(jié)合預(yù)習(xí)題1,完成課本p94觀察中的題目。
            師生行為:教師提出問題1,給學(xué)生獨(dú)立思考的時(shí)間,教師可適當(dāng)引導(dǎo),對(duì)學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問題2學(xué)生獨(dú)立思考指名回答,注重?cái)?shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個(gè)問題的探究稍有難度,活動(dòng)中教師要深入到各個(gè)小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
            教師重點(diǎn)關(guān)注:
            1.學(xué)生能否把實(shí)際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;。
            2.學(xué)生在思考問題時(shí)能否注重?cái)?shù)形結(jié)合思想的應(yīng)用;。
            3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨(dú)立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。
            設(shè)計(jì)意圖:由現(xiàn)實(shí)中的實(shí)際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動(dòng)中去,體會(huì)二次函數(shù)與實(shí)際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗(yàn)。
            [活動(dòng)3]例題學(xué)習(xí)鞏固提高。
            問題。
            例利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1).
            師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨(dú)立完成,師生互相訂正。
            教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
            設(shè)計(jì)意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識(shí)中尋找到新知識(shí)的生長(zhǎng)點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。
            [活動(dòng)4]練習(xí)反饋鞏固新知。
            初三數(shù)學(xué)二次函數(shù)教案篇六
            (1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
            (2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣。
            重點(diǎn)難點(diǎn):
            能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
            一、試一試。
            ab長(zhǎng)x(m)123456789。
            bc長(zhǎng)(m)12。
            面積y(m2)48。
            2.x的值是否可以任意?。坑邢薅ǚ秶鷨??
            對(duì)于1.,可讓學(xué)生根據(jù)表中給出的ab的長(zhǎng),填出相應(yīng)的bc的長(zhǎng)和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:
            (1)從所填表格中,你能發(fā)現(xiàn)什么?
            (2)對(duì)前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達(dá)成共識(shí):當(dāng)ab的長(zhǎng)為5cm,bc的長(zhǎng)為10m時(shí),圍成的矩形面積最大;最大面積為50m2。
            初三數(shù)學(xué)二次函數(shù)教案篇七
            (8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
            【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。
            (四)鞏固練習(xí)。
            1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。
            (1)當(dāng)它的一條直角邊的長(zhǎng)為4.5cm時(shí),求這個(gè)直角三角形的面積;。
            (2)設(shè)這個(gè)直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
            于x的函數(shù)關(guān)系式。
            【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
            2.已知正方體的棱長(zhǎng)為xcm,它的表面積為scm2,體積為vcm3。
            (1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
            【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
            (1)分別寫出c關(guān)于r;v關(guān)于r的函數(shù)關(guān)系式;。
            【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長(zhǎng)公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來。
            4.籬笆墻長(zhǎng)30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長(zhǎng)x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
            【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動(dòng)腦筋,積極思考,讓學(xué)生能夠跳一跳,夠得到。
            (五)拓展延伸。
            1.已知二次函數(shù)y=ax2+bx+c,當(dāng)x=0時(shí),y=0;x=1時(shí),y=2;x=-1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式.
            【設(shè)計(jì)意圖】在此稍微滲透簡(jiǎn)單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個(gè)鋪墊。
            2.確定下列函數(shù)中k的值。
            【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的`特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.
            (六)小結(jié)思考:
            本節(jié)課你有哪些收獲?還有什么不清楚的地方?
            【設(shè)計(jì)意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。
            (七)作業(yè)布置:
            必做題:
            2.在長(zhǎng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。
            選做題:
            2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象。
            【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。
            以實(shí)現(xiàn)教學(xué)目標(biāo)為前提。
            以現(xiàn)代教育理論為依據(jù)。
            以現(xiàn)代信息技術(shù)為手段。
            貫穿一個(gè)原則以學(xué)生為主體的原則。
            突出一個(gè)特色充分鼓勵(lì)表揚(yáng)的特色。
            滲透一個(gè)意識(shí)應(yīng)用數(shù)學(xué)的意識(shí)。
            初三數(shù)學(xué)二次函數(shù)教案篇八
            摘要:水彩畫在中學(xué)美術(shù)教育中占據(jù)著重要的地位,它不僅可以提升中學(xué)生的造型能力、色彩能力,同時(shí)也可以強(qiáng)化他們的審美素養(yǎng)。這里,筆者將結(jié)合自己的教學(xué)經(jīng)驗(yàn),來談一談水彩畫技法教學(xué)的一點(diǎn)心得,以期大方之家給予批評(píng)指正。
            關(guān)鍵詞:中學(xué)美術(shù)課;水彩畫;技法教學(xué)。
            一、水彩畫技法指導(dǎo)。
            學(xué)生在畫水彩畫之前需要有這樣的理念:從整體著眼,從局部入手。在腦海中必須有畫面的整體構(gòu)思與布局,在這個(gè)大前提下,再將畫面有效地分成若干個(gè)小部分,逐一完成。具體過程下面將分條闡述。
            (一)畫面勾勒輪廓階段。
            第一步就是教師指導(dǎo)學(xué)生先勾勒出素描稿,整體與局部的分配情況需要合理、恰切。為了提升上色的準(zhǔn)確性、恰切性,整個(gè)過程需要運(yùn)用鉛筆來完成,并且在素描的過程中,需要有效地表現(xiàn)反光、高光、投影以及明暗交界線等。其中投影、暗部需要淡淡地用鉛筆進(jìn)行標(biāo)記。這個(gè)素描過程至關(guān)重要,成為關(guān)鍵的開端。
            (二)畫面著色階段。
            接下來就需要用刷子蘸上清水,在畫紙上刷一遍,讓水完全浸濕畫紙。吃水飽和的畫紙,在短時(shí)間內(nèi),就不會(huì)立刻干燥,在這種情況下,才有助于具體干濕畫法的實(shí)踐、運(yùn)用。
            水彩的透明特點(diǎn)需要被全面地觀照、審視,主要著色程序是由淺至深,特定物體的受光面需要先畫出來,緊接著再對(duì)其背光面進(jìn)行繪畫。只有這樣才能夠有效地表現(xiàn)水彩畫的明調(diào)與暗調(diào)。最后,將特定物體顏色最深的細(xì)部完成。可以說水彩的表現(xiàn)方法,通常來說,主要分為干畫法、濕畫法以及干濕并用法。在中學(xué)美術(shù)教學(xué)中,我們提倡采用干濕并用法,即有的地方使用干畫法,而有的地方則采用濕畫法。這種方法易于被中學(xué)生接受,并且表現(xiàn)力相對(duì)較強(qiáng)。再者,我們可以有效利用濕畫法來繪畫每一個(gè)客觀物象。
            最后就是畫面的整理、完善環(huán)節(jié)。局部獨(dú)立物象的逐一繪畫,這種羅列可能會(huì)導(dǎo)致整個(gè)畫面的融合程度不足,進(jìn)而容易產(chǎn)生層次方面的誤差感,給觀賞者一種拼湊的印象。鑒于此,教師必須指導(dǎo)學(xué)生進(jìn)行畫面的整體處理,旨在讓每一個(gè)局部都被統(tǒng)攝到整個(gè)畫面中去,成為一個(gè)部分分割的成分。例如前景特定物象應(yīng)該是實(shí)的,需要在這個(gè)物象的主要部位,將輪廓線凸顯。而后面的特定物象應(yīng)該是虛的。較之前者,后者需要淡化其色彩和形體方面的處理,只有這樣才能夠創(chuàng)設(shè)出層次分明、立體感較強(qiáng)的畫面效果。如果整個(gè)畫面色彩顯得有些亂,就應(yīng)該在基調(diào)的范圍內(nèi)進(jìn)行有效整理。如果整個(gè)畫面較為單調(diào)的話,就應(yīng)該將環(huán)境色恰當(dāng)?shù)厝谌肫渲?,進(jìn)而色彩的豐富感就可以被提升。
            二、重要注意事項(xiàng)強(qiáng)調(diào)。
            在學(xué)生對(duì)范畫的欣賞、感悟過程中,教師需要對(duì)每一張畫,它的具體畫法、運(yùn)用色彩等方面進(jìn)行全面而細(xì)致地解讀,這樣才能使得學(xué)生對(duì)水彩畫的特點(diǎn)、畫法有一個(gè)整體的了解和體認(rèn)。同時(shí),需要提醒學(xué)生:如果調(diào)色過多,就可能喪失水彩畫明快、透明的風(fēng)格特征。而且涂色需要爭(zhēng)取一次性完成,至多不可以超過三次,涂色越多,整個(gè)畫面就會(huì)變得更為臟亂。鑒于此,在涂色之前,教師必須講清楚調(diào)色與控制畫筆中水分的具體措施,并且讓學(xué)生全面把握繪畫所要使用的工具,只有充分熟悉工具的使用方法,才能談及具體涂色過程的開展。
            需要強(qiáng)化實(shí)踐教學(xué),即可以將學(xué)生帶到大自然中去繪畫。教師可以一邊繪畫,一邊講解,在此過程中,將特定物象的具體畫法,普遍存在的問題以及解決問題的辦法,一一告訴學(xué)生。教師的這種示范教學(xué),不僅可以給予學(xué)生直觀的感受,同時(shí)也讓學(xué)生了解了具體的繪畫方法,如何規(guī)避不該出現(xiàn)的失誤。另外,對(duì)于學(xué)生的作品不足之處,教師需要給予親自改正,這種教學(xué)方法會(huì)讓學(xué)生的繪畫技巧迅速提升的。
            另外,教師也可以將水彩畫的繪畫技巧編成一系列的口訣,這樣,學(xué)生記憶與掌握水彩畫相關(guān)技法將會(huì)變得事半而功倍。
            三、水彩畫技法教學(xué)示例。
            這里以水彩風(fēng)景寫生為示例對(duì)象。在寫生的起初,需要力求一次性完成天空的繪畫,當(dāng)整體基調(diào)確定之后,余下的景物色彩需要與之協(xié)調(diào)搭配。當(dāng)天空的繪畫尚未“風(fēng)干”之前,需要立刻將遠(yuǎn)山,抑或者是遠(yuǎn)樹勾畫出來。這樣就會(huì)使得它與天空疊加的部分自然融合,避免了分離之感的產(chǎn)生。這樣就契合了遠(yuǎn)虛近實(shí)的繪畫要求。
            畫每一個(gè)特定物象之時(shí),需要從左到右刷一遍清水,因?yàn)槭彝獾目諝馐潜容^干燥的,這樣的環(huán)境下,如果不刷水,濕畫法則難以為繼。倒映在水中的樹木和房屋需要在畫紙濕條件下,立刻涂色,進(jìn)而產(chǎn)生朦朦朧朧的倒影效果。待畫面干了之后,在使用干畫法,小心翼翼地在水面上畫出幾道波紋來,這樣房屋和樹木的倒影就顯得愈加真實(shí)生動(dòng)了。同時(shí),水岸上的物象,需要使用干畫法進(jìn)行繪畫,這樣就會(huì)使得這些物象更為實(shí)在、凸顯。進(jìn)而與水中倒影構(gòu)成鮮明的對(duì)比。
            畫面的主體部分需要著力進(jìn)行刻畫,進(jìn)而讓整個(gè)畫面具有凝聚力。在讓學(xué)生充分領(lǐng)悟水彩畫技法的同時(shí),還需要讓學(xué)生懂得藝術(shù)地處理畫面的空間。最后,也就是對(duì)整個(gè)畫面進(jìn)行整理,濕畫法的缺陷在于使得畫面顯得很“碎”,因此需要在畫面的色彩和層次方面進(jìn)行整體的調(diào)整,這樣,整個(gè)畫面就會(huì)變得和諧統(tǒng)一了。
            參考文獻(xiàn)。
            初三數(shù)學(xué)二次函數(shù)教案篇九
            根據(jù)我們學(xué)校人人皆知的船模特色項(xiàng)目設(shè)計(jì)了這樣一個(gè)情境:
            讓班級(jí)中的上科院小院士來簡(jiǎn)要介紹學(xué)校船模組的情況以及在繪制船模圖紙時(shí)也常用到拋物線的知識(shí)的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長(zhǎng)度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
            讓學(xué)生在練習(xí)中體會(huì)二次函數(shù)的圖象與性質(zhì)在解題中的作用。
            初三數(shù)學(xué)二次函數(shù)教案篇十
            1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對(duì)立統(tǒng)一的觀點(diǎn)。
            2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:
            (1)y=x2的圖象的圖象有什么特點(diǎn)。(答:具有對(duì)稱性。)。
            (2)如何判斷y=x2的圖象有上面所說的特點(diǎn)?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)。
            初三數(shù)學(xué)二次函數(shù)教案篇十一
            《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書《數(shù)學(xué)》(冀教版)九年級(jí)上冊(cè)第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實(shí)際情境,創(chuàng)設(shè)三個(gè)問題,這三個(gè)問題對(duì)應(yīng)了一元二次方程有兩個(gè)不等實(shí)根、有兩個(gè)相等實(shí)根、沒有實(shí)根的三種情況。這樣,學(xué)生結(jié)合問題實(shí)際意義就能對(duì)二次函數(shù)與一元二次方程的關(guān)系有很好的體會(huì);從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識(shí)與實(shí)際問題的聯(lián)系。
            本節(jié)教學(xué)時(shí)間安排1課時(shí)。
            1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.
            2.理解拋物線交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.
            3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
            1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
            2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn).
            3.通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
            1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
            2.通過利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
            1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會(huì)學(xué)習(xí)數(shù)學(xué)的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
            2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識(shí)。
            1.體會(huì)方程與函數(shù)之間的聯(lián)系。
            2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
            1.探索方程與函數(shù)之間關(guān)系的過程。
            2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。
            預(yù)習(xí)作業(yè):
            1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
            2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
            師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。
            教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來,2題的格式要規(guī)范。
            設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識(shí)類比探究本課新知識(shí)。
            問題。
            1.課本p94問題.
            3.結(jié)合預(yù)習(xí)題1,完成課本p94觀察中的題目。
            師生行為:教師提出問題1,給學(xué)生獨(dú)立思考的時(shí)間,教師可適當(dāng)引導(dǎo),對(duì)學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問題2學(xué)生獨(dú)立思考指名回答,注重?cái)?shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個(gè)問題的探究稍有難度,活動(dòng)中教師要深入到各個(gè)小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
            1.學(xué)生能否把實(shí)際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;。
            2.學(xué)生在思考問題時(shí)能否注重?cái)?shù)形結(jié)合思想的應(yīng)用;。
            3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨(dú)立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。
            設(shè)計(jì)意圖:由現(xiàn)實(shí)中的實(shí)際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動(dòng)中去,體會(huì)二次函數(shù)與實(shí)際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗(yàn)。
            [活動(dòng)3]例題學(xué)習(xí)鞏固提高。
            問題。
            例利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1).
            師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨(dú)立完成,師生互相訂正。
            教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
            設(shè)計(jì)意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識(shí)中尋找到新知識(shí)的生長(zhǎng)點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。
            [活動(dòng)4]練習(xí)反饋鞏固新知。
            初三數(shù)學(xué)二次函數(shù)教案篇十二
            在函數(shù)教學(xué)中,我們不僅要在教會(huì)函數(shù)知識(shí)上下功夫,而且還應(yīng)該追求解決問題的“常規(guī)方法”——基本函數(shù)知識(shí)中所蘊(yùn)含的思想方法,要從數(shù)學(xué)思想方法的高度進(jìn)行函數(shù)教學(xué)。在函數(shù)的教學(xué)中,應(yīng)突出“類比”的思想和“數(shù)形結(jié)合”的思想。
            2.注重“數(shù)學(xué)結(jié)合”的教學(xué)。
            數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過數(shù)與形之間的對(duì)應(yīng)和轉(zhuǎn)化來解決數(shù)學(xué)問題。它包含以形助數(shù)和以數(shù)解形兩個(gè)方面,利用它可使復(fù)雜問題簡(jiǎn)單化,抽象問題具體化,它兼有數(shù)的嚴(yán)謹(jǐn)與形的直觀之長(zhǎng)。
            (1)讓學(xué)生經(jīng)歷繪制函數(shù)圖象的具體過程。
            (2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡(jiǎn)單畫法。
            (3)注意讓學(xué)生體會(huì)研究具體函數(shù)圖象規(guī)律的方法。
            目標(biāo)。
            1、理解直線y=kx+b與y=kx之間的位置關(guān)系;。
            2、會(huì)選擇兩個(gè)合適的點(diǎn)畫出一次函數(shù)的圖象;
            3、掌握一次函數(shù)的性質(zhì).
            過程與方法目標(biāo)。
            2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗(yàn)數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
            2、在探究一次函數(shù)的圖象和性質(zhì)的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識(shí)和探究精神。
            一次函數(shù)的圖象和性質(zhì)。
            由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對(duì)性質(zhì)的理解。
            初三數(shù)學(xué)二次函數(shù)教案篇十三
            1、教材的地位和作用。
            這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。
            2、教學(xué)目標(biāo)和要求:
            (1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的.概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。
            (2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
            (3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.
            4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。
            1、從創(chuàng)設(shè)情境入手,通過知識(shí)再現(xiàn),孕伏教學(xué)過程。
            2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢(shì)教學(xué)過程。
            3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
            (一)復(fù)習(xí)提問。
            1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
            (一次函數(shù),正比例函數(shù),反比例函數(shù))。
            2.它們的形式是怎樣的?
            (y=kx+b,ky=kx,ky=,k0)。
            【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
            函數(shù)是研究?jī)蓚€(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)。
            例1、(1)圓的半徑是r(cm)時(shí),面積與半徑之間的關(guān)系是什么?
            解:s=0)。
            解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
            解:y=100(1+x)2。
            =100(x2+2x+1)。
            =100x2+200x+100(0。
            教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
            【設(shè)計(jì)意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系:(1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
            (三)講解新課。
            以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
            二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
            1、強(qiáng)調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
            2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r0)。
            3、為什么二次函數(shù)定義中要求a?
            (若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)。
            4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
            5、b和c是否可以為零?
            由例1可知,b和c均可為零.
            若b=0,則y=ax2+c;。
            若c=0,則y=ax2+bx;。
            若b=c=0,則y=ax2.
            注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
            【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
            判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
            初三數(shù)學(xué)二次函數(shù)教案篇十四
            1、教材所處的地位:
            2、教學(xué)目的要求:
            (2)讓學(xué)生學(xué)習(xí)了二次函數(shù)的定義后,能夠表示簡(jiǎn)單變量之間的二次函數(shù)關(guān)系;
            (3)知道實(shí)際問題中存在的二次函數(shù)關(guān)系中,多自變量的取值范圍的要求。
            (4)把數(shù)學(xué)問題和實(shí)際問題相聯(lián)系,使學(xué)生初步體會(huì)數(shù)學(xué)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用。
            3、教學(xué)重點(diǎn)和難點(diǎn)。
            本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn):
            重點(diǎn):
            (2)能夠表示簡(jiǎn)單變量之間的二次函數(shù)關(guān)系.。
            難點(diǎn):
            具體的分析、確定實(shí)際問題中函數(shù)關(guān)系式。
            下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?BR>    1、教法研究。
            教學(xué)中教師應(yīng)當(dāng)暴露概念的再創(chuàng)造過程,鼓勵(lì)學(xué)生不但要?jiǎng)涌?、?dòng)腦,而且要?jiǎng)邮?,學(xué)生經(jīng)過自己親身的實(shí)踐活動(dòng),形成自己的經(jīng)驗(yàn)、猜想,產(chǎn)生對(duì)結(jié)論的感知,這不僅讓學(xué)生對(duì)所學(xué)內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動(dòng)學(xué)生學(xué)習(xí)的熱情,讓學(xué)生學(xué)會(huì)主動(dòng)學(xué)習(xí),學(xué)會(huì)研究問題的方法,培養(yǎng)學(xué)生的能力。本節(jié)課的設(shè)計(jì)堅(jiān)持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動(dòng)性。教學(xué)過程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗(yàn)知識(shí)的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時(shí),注意加強(qiáng)對(duì)學(xué)生的啟發(fā)和引導(dǎo),鼓勵(lì)培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。
            2、學(xué)法研究。
            初中學(xué)生的思維方式往往還是比較具象的,要讓他們?cè)趩栴}的探究過程中充分體驗(yàn)問題的發(fā)現(xiàn)、解決及最終表述的方式方法,遇到困難可以和同伴、老師進(jìn)行交流甚至爭(zhēng)論,這樣既可以加深學(xué)生對(duì)問題的理解又可以讓學(xué)生體驗(yàn)獲得學(xué)習(xí)的快樂。
            3、教學(xué)方式。
            (1)由于本節(jié)課的內(nèi)容是學(xué)生在學(xué)習(xí)了《一次函數(shù)》和《正比例函數(shù)》的基礎(chǔ)上的加深,所以可以利用學(xué)生已有的知識(shí)在問題一、二中放手讓學(xué)生先去探究探究?jī)蓚€(gè)問題中的變量之間的關(guān)系,在得到具體的關(guān)系式后,再引導(dǎo)學(xué)生觀察關(guān)系式都有著什么樣的特點(diǎn),可以和多項(xiàng)式中的二次三項(xiàng)式或一元二次方程比較認(rèn)識(shí),并最終得出二次函數(shù)的一般式及二次項(xiàng)系數(shù)的取值為什么不為零的道理。
            (2)要特別提醒學(xué)生注意:二次函數(shù)是解決實(shí)際生活生產(chǎn)的一個(gè)很有效的模板,因而對(duì)二次函數(shù)解析式中自變量的取值范圍一定要從理論上和實(shí)際中加以綜合討論和認(rèn)定。
            (3)可以多讓學(xué)生解決實(shí)際生活中的一些具有二次函數(shù)關(guān)系的實(shí)例來加深和提高學(xué)生對(duì)這一關(guān)系模型的理解。
            這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。
            1、溫故知新—揭示課題。
            由回顧所學(xué)過的正比例函數(shù),一次函數(shù)入手,引入函數(shù)大家庭中還會(huì)認(rèn)識(shí)那一種函數(shù)呢?再由例子打籃球投籃時(shí)籃球運(yùn)動(dòng)的軌跡如何?何時(shí)達(dá)到最高點(diǎn)?引入二次函數(shù)。
            2、自我嘗試、合作探究—探求新知。
            通過學(xué)生自己獨(dú)立解決運(yùn)用函數(shù)知識(shí)表述變量間關(guān)系,即自我探討環(huán)節(jié);合作探究環(huán)節(jié),學(xué)生間互動(dòng),集群體力量,共破難關(guān),來自主探究新知,從而通過觀察,歸納得到二次函數(shù)的解析式,獲取新知。
            3、小試身手—循序漸進(jìn)。
            本組題目是對(duì)新學(xué)的直接應(yīng)用,目的在于使學(xué)生能辨認(rèn)二次函數(shù),準(zhǔn)確指出a、b、c,并應(yīng)用其定義求字母系數(shù)的值,能應(yīng)用二次函數(shù)準(zhǔn)確表示具體問題中的變量間關(guān)系。本組題目的解決以學(xué)生快速解答為主,重點(diǎn)對(duì)第2題分析解決方法。這一環(huán)節(jié)主要由學(xué)生處理解決,以檢查學(xué)生的掌握程度。
            4、課堂回眸—?dú)w納提高。
            本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開,既有知識(shí)的總結(jié),又有方法的提煉,這樣對(duì)于學(xué)生學(xué)知識(shí),用知識(shí)是有很大的促進(jìn)的。方法以學(xué)生暢談收獲為主。
            5、課堂檢測(cè)—測(cè)評(píng)反饋。
            共有6個(gè)題目,由學(xué)生獨(dú)自處理第1、2、3、4、5小題,再發(fā)表自己的看法,第6小題可由學(xué)生或獨(dú)自或同組交流均可。教師多以巡視為主,注意掌握學(xué)生對(duì)本節(jié)的掌握情況。
            6、作業(yè)布置。
            作業(yè)我選擇“同步作業(yè)”里的題目,其中基礎(chǔ)訓(xùn)練為必做題,全員均做;綜合應(yīng)用為選做題,可供學(xué)有余力的學(xué)生能力提升用。
            通過引入實(shí)例,豐富學(xué)生認(rèn)識(shí),理解新知識(shí)的意義,進(jìn)而擺脫其原型,從而進(jìn)行更深層次的研究,這種“數(shù)學(xué)化”的方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好思維品質(zhì)的形成有重要作用,對(duì)于學(xué)生的終身發(fā)展也有一定的作用。
            初三數(shù)學(xué)二次函數(shù)教案篇十五
            讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
            :各種隱含條件的挖掘。
            :引導(dǎo)發(fā)現(xiàn)法。
            (一)診斷補(bǔ)償,情景引入:
            (先讓學(xué)生復(fù)習(xí),然后提問,并做進(jìn)一步診斷)。
            (二)問題導(dǎo)航,探究釋疑:
            (三)精講提煉,揭示本質(zhì):
            分析如圖,以ab的垂直平分線為y軸,以過點(diǎn)o的y軸的垂線為x軸,建立了直角坐標(biāo)系。這時(shí),涵洞所在的拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時(shí)只需拋物線上的一個(gè)點(diǎn)就能求出拋物線的函數(shù)關(guān)系式。
            解由題意,得點(diǎn)b的坐標(biāo)為(0。8,-2。4),
            又因?yàn)辄c(diǎn)b在拋物線上,將它的坐標(biāo)代入,得所以因此,函數(shù)關(guān)系式是。
            例2、根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式。
            (1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)a(0,-1)、b(1,0)、c(-1,2);
            (2)已知拋物線的頂點(diǎn)為(1,-3),且與y軸交于點(diǎn)(0,1);
            (3)已知拋物線與x軸交于點(diǎn)m(-3,0)(5,0)且與y軸交于點(diǎn)(0,-3);
            (4)已知拋物線的頂點(diǎn)為(3,-2),且與x軸兩交點(diǎn)間的距離為4。
            分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個(gè)已知點(diǎn),可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(3)根據(jù)拋物線與x軸的兩個(gè)交點(diǎn)的坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(4)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo)(3,-2),可設(shè)函數(shù)關(guān)系式為,同時(shí)可知拋物線的對(duì)稱軸為x=3,再由與x軸兩交點(diǎn)間的距離為4,可得拋物線與x軸的兩個(gè)交點(diǎn)為(1,0)和(5,0),任選一個(gè)代入,即可求出a的值。
            解這個(gè)方程組,得a=2,b=-1。
            (2)因?yàn)閽佄锞€的頂點(diǎn)為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(diǎn)(0,1),可以得到解得。
            (3)因?yàn)閽佄锞€與x軸交于點(diǎn)m(-3,0)、(5,0),
            所以設(shè)二此函數(shù)的關(guān)系式為。
            又由于拋物線與y軸交于點(diǎn)(0,3),可以得到解得。
            (4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請(qǐng)同學(xué)們自己完成。
            (四)題組訓(xùn)練,拓展遷移:
            1、根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式。
            (1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,2)、(1,1)、(3,5);
            (2)已知拋物線的頂點(diǎn)為(-1,2),且過點(diǎn)(2,1);
            (3)已知拋物線與x軸交于點(diǎn)m(-1,0)、(2,0),且經(jīng)過點(diǎn)(1,2)。
            2、二次函數(shù)圖象的對(duì)稱軸是x=-1,與y軸交點(diǎn)的縱坐標(biāo)是–6,且經(jīng)過點(diǎn)(2,10),求此二次函數(shù)的關(guān)系式。
            (五)交流評(píng)價(jià),深化知識(shí):
            確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時(shí),可根據(jù)題目中的條件靈活選擇,以簡(jiǎn)單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點(diǎn)坐標(biāo)可利用此式來求。
            (2)頂點(diǎn)式:,給出兩點(diǎn),且其中一點(diǎn)為頂點(diǎn)時(shí)可利用此式來求。
            (3)交點(diǎn)式:,給出三點(diǎn),其中兩點(diǎn)為與x軸的兩個(gè)交點(diǎn)、時(shí)可利用此式來求。
            本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點(diǎn)a(-1,12)、b(2,-3),
            (2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸。
            初三數(shù)學(xué)二次函數(shù)教案篇十六
            教學(xué)目標(biāo):
            知識(shí)與技能。
            1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。
            2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。
            3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問題。
            過程與方法。
            1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
            2、經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
            情感與價(jià)值觀。
            1、經(jīng)歷函數(shù)概念的抽象概括過程,體會(huì)函數(shù)的模型思想。
            2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。
            教學(xué)重點(diǎn):
            1、掌握函數(shù)概念。
            2、判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。
            3、能把實(shí)際問題抽象概括為函數(shù)問題。
            教學(xué)難點(diǎn):
            1、理解函數(shù)的概念。
            2、能把實(shí)際問題抽象概括為函數(shù)問題。
            教學(xué)過程設(shè)計(jì):
            一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。
            『師』:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?