亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        函數(shù)的概念說課稿(精選17篇)

        字號:

            新聞是一種通過報道事實和觀點來傳遞信息和引起公眾關(guān)注的媒體形式。寫總結(jié)時要盡量客觀公正,對自己的優(yōu)點和缺點都要有清醒的認識。以下是總結(jié)撰寫的一些技巧和要點,供您參考和借鑒。
            函數(shù)的概念說課稿篇一
            教學(xué)目標:
            1、進一步理解的概念,能從簡單的實際事例中,抽象出關(guān)系,列出解析式;
            2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
            3、會求值,并體會自變量與值間的對應(yīng)關(guān)系.
            4、使學(xué)生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的的自變量的取值范圍的求法.
            5、通過的教學(xué)使學(xué)生體會到事物是相互聯(lián)系的.是有規(guī)律地運動變化著的.
            教學(xué)重點:了解的意義,會求自變量的取值范圍及求值.
            教學(xué)難點:概念的抽象性.
            教學(xué)過程:
            (一)引入新課:
            上一節(jié)課我們講了的概念:一般地,設(shè)在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的.
            生活中有很多實例反映了關(guān)系,你能舉出一個,并指出式中的自變量與嗎?
            1、學(xué)校計劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個)的關(guān)系.
            2、為迎接新年,班委會計劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個)與單價(a)元的關(guān)系.
            解:1、y=30n。
            y是,n是自變量。
            2、,n是,a是自變量.
            (二)講授新課。
            剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時,要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
            例1、求下列中自變量x的取值范圍.。
            (1)(2)。
            (3)(4)。
            (5)(6)。
            分析:在(1)、(2)中,x取任意實數(shù),與都有意義.
            (3)小題的是一個分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
            同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
            同理,第(6)小題也是二次根式,是被開方數(shù),。
            解:(1)全體實數(shù)。
            (2)全體實數(shù)。
            (3)。
            (4)且。
            (5)。
            (6)。
            小結(jié):從上面的例題中可以看出的解析式是整數(shù)時,自變量可取全體實數(shù);的解析式是分式時,自變量的取值應(yīng)使分母不為零;的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)大于、等于零.
            注意:有些同學(xué)沒有真正理解解析式是分式時,自變量的取值應(yīng)使分母不為零,片面地認為,凡是分母,只要即可.教師可將解題步驟設(shè)計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.
            但象第(4)小題,有些同學(xué)會犯這樣的錯誤,將答案寫成或.在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里與是并且的關(guān)系.即2與-1這兩個值x都不能取.
            函數(shù)的概念說課稿篇二
            我們前面學(xué)習(xí)了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)。
            1、6、(板書)。
            這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
            由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。
            問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。
            由學(xué)生回答:x。
            在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
            1、定義:形如x的函數(shù)稱為。(板書)。
            教師在給出定義之后再對定義作幾點說明。
            2、幾點說明x(板書)。
            (1)x關(guān)于對x的規(guī)定:
            教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
            若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
            (2)關(guān)于的定義域x(板書)。
            教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當(dāng)指數(shù)為無理數(shù)時,x也是一個確定的實數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的"性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以的定義域為x。擴充的另一個原因是因為使她它更具代表更有應(yīng)用價值。
            (3)關(guān)于是否是的判斷(板書)。
            剛才分別認識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
            (4)x,x。
            (5)x。
            學(xué)生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
            最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細致歸納性質(zhì)。
            3、歸納性質(zhì)。
            作圖的用什么方法。用列表描點發(fā)現(xiàn),教師準備明確性質(zhì),再由學(xué)生回答。
            函數(shù)。
            1、定義域x:
            2、值域:
            3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)。
            4、截距:在x軸上沒有,在x軸上為1。
            對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)。
            在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點了。取點時還要提醒學(xué)生由于不具備對稱性,故x的值應(yīng)有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少。
            此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學(xué)生自己列表描點,至少六組數(shù)據(jù)。連點成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
            二、圖象與性質(zhì)(板書)。
            1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點法。
            2、草圖:
            當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取x為例。
            此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對稱,而此時x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到x的圖象。
            最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認為無需再畫,則追問其原因并要求其說出性質(zhì),若認為還需畫,則教師可利用計算機再畫出如x的圖象一起比較,再找共性)。
            由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
            以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
            填好后,讓學(xué)生仿照此例再列一個x的表,將相應(yīng)的內(nèi)容填好。為進一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。
            3、性質(zhì)。
            (1)無論x為何值,x都有定義域為x,值域為x,都過點x。
            (2)x時,x在定義域內(nèi)為增函數(shù),x時,x為減函數(shù)。
            (3)x時,x,xx時,x。
            總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
            三、簡單應(yīng)用x(板書)。
            1、利用單調(diào)性比大小。x(板書)。
            一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
            例1、x比較下列各組數(shù)的大小。
            (1)x與x;x(2)x與x;。
            (3)x與1x。(板書)。
            首先讓學(xué)生觀察兩個數(shù)的特點,有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
            解:x在x上是增函數(shù),且x。(板書)。
            教師最后再強調(diào)過程必須寫清三句話:
            (1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
            (2)x自變量的大小比較。
            (3)x函數(shù)值的大小比較。
            后兩個題的過程略。要求學(xué)生仿照第(1)題敘述過程。
            例2。比較下列各組數(shù)的大小。
            (1)x與x;x(2)x與x;。
            (3)x與x。(板書)。
            先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。
            最后由學(xué)生說出x1,1。
            解決后由教師小結(jié)比較大小的方法。
            (1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。
            (2)x搭橋比較法:x用特殊的數(shù)1或0。
            四、鞏固練習(xí)。
            練習(xí):比較下列各組數(shù)的大?。ò鍟?BR>    (1)x與xx(2)x與x;。
            (3)x與x;x(4)x與x。解答過程略。
            五、小結(jié)。
            2、的圖象和性質(zhì)。
            3、簡單應(yīng)用。
            六、板書設(shè)計。
            函數(shù)的概念說課稿篇三
            一、說課內(nèi)容:
            九年級數(shù)學(xué)下冊第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題(華東師范大學(xué)出版社)。
            二、教材分析:
            1、教材的地位和作用。
            這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的'基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
            2、教學(xué)目標和要求:
            (1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
            (2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
            (3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.
            3、教學(xué)重點:對二次函數(shù)概念的理解。
            4、教學(xué)難點:抽象出實際問題中的二次函數(shù)關(guān)系。
            三、教法學(xué)法設(shè)計:
            1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程。
            2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程。
            3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
            四、教學(xué)過程:
            (一)復(fù)習(xí)提問。
            1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
            (一次函數(shù),正比例函數(shù),反比例函數(shù))。
            2.它們的形式是怎樣的?
            (y=kx+b,ky=kx,ky=,k0)。
            【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.
            (二)引入新課。
            函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關(guān)系。
            例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關(guān)系是什么?
            解:s=0)。
            解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
            解:y=100(1+x)2。
            =100(x2+2x+1)。
            =100x2+200x+100(0。
            教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
            (三)講解新課。
            以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
            二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
            1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
            2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
            3、為什么二次函數(shù)定義中要求a?
            (若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)。
            4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
            5、b和c是否可以為零?
            由例1可知,b和c均可為零.
            若b=0,則y=ax2+c;。
            若c=0,則y=ax2+bx;。
            若b=c=0,則y=ax2.
            注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
            判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
            (1)y=3(x-1)2+1(2)s=3-2t2。
            (3)y=(x+3)2-x2(4)s=10r2。
            (5)y=22+2x(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
            (四)鞏固練習(xí)。
            1.已知一個直角三角形的兩條直角邊長的和是10cm。
            (1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
            (2)設(shè)這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
            于x的函數(shù)關(guān)系式。
            【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
            2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
            (1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
            (2)這兩個函數(shù)中,那個是x的二次函數(shù)?
            【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
            五、評價分析。
            本節(jié)的一個知識點就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,增加對二次函數(shù)的感性認識,側(cè)重點通過兩個實際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵。
            函數(shù)的概念說課稿篇四
            函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學(xué)生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
            二、教學(xué)目標。
            理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
            通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
            通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
            三、重難點分析確定。
            一、教學(xué)基本思路及過程。
            本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
            二、學(xué)情分析。
            一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
            函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力等參差不齊等。
            三、教法、學(xué)法。
            1、本節(jié)課采用的方法有:
            直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
            2、采用這些方法的理論依據(jù):
            我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
            函數(shù)的概念說課稿篇五
            教學(xué)目標:
            1、進一步理解的概念,能從簡單的實際事例中,抽象出關(guān)系,列出解析式;
            2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
            3、會求值,并體會自變量與值間的對應(yīng)關(guān)系.
            4、使學(xué)生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的的自變量的取值范圍的求法.
            5、通過的教學(xué)使學(xué)生體會到事物是相互聯(lián)系的.是有規(guī)律地運動變化著的.
            教學(xué)重點:了解的意義,會求自變量的取值范圍及求值.
            教學(xué)難點:概念的抽象性.
            教學(xué)過程:
            (一)引入新課:
            上一節(jié)課我們講了的概念:一般地,設(shè)在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的.
            生活中有很多實例反映了關(guān)系,你能舉出一個,并指出式中的自變量與嗎?
            1、學(xué)校計劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個)的關(guān)系.
            2、為迎接新年,班委會計劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個)與單價(a)元的關(guān)系.
            解:1、y=30n。
            y是,n是自變量。
            2、,n是,a是自變量.
            (二)講授新課。
            剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時,要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
            例1、求下列中自變量x的取值范圍.。
            (1)(2)。
            (3)(4)。
            (5)(6)。
            分析:在(1)、(2)中,x取任意實數(shù),與都有意義.
            (3)小題的是一個分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
            同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
            同理,第(6)小題也是二次根式,是被開方數(shù),。
            解:(1)全體實數(shù)。
            (2)全體實數(shù)。
            (3)。
            (4)且。
            (5)。
            (6)。
            小結(jié):從上面的例題中可以看出的解析式是整數(shù)時,自變量可取全體實數(shù);的解析式是分式時,自變量的取值應(yīng)使分母不為零;的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)大于、等于零.
            注意:有些同學(xué)沒有真正理解解析式是分式時,自變量的取值應(yīng)使分母不為零,片面地認為,凡是分母,只要即可.教師可將解題步驟設(shè)計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.
            但象第(4)小題,有些同學(xué)會犯這樣的錯誤,將答案寫成或.在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里與是并且的關(guān)系.即2與-1這兩個值x都不能取.
            將本文的word文檔下載到電腦,方便收藏和打印。
            函數(shù)的概念說課稿篇六
            教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學(xué)生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
            二、教學(xué)目標。
            理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
            通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
            通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
            三、重難點分析確定。
            一、教學(xué)基本思路及過程。
            本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
            二、學(xué)情分析。
            一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
            函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力等參差不齊等。
            三、教法、學(xué)法。
            1、本節(jié)課采用的方法有:
            直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
            2、采用這些方法的理論依據(jù):
            我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
            函數(shù)的概念說課稿篇七
            理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.
            理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.
            終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.
            一、問題.
            1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?
            2、在平面直角坐標系內(nèi)角分為哪幾類?與終邊相同的角怎么表示?
            3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數(shù)有什么樣的關(guān)系?
            4、弧度制下圓的弧長公式和扇形的面積公式是什么?
            5、任意角的三角函數(shù)的定義是什么?在各象限的符號怎么確定?
            6、你能在單位圓中畫出正弦、余弦和正切線嗎?
            7、同角三角函數(shù)有哪些基本關(guān)系式?
            二、練習(xí).
            1.給出下列命題:
            (1)小于的角是銳角;
            (2)若是第一象限的角,則必為第一象限的角;
            (3)第三象限的角必大于第二象限的角;
            (4)第二象限的角是鈍角;
            (5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
            (6)角2與角的終邊不可能相同;
            2.設(shè)p點是角終邊上一點,且滿足則的值是。
            4.若則角的終邊在象限。
            5.在直角坐標系中,若角與角的終邊互為反向延長線,則角與角之間的關(guān)系是。
            6.若是第三象限的角,則-,的終邊落在何處?
            例1.如圖,分別是角的終邊.
            (1)求終邊落在陰影部分(含邊界)的所有角的集合;
            (2)求終邊落在陰影部分、且在上所有角的集合;
            (3)求始邊在om位置,終邊在on位置的所有角的集合.
            例2.
            (1)已知角的終邊在直線上,求的值;
            (2)已知角的終邊上有一點a,求的值。
            例3.若,則在第象限.
            1、若銳角的終邊上一點的坐標為,則角的弧度數(shù)為.
            2、若,又是第二,第三象限角,則的取值范圍是.
            3、一個半徑為的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是弧度或角度,該扇形的面積是.
            4、已知點p在第三象限,則角終邊在第象限.
            5、設(shè)角的終邊過點p,則的值為.
            6、已知角的終邊上一點p且,求和的值.
            1、經(jīng)過3小時35分鐘,分針轉(zhuǎn)過的角的弧度是.時針轉(zhuǎn)過的角的弧度數(shù)是.
            2、若點p在第一象限,則在內(nèi)的取值范圍是.
            3、若點p從(1,0)出發(fā),沿單位圓逆時針方向運動弧長到達q點,則q點坐標為.
            4、如果為小于360的正角,且角的7倍數(shù)的角的終邊與這個角的終邊重合,求角的值.
            函數(shù)的概念說課稿篇八
            堂真正成為學(xué)生展示自我的舞臺。充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。但在復(fù)習(xí)與練習(xí)的過程中,我發(fā)現(xiàn)學(xué)生存在著這樣幾個問題。
            1、某些記憶性的知識沒記住。
            3、學(xué)生的識圖能力、讀題能力與分析問題、解決問題的能力較弱。
            4、解題過程寫得不全面,丟三落四的現(xiàn)象嚴重。
            1、根據(jù)實際情況,對于中考升學(xué)有希望的學(xué)生利用課余時間做好他們的思想工作。并對他們進行面對面的單獨輔導(dǎo),增強他們的自信心,以此來提高他們的數(shù)學(xué)成績。
            2、結(jié)合自己的學(xué)習(xí)經(jīng)驗對他們進行學(xué)法指導(dǎo)和解題技巧的指導(dǎo)。
            3、根據(jù)不同的學(xué)生情況,搜集典型題讓他們單獨做,并給予及時的輔導(dǎo)與矯正。
            4、與其它任課教師聯(lián)手一起想對策,指導(dǎo)學(xué)生讀題的方法與分析問題,解決問題的方法。
            5、無論是做練習(xí)還是考試之前,都告訴學(xué)生要認真仔細的讀題,從圖形中獲取信息。
            函數(shù)的概念說課稿篇九
            函數(shù)是高中數(shù)學(xué)的重要研究問題,貫穿整個高中數(shù)學(xué)的學(xué)習(xí)。然而同學(xué)們對初中的函數(shù)概念的理解根深蒂固。要使他們接受從集合角度所定義的函數(shù)概念很難。本身這個概念很抽象,敘述起來很冗長,同學(xué)們讀了一遍又一遍始終不解其意,我便采用啟發(fā)式教學(xué),就像學(xué)習(xí)語文一樣,讓大家總結(jié)函數(shù)的本質(zhì)為:“函數(shù)是一種對應(yīng)關(guān)系”再啟發(fā)得到:“函數(shù)是兩個非空數(shù)集之間的對應(yīng)關(guān)系”,又得到“函數(shù)是兩個非空數(shù)集之間滿足一對一或多對一的對應(yīng)關(guān)系”,再加上細節(jié)性的定語。大多數(shù)同學(xué)頓時覺得茅塞頓開,明白清楚。我又加之幾個實例判斷是否為函數(shù)并分解其理由,同學(xué)們更加清楚明了。
            通過這個概念的學(xué)習(xí),我從中得到啟示:要使學(xué)生數(shù)學(xué)思維生動活潑對抽象概念的學(xué)習(xí)不能照本宣科,必須對知識重組,揭示概念的`本質(zhì),使學(xué)生樂于學(xué)習(xí)它,并運用它。
            這是我這節(jié)課后的一點小反思,也算是以后授課的一點小啟示。
            函數(shù)的概念說課稿篇十
            作為一個計算機科學(xué)專業(yè)的學(xué)生,學(xué)習(xí)函數(shù)的概念在日常學(xué)習(xí)中頻繁出現(xiàn)。函數(shù)是計算機科學(xué)中的基本概念之一,它可以說代表了程序的核心和基礎(chǔ)。在學(xué)習(xí)和使用函數(shù)的過程中,我有幸深入了解了函數(shù)的概念,與之相關(guān)的特點以及它在編程中的應(yīng)用等方面。通過這次學(xué)習(xí),我對函數(shù)有了更深刻的理解并體會到了它的重要性。下面將通過以下五個方面來分享我對函數(shù)的概念的心得體會。
            函數(shù)是計算機科學(xué)中的一個重要概念,它是一段代碼的封裝,可以接受輸入?yún)?shù)并返回一個結(jié)果。在編程中,我們可以將函數(shù)看做是一個工廠,按照我們需求將輸入轉(zhuǎn)化成期望的輸出。通過函數(shù)的抽象,我們可以將復(fù)雜的問題分解成更小的部分,使得代碼更容易被理解和組織。使用函數(shù)還可以提高代碼的復(fù)用性和可維護性,我們可以多次調(diào)用同一個函數(shù)而不需要重復(fù)寫同樣的代碼。因此,掌握函數(shù)的基本概念對于編程能力的提升和編寫高效代碼來說是至關(guān)重要的。
            第二段:函數(shù)的特點。
            函數(shù)有三個主要的特點,分別是輸入?yún)?shù)、返回值和可組合性。輸入?yún)?shù)是指函數(shù)接受的輸入,它們可以是任意類型的數(shù)據(jù),同時也可以沒有輸入?yún)?shù)。函數(shù)根據(jù)輸入?yún)?shù)的不同,可以返回不同的結(jié)果。返回值是函數(shù)處理完輸入?yún)?shù)之后得到的結(jié)果,我們可以使用這個結(jié)果進行下一步的操作。而可組合性則是指函數(shù)之間可以相互組合,通過一個函數(shù)的輸出作為另一個函數(shù)的輸入來實現(xiàn)更復(fù)雜的功能。函數(shù)的特點使得我們可以通過合理的組織和使用函數(shù)來編寫出更加高效和靈活的代碼。
            第三段:函數(shù)在編程中的應(yīng)用。
            函數(shù)在編程中有著廣泛的應(yīng)用。首先,函數(shù)可以用于封裝重復(fù)的代碼。在編程中,我們經(jīng)常會遇到同樣的代碼需要多次使用的情況,如果每次都重復(fù)寫這些代碼,不僅效率低下,而且還增加了代碼的冗余性。通過使用函數(shù),我們可以將這些重復(fù)的代碼封裝起來,提高代碼的復(fù)用性,并且使得代碼更易于理解和維護。其次,函數(shù)可以用于實現(xiàn)特定的功能。例如,計算一個數(shù)的平方、求兩個數(shù)之和等,這些功能都可以通過編寫相應(yīng)的函數(shù)來實現(xiàn),并且可以多次調(diào)用。最后,函數(shù)還可以用于編寫更為復(fù)雜的程序。通過將一個程序分解成多個函數(shù),每個函數(shù)負責(zé)一個特定的功能,我們可以更好地組織和管理程序。函數(shù)的應(yīng)用豐富多樣,在編程中起到了至關(guān)重要的作用。
            第四段:函數(shù)對編程能力提升的作用。
            掌握函數(shù)的概念和使用方法,對于編程能力的提升有著顯著的作用。首先,函數(shù)可以提高編程效率。通過合理地封裝和使用函數(shù),可以減少代碼的冗余性,提高代碼的復(fù)用率,從而減少編寫代碼的時間和精力。其次,函數(shù)使得代碼更易于理解和維護。通過將程序分解成多個函數(shù),每個函數(shù)負責(zé)一個特定的功能,我們可以更好地理解和維護程序,降低開發(fā)和維護的難度。最后,函數(shù)還可以提高程序的組織性和可擴展性。通過函數(shù)的抽象特性,我們可以將復(fù)雜的問題分解成多個小的部分,每個部分負責(zé)特定的功能。這樣既提高了代碼的組織性,又便于后期的擴展。
            在學(xué)習(xí)函數(shù)的過程中,我體會到了函數(shù)在編程中的重要性和靈活性。學(xué)習(xí)函數(shù)不僅是學(xué)習(xí)計算機科學(xué)的基礎(chǔ),更是掌握編程能力的關(guān)鍵。通過函數(shù)的學(xué)習(xí),我不僅進一步理解了編程語言的結(jié)構(gòu)和邏輯,還對如何利用函數(shù)來提高編程效率和代碼的可維護性有了更深刻的認識。在未來的學(xué)習(xí)和實踐中,我會進一步加深對函數(shù)的理解,并在編程中充分發(fā)揮函數(shù)的作用,提高自己的編程能力。
            通過對函數(shù)的概念、特點以及在編程中的應(yīng)用等方面的學(xué)習(xí),我對函數(shù)有了更深刻的理解并體會到了它的重要性。函數(shù)是編程的基礎(chǔ)和核心,掌握函數(shù)的概念和使用方法對于編程能力的提升至關(guān)重要。通過函數(shù),我們可以更好地組織和管理代碼,提高編程效率和代碼的可維護性,并且使得代碼更易于理解和擴展。函數(shù)的學(xué)習(xí)心得將引導(dǎo)我在未來的學(xué)習(xí)和實踐中更好地利用函數(shù)來提高編程能力,創(chuàng)造更加高效和優(yōu)雅的代碼。
            函數(shù)的概念說課稿篇十一
            函數(shù)是高中數(shù)學(xué)中一個非常重要的內(nèi)容之一,它貫穿整個高中階段的數(shù)學(xué)學(xué)習(xí),乃到一生的數(shù)學(xué)學(xué)習(xí)過程。其重要性主要體現(xiàn)在:
            1、函數(shù)本身源于在現(xiàn)實生活,例如自然科學(xué)乃至于社會科學(xué)中,具有廣泛的應(yīng)用。
            2、函數(shù)本身是數(shù)學(xué)的重要內(nèi)容,是溝通代數(shù)、幾何、三角等內(nèi)容的橋梁。亦是今后進一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)和方法。
            3、函數(shù)部分內(nèi)容蘊涵大量的重要數(shù)學(xué)方法,如函數(shù)的思索,方程的思想,分類討論的思想,數(shù)形結(jié)合的思想,化歸的思想,換元法,侍定系數(shù)法、配方法等。這些思想方法是進一步學(xué)習(xí)數(shù)學(xué)和解決數(shù)學(xué)問題的基礎(chǔ),是我們教學(xué)過程中應(yīng)注意重點講解學(xué)生重點掌握的部分。
            然而函數(shù)這部份知識在教學(xué)中又是一大難點這主要是因為概念的抽象性,學(xué)生理解起來相當(dāng)不容易,接受起來就更難這又是由于函數(shù)這部份知識的主要思想特點體現(xiàn)于一個“變”字。即研究的主要是“變量”與“變量”之間的關(guān)系,要求用變量的眼光,運動變化的關(guān)點去看侍和接觸相關(guān)問題,這與初中學(xué)習(xí)知識的以靜態(tài)觀點為中習(xí)的思維特點有較大差異,所以函數(shù)成了高一新生進入高中首先到的一條攔路虎,有些學(xué)生高中畢業(yè)了,對函數(shù)這個概念也沒有理解透澈。
            實際上,在學(xué)習(xí)函數(shù)這部份知識中,函數(shù)概念是最重要的,也就是最難的地方,突破了它后面的學(xué)習(xí)就容易了?,F(xiàn)行的數(shù)學(xué)教材,其主要內(nèi)容表現(xiàn)的都是數(shù)學(xué)知識的技術(shù)形式。函數(shù)的概念亦是如此,不管是傳統(tǒng)定義也好,還是近代定義也好,表現(xiàn)出來的都是抽象數(shù)學(xué)形式,在數(shù)學(xué)的教學(xué)中,學(xué)習(xí)形式化的表達是一項基本要求,但是不能只限于形式表達,要強調(diào)對數(shù)學(xué)本質(zhì)的認識,否則會將生動活潑的數(shù)學(xué)思維活動淹沒在形式化的海洋里。對數(shù)學(xué)知識的教學(xué)要返璞歸真,努力揭示數(shù)學(xué)概念、法則,結(jié)論發(fā)展過程和本質(zhì)。對越是抽象的數(shù)學(xué)概念,越是如此。所以函數(shù)概念的教學(xué)更忌照本宣科,要注意對知識進行重組。努力去提示函數(shù)概念的本質(zhì),使學(xué)生真正理解它,覺得它有用,而樂于學(xué)習(xí)它。
            函數(shù)的概念說課稿篇十二
            1、x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
            2、x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
            3、x通過對的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
            函數(shù)的概念說課稿篇十三
            函數(shù)是研究現(xiàn)實世界變化規(guī)律的一個重要模型,對函數(shù)的學(xué)習(xí)一直以來都是中學(xué)階段的一個重要的內(nèi)容。函數(shù)的概念是學(xué)習(xí)后續(xù)“函數(shù)知識”的最重要的基礎(chǔ)內(nèi)容,而函數(shù)的概念又是一個比較抽象的,對它的理解一直是一個教學(xué)難點,學(xué)生對這些問題的探索以及研究思路都是比較陌生的,因此,在教學(xué)過程中,注意通過對以前學(xué)過的“變量之間的關(guān)系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣;并通過層層深入的問題設(shè)計,引導(dǎo)學(xué)生進行觀察、操作、交流、歸納等數(shù)學(xué)活動,在活動中歸納、概括出函數(shù)的概念;并通過師生交流、生生交流、辨析識別等加深學(xué)生對函數(shù)概念的理解。
            函數(shù)是初中階段數(shù)學(xué)學(xué)習(xí)的一個重要內(nèi)容,學(xué)生又是第一次接觸函數(shù),充分考慮學(xué)生的接受能力,從生動有趣的問題情景出發(fā),通過對一般規(guī)律的探索過程,從實際問題中抽象出一次函數(shù)和正比例函數(shù)的概念.又通過具有豐富的現(xiàn)實背景的例題,進一步理解一次函數(shù)和正比例函數(shù)的概念,為下一步學(xué)習(xí)《一次函數(shù)圖像》奠定基礎(chǔ),并形成用函數(shù)觀點認識現(xiàn)實世界的能力與意識.
            函數(shù)的概念說課稿篇十四
            學(xué)習(xí)培訓(xùn)提供的視頻,結(jié)合本節(jié)課的上課經(jīng)歷,我反思如下:
            備課要多研究課本,研究課本的題目設(shè)置,備課前還要翻看海南省五年來高考題,以做到和編書者出題者步調(diào)一致。比如新課改后課本多是舉例引入或得出概念、公式、定理,淡化邏輯證明,而高考更多是考基礎(chǔ)性常規(guī)題,那么老實備課的時候就要注意重視應(yīng)用,淡化理論。
            我個人的問題是上課思路容易混亂,喜歡用口頭禪,愛重復(fù)啰嗦生怕學(xué)生不懂,隨口加一些不嚴格的內(nèi)容。那么解決方法就是(1)備課的時候,通過舉例和好玩的生活實例直接引入核心內(nèi)容,從直觀上接受重點“任意x唯一y”,盡可能簡化解釋,多做具體示例;(2)上課時鋪開課本和備課本,是不是掃兩眼,禁止臨時加話。(3)在備課基礎(chǔ)上,上課講完備課的內(nèi)容即可,在各內(nèi)容之間加一句簡單的承上啟下的連接就行了。
            我認為學(xué)習(xí)是學(xué)生的權(quán)利,而不是我強迫學(xué),所以之前我從不管學(xué)生講話玩手機睡覺。但是后面發(fā)現(xiàn)居然有一大片睡覺,而且我明明很有激情,講著講著我就困了。于是我采用了請班長科代表記名,每堂課交名單給我,期末匯總上交德育處的方法,正好12月12日學(xué)校在升旗時,發(fā)布了一個自動退學(xué)處分,學(xué)生都是害怕開除的,所以后面每節(jié)課,只有個別自我放棄的學(xué)生睡覺了。上課一眼掃下去,都坐得端端正正,我就有更多表演的欲望和隨機應(yīng)變的串場內(nèi)容。
            數(shù)學(xué)對海南學(xué)生來說,難是肯定的,所以極易疲憊。老師要充滿愛的去搞笑,嬌嗔耍寶裝萌講笑話,或者夸張發(fā)音,故意帶口音,跟學(xué)生一唱一和瞎說,都可以帶來學(xué)生一笑。長期還會融洽師生關(guān)系,得到學(xué)生的喜愛。
            對一個老師來說,不管你的課堂多么生動活潑,這只是形式,核心還是在知識點夠不夠精簡好記,重點難點學(xué)生是很輕松地懂了,還是說模模糊糊腦袋都懵了,這全在于老師在備課和上課上下的功夫,在于老師自己想透了沒,找到合適的講授或類比方法沒。突破完全在一瞬間一個簡單的道理,千萬不要把師生都繞進去。
            每章結(jié)束后,我會和學(xué)生一起在書皮上把本章核心知識點簡潔總結(jié),方便翻看。不重要的`不需要記憶,我會直接告訴學(xué)生。
            最后,把一本課本和高考強調(diào)的核心知識點總結(jié)成好記的數(shù)字:比如必修1是7。比如必修2是71221k。
            函數(shù)的概念說課稿篇十五
            函數(shù)作為數(shù)學(xué)中的重要概念,在我們學(xué)習(xí)數(shù)學(xué)的過程中扮演著重要的角色。它不僅在數(shù)學(xué)理論中起到了橋梁的作用,還在實際問題的解決中發(fā)揮了重要的作用。而在我對函數(shù)的學(xué)習(xí)過程中,我深深地感受到了函數(shù)的重要性,并從中有所收獲。下面我將分享我對函數(shù)的概念的心得體會。
            在學(xué)習(xí)過程中,我逐漸理解了函數(shù)的概念。函數(shù)本質(zhì)上是一種特殊的關(guān)系:對于給定的輸入,總會有唯一的輸出。我們可以將函數(shù)看作是一個黑盒子,它接收輸入,進行特定的操作,并給出輸出。通過這種機制,我們就能夠?qū)?fù)雜的問題化簡成簡單的部分,并對每個部分進行研究。這種思維方式使得解決問題變得更加簡單明了。
            第三段:函數(shù)在數(shù)學(xué)理論中的應(yīng)用。
            函數(shù)的概念在數(shù)學(xué)理論中起到了重要的作用。函數(shù)是整個數(shù)學(xué)體系中的一個基礎(chǔ)概念,它是一切數(shù)學(xué)理論的基石。從數(shù)學(xué)的角度來看,我們可以利用函數(shù)來研究各種數(shù)學(xué)問題,如數(shù)列、極限、微積分等。函數(shù)讓我們能夠更好地理解和掌握數(shù)學(xué)知識,并通過函數(shù)的特性和性質(zhì)來解決具體的數(shù)學(xué)問題。經(jīng)過學(xué)習(xí),我發(fā)現(xiàn)函數(shù)的概念是學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,只有完全掌握了函數(shù)的概念,才能在數(shù)學(xué)理論和實際問題中取得更好的成績。
            第四段:函數(shù)在實際問題中的應(yīng)用。
            函數(shù)的概念不僅僅局限于數(shù)學(xué)理論,它在實際問題的解決中也發(fā)揮了重要的作用。無論是自然科學(xué)還是社會科學(xué),都需要使用函數(shù)來描述和解釋現(xiàn)象和問題。例如,物理學(xué)中的運動問題、經(jīng)濟學(xué)中的供求關(guān)系、生物學(xué)中的生物生長等都可以通過函數(shù)來進行建模和分析。函數(shù)的應(yīng)用使得我們能夠更好地理解和解決實際問題,從而提高我們的學(xué)習(xí)和研究水平。
            第五段:結(jié)尾。
            總結(jié)起來,函數(shù)的概念對于我們的學(xué)習(xí)和思維方式都有著重要的影響。通過對函數(shù)的學(xué)習(xí),我不僅對數(shù)學(xué)理論有了更深入的理解,還學(xué)會了將復(fù)雜的問題進行分解和處理。函數(shù)的應(yīng)用使得我們能夠更好地解釋和解決實際問題,提升我們的學(xué)習(xí)和研究水平。因此,我們應(yīng)該重視對函數(shù)概念的學(xué)習(xí),并不斷深化對函數(shù)的理解和應(yīng)用。只有這樣,我們才能在數(shù)學(xué)領(lǐng)域和實際問題的解決中取得更好的成績。
            函數(shù)的概念說課稿篇十六
            (1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究。
            (2)x本節(jié)的教學(xué)重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點是對底數(shù)x在x和x時,函數(shù)值變化情況的區(qū)分。
            (3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
            函數(shù)的概念說課稿篇十七
            在高中數(shù)學(xué)中,函數(shù)概念的教學(xué)是我們教師的一個難題。聽了老師的講座,給我?guī)砹诵碌乃悸罚矠榻鉀Q這個難題提供了很好的指導(dǎo)。
            雖然對函數(shù)概念本質(zhì)理解并非一次就能實現(xiàn),它有一個循序漸進、逐步完善,通過多角度多章節(jié)的學(xué)習(xí),學(xué)生才能有一個較完整的深刻理解。但我們在學(xué)生剛接觸函數(shù)概念時就應(yīng)讓學(xué)成從多角度去思考,去理解。
            第一,從初高中數(shù)學(xué)中對函數(shù)定義的比較中,讓學(xué)生能從初中的描述性概念把函數(shù)看成變量之間的依賴關(guān)系到高中用集合與對應(yīng)的語言定義函數(shù),從而達到函數(shù)概念的提升,從而更好地解決如y=3這樣的常數(shù)函數(shù)概念的解釋。
            第二要用好課本,用課本教,而非教課本。充分利用好課本中函數(shù)概念的背景教學(xué),通過三個實例:炮彈發(fā)射;大氣層臭氧問題,恩格爾系數(shù)問題培養(yǎng)學(xué)生觀察問題提出問題的探究能力,培養(yǎng)學(xué)生抽象概括逐步學(xué)會數(shù)學(xué)表達和交流。
            第三充分發(fā)揮函數(shù)圖像的集合直觀作用,加強數(shù)形結(jié)合思想。數(shù)形結(jié)合,幾何直觀的數(shù)學(xué)思想方法對學(xué)生理解函數(shù)概念以及性質(zhì)十分重要。通過讓學(xué)生作圖觀察圖像充分認識函數(shù)概念的整體性。我覺得這種方法在高中階段是貫徹始終的。只有讓學(xué)生充分學(xué)好圖像認識好圖像,能看懂圖像,能解釋圖像,那么對解決花束問題將起著十分重要的作用。