亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        導(dǎo)函數(shù)教案(匯總22篇)

        字號(hào):

            教案應(yīng)該根據(jù)不同學(xué)科的特點(diǎn)和內(nèi)容進(jìn)行差異化設(shè)計(jì)。在編寫教案時(shí)要注意教學(xué)方法的選擇和運(yùn)用,使教學(xué)更加生動(dòng)有趣。以下是小編為大家收集的教案范例,供大家參考學(xué)習(xí)。
            導(dǎo)函數(shù)教案篇一
            在整個(gè)中學(xué)數(shù)學(xué)知識(shí)體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點(diǎn),也是線性數(shù)學(xué)知識(shí)的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
            一、重視每一堂復(fù)習(xí)課數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。
            四、要多了解學(xué)生。你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
            二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對(duì)題目的重組。
            三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有獨(dú)立思考、合作探究交流的過程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果.
            四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要.因此,我們?cè)谑谡n的過程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗(yàn)成功的快感.這樣他們才會(huì)更有興趣的學(xué)習(xí)下去.
            1.質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識(shí),必須鼓勵(lì)學(xué)生質(zhì)疑問難。教師要?jiǎng)?chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時(shí)“插嘴”、提問、爭(zhēng)辯,甚至提出與教師不同的看法。
            2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
            3.學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動(dòng)探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵(lì)和贊揚(yáng)。現(xiàn)在對(duì)學(xué)生的隨時(shí)“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵(lì)的態(tài)度給與肯定,并做出正確的解釋。
            4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識(shí)分析和解決簡(jiǎn)單的實(shí)際問題。
            1.教學(xué)案例、教學(xué)設(shè)計(jì)、教學(xué)實(shí)錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計(jì))是事先設(shè)想的教育教學(xué)思路,是對(duì)準(zhǔn)備實(shí)施的教育措施的簡(jiǎn)要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對(duì)已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
            2.教學(xué)案例與教學(xué)實(shí)錄:它們同樣是對(duì)教育教學(xué)情境的描述,但教學(xué)實(shí)錄是有聞必錄(事實(shí)判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價(jià)值判斷)。
            4.教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識(shí)地選擇有關(guān)信息,必須事先進(jìn)行實(shí)地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
            導(dǎo)函數(shù)教案篇二
            尊敬的評(píng)委老師,大家好,我是今天的5號(hào)考生,今天我說課的題目是《指數(shù)函數(shù)》。
            總結(jié)語。
            為了更好的呈現(xiàn)我的教學(xué)思路,我將以教什么、怎么教以及為什么這么教為思路,具體從教材分析、教學(xué)目標(biāo)分析、學(xué)情分析、教法、學(xué)法以及教學(xué)過程等幾個(gè)方面展開我的說課。
            教材分析。
            教材是課程標(biāo)準(zhǔn)的具體化,是課堂知識(shí)呈現(xiàn)的載體,對(duì)于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學(xué)必修一第二章第六節(jié)。在漫長的高中數(shù)學(xué)學(xué)習(xí)的過程中,函數(shù)的學(xué)習(xí)貫穿始終。從教材的書寫邏輯上看,之前的教材內(nèi)容已經(jīng)對(duì)于函數(shù)的一般性質(zhì)進(jìn)行了排布。而本節(jié)課指數(shù)函數(shù)的學(xué)習(xí)則對(duì)接下來對(duì)數(shù)函數(shù)等復(fù)雜函數(shù)的深入學(xué)習(xí)奠定了堅(jiān)實(shí)的基礎(chǔ)??梢哉f,指數(shù)函數(shù)的學(xué)習(xí)對(duì)于高中函數(shù)的學(xué)習(xí)起到了承上啟下的重要作用。
            學(xué)情分析。
            新的學(xué)生觀告訴我們,我們要在課堂中充分發(fā)揮學(xué)生的主體地位,因此對(duì)于學(xué)生的情況了解也是十分重要的。從思維層面上看,高中的學(xué)生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強(qiáng)的理解力,這對(duì)于我們課堂的開展是十分有幫助的。而這個(gè)階段的學(xué)生好勝心比較強(qiáng),容易產(chǎn)生負(fù)面情緒,這對(duì)于我們課堂的教學(xué)也帶來了一定的挑戰(zhàn)。從經(jīng)驗(yàn)上看,在之前的學(xué)習(xí)中,學(xué)生已經(jīng)對(duì)于“指數(shù)”“函數(shù)”等概念有了深刻的認(rèn)識(shí),為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對(duì)比較抽象,對(duì)于學(xué)生的學(xué)習(xí)、老師的教授都提出了較高的要求,因此合理的教法學(xué)法選擇顯得尤為重要。
            教學(xué)目標(biāo)。
            教學(xué)目標(biāo)是教育教學(xué)活動(dòng)的出發(fā)點(diǎn)和依據(jù),結(jié)合新課改的思想和新課標(biāo)的要求,本節(jié)課我所制定的三維教學(xué)目標(biāo)如下:
            知識(shí)與技能目標(biāo):掌握指數(shù)函數(shù)的概念,圖像性質(zhì);能夠利用指數(shù)函數(shù)的概念解決實(shí)際問題。
            過程與方法目標(biāo):通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學(xué)生觀察,聯(lián)想,類比,猜測(cè),歸納的能力。
            情感態(tài)度與價(jià)值觀目標(biāo):通過教學(xué)互動(dòng),促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的抽象概括,分析,綜合的能力,培養(yǎng)學(xué)生聯(lián)系觀點(diǎn)看問題,領(lǐng)會(huì)數(shù)學(xué)科學(xué)的應(yīng)用價(jià)值。
            而本節(jié)課,我將重難點(diǎn)確立為:指數(shù)函數(shù)的圖像和性質(zhì),以及它與底數(shù)a的關(guān)系。
            正如蘇霍姆林斯基所說:只有能夠激發(fā)學(xué)生去進(jìn)行自我教育的教育,才是真正的教育。在滿足學(xué)習(xí)者需求的基礎(chǔ)之上,我將制定適合本階段學(xué)生的教法來展開教學(xué),以體現(xiàn)教師的主導(dǎo)性。分別以圖片展示、討論、講授、參與練習(xí)等相結(jié)合的方式進(jìn)行教學(xué)。同時(shí)我將采用誘思探究和自主學(xué)習(xí)相結(jié)合的方式,以激發(fā)學(xué)生的學(xué)習(xí)主動(dòng)性,充分地體現(xiàn)學(xué)生的主體地位。
            教學(xué)過程。
            以上所有的準(zhǔn)備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對(duì)于教學(xué)過程的設(shè)計(jì)。
            首先創(chuàng)設(shè)情境,導(dǎo)入新課我將用電腦展示兩個(gè)實(shí)例:計(jì)算機(jī)價(jià)格下降問題和生物中細(xì)胞分裂的例子。我會(huì)請(qǐng)同學(xué)們仔細(xì)觀察并分組討論,分別寫出計(jì)算機(jī)價(jià)格y與經(jīng)過月份x的關(guān)系以及細(xì)胞個(gè)數(shù)y與分裂次數(shù)x的關(guān)系,用所學(xué)知識(shí)結(jié)合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實(shí)例,可以很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生思維的主動(dòng)性,為接下來的學(xué)習(xí)做好準(zhǔn)備。
            其次啟發(fā)誘導(dǎo),探求新知我會(huì)給出兩個(gè)簡(jiǎn)單的指數(shù)函數(shù),并要求學(xué)生畫出它們的圖像,并在準(zhǔn)備好的小黑板上規(guī)范地畫出這兩個(gè)指數(shù)函數(shù)的圖像,同時(shí)板書出指數(shù)函數(shù)的性質(zhì)。同學(xué)們通過動(dòng)手,促進(jìn)學(xué)生對(duì)本課內(nèi)容的理解學(xué)習(xí),并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結(jié)所學(xué)知識(shí)的性質(zhì),也能對(duì)于接下來的知識(shí)點(diǎn)導(dǎo)入起到自然結(jié)合的作用。當(dāng)然學(xué)生通過我的引導(dǎo)交流討論會(huì)很快畫出兩個(gè)簡(jiǎn)單的指數(shù)函數(shù),歸納出函數(shù)的性質(zhì)涉及方面,總結(jié)出它的性質(zhì)。
            接著鞏固新知,反饋回授我會(huì)板書出例一及例二第一問,并介紹相關(guān)考古知識(shí),本著實(shí)踐為主的原則,完成學(xué)生學(xué)習(xí):實(shí)踐到認(rèn)識(shí)再到實(shí)踐的過程。通過練習(xí)實(shí)現(xiàn)教師的再指導(dǎo)和學(xué)生的漸進(jìn)式提高。這個(gè)環(huán)節(jié)介紹的化學(xué)知識(shí)在考古中的應(yīng)用,這樣的設(shè)計(jì)既開拓了學(xué)生的視野,又為下一步學(xué)習(xí):計(jì)算分期付款的利率等問題埋下伏筆,因此學(xué)生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值。緊接著我會(huì)帶領(lǐng)學(xué)生進(jìn)行歸納,總結(jié)升華我會(huì)將同學(xué)們進(jìn)行分組討論、探究,引導(dǎo)學(xué)生對(duì)指數(shù)函數(shù)的知識(shí)進(jìn)行梳理和深化認(rèn)知。知識(shí)與技能目標(biāo)設(shè)置分組pk機(jī)制,引導(dǎo)學(xué)生對(duì)課堂知識(shí)進(jìn)行分類討論、數(shù)形結(jié)合等數(shù)學(xué)方法的歸納。最后我會(huì)布置課后作業(yè)以幫助學(xué)生鞏固練習(xí),溫故而知新。
            板書設(shè)計(jì)。
            當(dāng)然一堂完整的課程離不開簡(jiǎn)潔明了的板書設(shè)計(jì),我的板書設(shè)計(jì)如下:在黑板中間的正上方,我會(huì)寫下今天的課題:指數(shù)函數(shù),我會(huì)在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會(huì)在練習(xí)過程中寫下今天練習(xí)的,計(jì)算步驟。黑板的右面,我會(huì)寫下例題一以及例題二的第一問。這樣的設(shè)計(jì),可以幫助學(xué)生更好地學(xué)習(xí)本課的內(nèi)容。以上就是我所有的授課內(nèi)容,感謝各位老師的聆聽。
            導(dǎo)函數(shù)教案篇三
            本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)“用函數(shù)觀點(diǎn)看方程(組)與不等式”的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進(jìn)一步學(xué)習(xí)“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
            二、學(xué)情分析。
            本節(jié)課主要是研究一次函數(shù)的圖象與性質(zhì),是在學(xué)習(xí)了正比例函數(shù)的.圖象與性質(zhì),并初步了解了如何研究一個(gè)具體函數(shù)的圖象與性質(zhì)的基礎(chǔ)上進(jìn)的。原有知識(shí)與經(jīng)驗(yàn)對(duì)本節(jié)課的學(xué)習(xí)有著積極的促進(jìn)作用,在前后知識(shí)的比較中,學(xué)生進(jìn)一步理解知識(shí),促進(jìn)認(rèn)知結(jié)構(gòu)的完善,發(fā)展、比較、抽象與概括能力,進(jìn)一步體驗(yàn)研究函數(shù)的基本思路,而這些目標(biāo)的達(dá)成要求教學(xué)必須發(fā)揮學(xué)生的主體作用,在函數(shù)圖象及其性質(zhì)的探索活動(dòng)中,應(yīng)給予學(xué)生足夠的活動(dòng)、探究、交流、反思的時(shí)間與空間,不以老師的講演代替學(xué)生的探索。
            (二)教學(xué)目標(biāo)。
            基于以上的教材分析,結(jié)合新課程標(biāo)準(zhǔn)的新理念,確立如下教學(xué)目標(biāo):
            知識(shí)技能:
            1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
            2、會(huì)利用兩個(gè)合適的點(diǎn)畫出一次函數(shù)的圖象;
            過程與方法:
            2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗(yàn)數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
            情感態(tài)度:
            2、在探究一次函數(shù)的圖象和性質(zhì)的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識(shí)和探究精神。
            (三)教學(xué)重點(diǎn)難點(diǎn)。
            教學(xué)重點(diǎn):一次函數(shù)的圖象和性質(zhì)。
            教學(xué)難點(diǎn):由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對(duì)性質(zhì)的理解。
            二、教法學(xué)法。
            1、教學(xué)方法。
            依據(jù)當(dāng)前素質(zhì)教育的要求:以人為本,以學(xué)生為主體,讓教最大限度的服務(wù)與學(xué)。因此我選用了以下教學(xué)方法:
            1、自學(xué)體驗(yàn)法――利用學(xué)生描點(diǎn)作圖經(jīng)歷體驗(yàn)并發(fā)現(xiàn)問題,分析問題進(jìn)一步歸納總結(jié)。
            目的:通過這種教學(xué)方式來激發(fā)學(xué)生學(xué)習(xí)的積極主動(dòng)性,培養(yǎng)學(xué)生獨(dú)立思考能力和創(chuàng)新意識(shí)。
            2、直觀教學(xué)法――利用多媒體現(xiàn)代教學(xué)手段。
            目的:通過圖片和材料的展示來激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識(shí)直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認(rèn)識(shí)引領(lǐng)到理性的思考。
            2、學(xué)法指導(dǎo)。
            做為一名合格的老師,不止局限于知識(shí)的傳授,更重要的是使學(xué)生學(xué)會(huì)如何去學(xué)。本著這樣的原則,課上指導(dǎo)學(xué)生采用以下學(xué)習(xí)方法。
            1、應(yīng)用自主探究。培養(yǎng)學(xué)生獨(dú)立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。
            2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。
            將本文的word文檔下載到電腦,方便收藏和打印。
            導(dǎo)函數(shù)教案篇四
            讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
            :各種隱含條件的挖掘。
            :引導(dǎo)發(fā)現(xiàn)法。
            (一)診斷補(bǔ)償,情景引入:
            (先讓學(xué)生復(fù)習(xí),然后提問,并做進(jìn)一步診斷)。
            (二)問題導(dǎo)航,探究釋疑:
            (三)精講提煉,揭示本質(zhì):
            分析如圖,以ab的垂直平分線為y軸,以過點(diǎn)o的y軸的垂線為x軸,建立了直角坐標(biāo)系。這時(shí),涵洞所在的拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時(shí)只需拋物線上的一個(gè)點(diǎn)就能求出拋物線的函數(shù)關(guān)系式。
            解由題意,得點(diǎn)b的坐標(biāo)為(0。8,-2。4),
            又因?yàn)辄c(diǎn)b在拋物線上,將它的坐標(biāo)代入,得所以因此,函數(shù)關(guān)系式是。
            例2、根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式。
            (1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)a(0,-1)、b(1,0)、c(-1,2);
            (2)已知拋物線的頂點(diǎn)為(1,-3),且與y軸交于點(diǎn)(0,1);
            (3)已知拋物線與x軸交于點(diǎn)m(-3,0)(5,0)且與y軸交于點(diǎn)(0,-3);
            (4)已知拋物線的頂點(diǎn)為(3,-2),且與x軸兩交點(diǎn)間的距離為4。
            分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個(gè)已知點(diǎn),可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(3)根據(jù)拋物線與x軸的兩個(gè)交點(diǎn)的坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(4)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo)(3,-2),可設(shè)函數(shù)關(guān)系式為,同時(shí)可知拋物線的對(duì)稱軸為x=3,再由與x軸兩交點(diǎn)間的距離為4,可得拋物線與x軸的兩個(gè)交點(diǎn)為(1,0)和(5,0),任選一個(gè)代入,即可求出a的值。
            解這個(gè)方程組,得a=2,b=-1。
            (2)因?yàn)閽佄锞€的頂點(diǎn)為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(diǎn)(0,1),可以得到解得。
            (3)因?yàn)閽佄锞€與x軸交于點(diǎn)m(-3,0)、(5,0),
            所以設(shè)二此函數(shù)的關(guān)系式為。
            又由于拋物線與y軸交于點(diǎn)(0,3),可以得到解得。
            (4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請(qǐng)同學(xué)們自己完成。
            (四)題組訓(xùn)練,拓展遷移:
            1、根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式。
            (1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,2)、(1,1)、(3,5);
            (2)已知拋物線的頂點(diǎn)為(-1,2),且過點(diǎn)(2,1);
            (3)已知拋物線與x軸交于點(diǎn)m(-1,0)、(2,0),且經(jīng)過點(diǎn)(1,2)。
            2、二次函數(shù)圖象的對(duì)稱軸是x=-1,與y軸交點(diǎn)的縱坐標(biāo)是–6,且經(jīng)過點(diǎn)(2,10),求此二次函數(shù)的關(guān)系式。
            (五)交流評(píng)價(jià),深化知識(shí):
            確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時(shí),可根據(jù)題目中的條件靈活選擇,以簡(jiǎn)單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點(diǎn)坐標(biāo)可利用此式來求。
            (2)頂點(diǎn)式:,給出兩點(diǎn),且其中一點(diǎn)為頂點(diǎn)時(shí)可利用此式來求。
            (3)交點(diǎn)式:,給出三點(diǎn),其中兩點(diǎn)為與x軸的兩個(gè)交點(diǎn)、時(shí)可利用此式來求。
            本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點(diǎn)a(-1,12)、b(2,-3),
            (2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸。
            導(dǎo)函數(shù)教案篇五
            尊敬的評(píng)委老師,大家好,我是今天的5號(hào)考生,今天我說課的題目是《指數(shù)函數(shù)》。
            教材分析。
            教材是課程標(biāo)準(zhǔn)的具體化,是課堂知識(shí)呈現(xiàn)的載體,對(duì)于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學(xué)必修一第二章第六節(jié)。在漫長的高中數(shù)學(xué)學(xué)習(xí)的過程中,函數(shù)的學(xué)習(xí)貫穿始終。從教材的書寫邏輯上看,之前的教材內(nèi)容已經(jīng)對(duì)于函數(shù)的一般性質(zhì)進(jìn)行了排布。而本節(jié)課指數(shù)函數(shù)的學(xué)習(xí)則對(duì)接下來對(duì)數(shù)函數(shù)等復(fù)雜函數(shù)的深入學(xué)習(xí)奠定了堅(jiān)實(shí)的基礎(chǔ)??梢哉f,指數(shù)函數(shù)的學(xué)習(xí)對(duì)于高中函數(shù)的學(xué)習(xí)起到了承上啟下的重要作用。
            學(xué)情分析。
            新的學(xué)生觀告訴我們,我們要在課堂中充分發(fā)揮學(xué)生的主體地位,因此對(duì)于學(xué)生的情況了解也是十分重要的。從思維層面上看,高中的學(xué)生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強(qiáng)的'理解力,這對(duì)于我們課堂的開展是十分有幫助的。而這個(gè)階段的學(xué)生好勝心比較強(qiáng),容易產(chǎn)生負(fù)面情緒,這對(duì)于我們課堂的教學(xué)也帶來了一定的挑戰(zhàn)。從經(jīng)驗(yàn)上看,在之前的學(xué)習(xí)中,學(xué)生已經(jīng)對(duì)于“指數(shù)”“函數(shù)”等概念有了深刻的認(rèn)識(shí),為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對(duì)比較抽象,對(duì)于學(xué)生的學(xué)習(xí)、老師的教授都提出了較高的要求,因此合理的教法學(xué)法選擇顯得尤為重要。
            教學(xué)目標(biāo)。
            教學(xué)目標(biāo)是教育教學(xué)活動(dòng)的出發(fā)點(diǎn)和依據(jù),結(jié)合新課改的思想和新課標(biāo)的要求,本節(jié)課我所制定的三維教學(xué)目標(biāo)如下:
            知識(shí)與技能目標(biāo):掌握指數(shù)函數(shù)的概念,圖像性質(zhì);能夠利用指數(shù)函數(shù)的概念解決實(shí)際問題。
            過程與方法目標(biāo):通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學(xué)生觀察,聯(lián)想,類比,猜測(cè),歸納的能力。
            情感態(tài)度與價(jià)值觀目標(biāo):通過教學(xué)互動(dòng),促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的抽象概括,分析,綜合的能力,培養(yǎng)學(xué)生聯(lián)系觀點(diǎn)看問題,領(lǐng)會(huì)數(shù)學(xué)科學(xué)的應(yīng)用價(jià)值。
            而本節(jié)課,我將重難點(diǎn)確立為:指數(shù)函數(shù)的圖像和性質(zhì),以及它與底數(shù)a的關(guān)系。
            正如蘇霍姆林斯基所說:只有能夠激發(fā)學(xué)生去進(jìn)行自我教育的教育,才是真正的教育。在滿足學(xué)習(xí)者需求的基礎(chǔ)之上,我將制定適合本階段學(xué)生的教法來展開教學(xué),以體現(xiàn)教師的主導(dǎo)性。分別以圖片展示、討論、講授、參與練習(xí)等相結(jié)合的方式進(jìn)行教學(xué)。同時(shí)我將采用誘思探究和自主學(xué)習(xí)相結(jié)合的方式,以激發(fā)學(xué)生的學(xué)習(xí)主動(dòng)性,充分地體現(xiàn)學(xué)生的主體地位。
            教學(xué)過程。
            以上所有的準(zhǔn)備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對(duì)于教學(xué)過程的設(shè)計(jì)。
            首先創(chuàng)設(shè)情境,導(dǎo)入新課我將用電腦展示兩個(gè)實(shí)例:計(jì)算機(jī)價(jià)格下降問題和生物中細(xì)胞分裂的例子。我會(huì)請(qǐng)同學(xué)們仔細(xì)觀察并分組討論,分別寫出計(jì)算機(jī)價(jià)格y與經(jīng)過月份x的關(guān)系以及細(xì)胞個(gè)數(shù)y與分裂次數(shù)x的關(guān)系,用所學(xué)知識(shí)結(jié)合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實(shí)例,可以很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生思維的主動(dòng)性,為接下來的學(xué)習(xí)做好準(zhǔn)備。
            其次啟發(fā)誘導(dǎo),探求新知我會(huì)給出兩個(gè)簡(jiǎn)單的指數(shù)函數(shù),并要求學(xué)生畫出它們的圖像,并在準(zhǔn)備好的小黑板上規(guī)范地畫出這兩個(gè)指數(shù)函數(shù)的圖像,同時(shí)板書出指數(shù)函數(shù)的性質(zhì)。同學(xué)們通過動(dòng)手,促進(jìn)學(xué)生對(duì)本課內(nèi)容的理解學(xué)習(xí),并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結(jié)所學(xué)知識(shí)的性質(zhì),也能對(duì)于接下來的知識(shí)點(diǎn)導(dǎo)入起到自然結(jié)合的作用。當(dāng)然學(xué)生通過我的引導(dǎo)交流討論會(huì)很快畫出兩個(gè)簡(jiǎn)單的指數(shù)函數(shù),歸納出函數(shù)的性質(zhì)涉及方面,總結(jié)出它的性質(zhì)。
            接著鞏固新知,反饋回授我會(huì)板書出例一及例二第一問,并介紹相關(guān)考古知識(shí),本著實(shí)踐為主的原則,完成學(xué)生學(xué)習(xí):實(shí)踐到認(rèn)識(shí)再到實(shí)踐的過程。通過練習(xí)實(shí)現(xiàn)教師的再指導(dǎo)和學(xué)生的漸進(jìn)式提高。這個(gè)環(huán)節(jié)介紹的化學(xué)知識(shí)在考古中的應(yīng)用,這樣的設(shè)計(jì)既開拓了學(xué)生的視野,又為下一步學(xué)習(xí):計(jì)算分期付款的利率等問題埋下伏筆,因此學(xué)生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值。緊接著我會(huì)帶領(lǐng)學(xué)生進(jìn)行歸納,總結(jié)升華我會(huì)將同學(xué)們進(jìn)行分組討論、探究,引導(dǎo)學(xué)生對(duì)指數(shù)函數(shù)的知識(shí)進(jìn)行梳理和深化認(rèn)知。知識(shí)與技能目標(biāo)設(shè)置分組pk機(jī)制,引導(dǎo)學(xué)生對(duì)課堂知識(shí)進(jìn)行分類討論、數(shù)形結(jié)合等數(shù)學(xué)方法的歸納。最后我會(huì)布置課后作業(yè)以幫助學(xué)生鞏固練習(xí),溫故而知新。
            板書設(shè)計(jì)。
            當(dāng)然一堂完整的課程離不開簡(jiǎn)潔明了的板書設(shè)計(jì),我的板書設(shè)計(jì)如下:在黑板中間的正上方,我會(huì)寫下今天的課題:指數(shù)函數(shù),我會(huì)在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會(huì)在練習(xí)過程中寫下今天練習(xí)的,計(jì)算步驟。黑板的右面,我會(huì)寫下例題一以及例題二的第一問。這樣的設(shè)計(jì),可以幫助學(xué)生更好地學(xué)習(xí)本課的內(nèi)容。以上就是我所有的授課內(nèi)容,感謝各位老師的聆聽。
            導(dǎo)函數(shù)教案篇六
            2.能較熟練地運(yùn)用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題;。
            指數(shù)函數(shù)的性質(zhì)的應(yīng)用;。
            指數(shù)函數(shù)圖象的平移變換.
            1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)。
            練習(xí):函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過的定點(diǎn)坐標(biāo)為.若a1,則當(dāng)x0時(shí),y1;而當(dāng)x0時(shí),y1.若00時(shí),y1;而當(dāng)x0時(shí),y1.
            例1解不等式:
            (1);(2);。
            (3);(4).
            小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個(gè)指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運(yùn)用,關(guān)鍵是底數(shù)所在的范圍.
            例2說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫出它們的示意圖:
            (1);(2);(3);(4).
            小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當(dāng)k0時(shí),向左平移,反之向右平移),上下平移y=f(x)+h(當(dāng)h0時(shí),向上平移,反之向下平移).
            練習(xí):
            (1)將函數(shù)f(x)=3x的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,可以得到函數(shù)的圖象.
            (2)將函數(shù)f(x)=3x的圖象向右平移2個(gè)單位,再向上平移3個(gè)單位,可以得到函數(shù)的圖象.
            (3)將函數(shù)圖象先向左平移2個(gè)單位,再向下平移1個(gè)單位所得函數(shù)的解析式是.
            (4)對(duì)任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點(diǎn)的坐標(biāo)是.函數(shù)y=a2x-1的圖象恒過的定點(diǎn)的坐標(biāo)是.
            小結(jié):指數(shù)函數(shù)的定點(diǎn)往往是解決問題的突破口!定點(diǎn)與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡(jiǎn)圖,從而許多問題就可以找到解決的突破口.
            (5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
            (6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?
            小結(jié):函數(shù)圖象的對(duì)稱變換規(guī)律.
            例3已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時(shí),f(x)=1-2x,試畫出此函數(shù)的圖象.
            例4求函數(shù)的最小值以及取得最小值時(shí)的x值.
            小結(jié):復(fù)合函數(shù)常常需要換元來求解其最值.
            練習(xí):
            (1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。
            (2)函數(shù)y=2x的值域?yàn)?。
            (4)當(dāng)x0時(shí),函數(shù)f(x)=(a2-1)x的值總大于1,求實(shí)數(shù)a的取值范圍.
            1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;。
            2.指數(shù)型函數(shù)的定點(diǎn)問題;。
            3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.
            課本p55-6,7.
            (1)函數(shù)f(x)的定義域?yàn)?0,1),則函數(shù)的定義域?yàn)?
            (2)對(duì)于任意的x1,x2r,若函數(shù)f(x)=2x,試比較的大小.
            導(dǎo)函數(shù)教案篇七
            1、使學(xué)生掌握的概念,圖象和性質(zhì)。
            (1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域。
            (2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì)。
            (3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫出形如x的圖象。
            2、x通過對(duì)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。
            3、通過對(duì)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。
            (1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。
            (2)x本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對(duì)底數(shù)x在x和x時(shí),函數(shù)值變化情況的區(qū)分。
            (3)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。
            (1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點(diǎn)差異,諸如x,x等都不是。
            (2)對(duì)底數(shù)x的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來。
            關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。
            1。x理解的定義,初步掌握的圖象,性質(zhì)及其簡(jiǎn)單應(yīng)用。
            2。x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。
            3。x通過對(duì)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
            重點(diǎn)是理解的定義,把握?qǐng)D象和性質(zhì)。
            難點(diǎn)是認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí)。
            投影儀
            啟發(fā)討論研究式
            一、x引入新課
            我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)。
            1、6、(板書)
            這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問題:
            由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。
            問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。
            由學(xué)生回答:x。
            在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
            x的概念(板書)
            1、定義:形如x的函數(shù)稱為。(板書)
            教師在給出定義之后再對(duì)定義作幾點(diǎn)說明。
            2、幾點(diǎn)說明x(板書)
            (1)x關(guān)于對(duì)x的規(guī)定:
            教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若x會(huì)有什么問題?如x,此時(shí)x,x等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
            若x對(duì)于x都無意義,若x則x無論x取何值,它總是1,對(duì)它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
            (2)關(guān)于的定義域x(板書)
            教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時(shí),x也是一個(gè)確定的實(shí)數(shù),對(duì)于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的"性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)閤。擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值。
            (3)關(guān)于是否是的判斷(板書)
            剛才分別認(rèn)識(shí)了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是,請(qǐng)看下面函數(shù)是否是。
            (4)x,x
            (5)x。
            學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
            最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。
            3、歸納性質(zhì)
            作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。
            函數(shù)
            1、定義域x:
            2、值域:
            3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)
            4、截距:在x軸上沒有,在x軸上為1。
            對(duì)于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明。對(duì)于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)
            在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱性,故x的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少。
            此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(shì)(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
            二、圖象與性質(zhì)(板書)
            1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。
            2、草圖:
            當(dāng)畫完第一個(gè)圖象之后,可問學(xué)生是否需要再畫第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個(gè),不妨取x為例。
            此時(shí)畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡(jiǎn)單。即x=x與x圖象之間關(guān)于x軸對(duì)稱,而此時(shí)x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對(duì)稱,教師借助計(jì)算機(jī)畫圖,在同一坐標(biāo)系下得到x的圖象。
            最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計(jì)算機(jī)再畫出如x的圖象一起比較,再找共性)
            由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個(gè)表,如下:
            以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
            填好后,讓學(xué)生仿照此例再列一個(gè)x的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來分類,整理函數(shù)的性質(zhì)。
            3、性質(zhì)。
            (1)無論x為何值,x都有定義域?yàn)閤,值域?yàn)閤,都過點(diǎn)x。
            (2)x時(shí),x在定義域內(nèi)為增函數(shù),x時(shí),x為減函數(shù)。
            (3)x時(shí),x,x x時(shí),x。
            總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
            三、簡(jiǎn)單應(yīng)用x (板書)
            1、利用單調(diào)性比大小。x(板書)
            一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡(jiǎn)單的問題。首先我們來看下面的問題。
            例1、x比較下列各組數(shù)的大小
            (1)x與x;x(2)x與x;
            (3)x與1x。(板書)
            首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個(gè)特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
            解:x在x上是增函數(shù),且
            教師最后再強(qiáng)調(diào)過程必須寫清三句話:
            (1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
            (2)x自變量的大小比較。
            (3)x函數(shù)值的大小比較。
            后兩個(gè)題的過程略。要求學(xué)生仿照第(1)題敘述過程。
            例2。比較下列各組數(shù)的大小
            (1)x與x;x(2)x與x ;
            (3)x與x。(板書)
            先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(duì)(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)
            最后由學(xué)生說出x1,1。
            解決后由教師小結(jié)比較大小的方法
            (1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)
            (2)x搭橋比較法:x用特殊的數(shù)1或0。
            四、鞏固練習(xí)
            練習(xí):比較下列各組數(shù)的大?。ò鍟?BR>    (1)x與x x(2)x與x;
            (3)x與x;x(4)x與x。解答過程略
            五、小結(jié)
            1、的概念
            2、的圖象和性質(zhì)
            3、簡(jiǎn)單應(yīng)用
            六、板書設(shè)計(jì)
            導(dǎo)函數(shù)教案篇八
            學(xué)習(xí)目標(biāo):
            1、能夠分析和表示變量間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
            2、用三種方式表示變量間二次函數(shù)關(guān)系,從不同側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究。
            3、通過解決用二次函數(shù)所表示的問題,培養(yǎng)學(xué)生的運(yùn)用能力。
            學(xué)習(xí)重點(diǎn):
            能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
            能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究。
            學(xué)習(xí)難點(diǎn):
            能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
            學(xué)習(xí)過程:
            一、學(xué)前準(zhǔn)備。
            函數(shù)的三種表示方式,即表格、表達(dá)式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價(jià)與購買數(shù)量之間的關(guān)系如下:
            x(千克)00。511。522。53。
            y(元)0123456。
            二、探究活動(dòng)。
            (一)合作探究:
            交流完成:
            (1)一邊長為xcm,則另一邊長為cm,所以面積為:用函數(shù)表達(dá)式表示:=________________________________。
            (2)表格表示:
            123456789。
            10—。
            (3)畫出圖象。
            (二)議一議。
            (1)在上述問題中,自變量x的取值范圍是什么?
            (2)當(dāng)x取何值時(shí),長方形的面積最大?它的最大面積是多少?你是怎樣得到的?請(qǐng)你描述一下y隨x的變化而變化的情況。
            點(diǎn)撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請(qǐng)大家互相交流。
            (1)因?yàn)閤是邊長,所以x應(yīng)取數(shù),即x0,又另一邊長(10—x)也應(yīng)大于,即10—x0,所以x10,這兩個(gè)條件應(yīng)該同時(shí)滿足,所以x的取值范圍是。
            (2)當(dāng)x取何值時(shí),長方形的面積最大,就是求自變量取何值時(shí),函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點(diǎn)式。當(dāng)x=—時(shí),函數(shù)y有最大值y最大=。當(dāng)x=時(shí),長方形的面積最大,最大面積是25cm2。
            可以通過觀察圖象得知。也可以代入頂點(diǎn)坐標(biāo)公式中求得。。
            (三)做一做:學(xué)生獨(dú)立思考完成p62,p63的函數(shù)表達(dá)式,表格,圖象問題。
            (1)用函數(shù)表達(dá)式表示:y=________。
            (2)用表格表示:
            (3)用圖象表示:
            三、學(xué)習(xí)體會(huì)。
            本節(jié)課你有哪些收獲?你還有哪些疑問?
            四、自我測(cè)試。
            1、把長1。6米的鐵絲圍成長方形abcd,設(shè)寬為x(m),面積為y(m2)。則當(dāng)最大時(shí),所取的值是()。
            a0。5b0。4c0。3d0。6。
            2、兩個(gè)數(shù)的和為6,這兩個(gè)數(shù)的積最大可能達(dá)到多少?利用圖象描述乘積與因數(shù)之間的關(guān)系。
            導(dǎo)函數(shù)教案篇九
            在函數(shù)教學(xué)中,我們不僅要在教會(huì)函數(shù)知識(shí)上下功夫,而且還應(yīng)該追求解決問題的“常規(guī)方法”——基本函數(shù)知識(shí)中所蘊(yùn)含的思想方法,要從數(shù)學(xué)思想方法的高度進(jìn)行函數(shù)教學(xué)。在函數(shù)的教學(xué)中,應(yīng)突出“類比”的思想和“數(shù)形結(jié)合”的思想。
            2.注重“數(shù)學(xué)結(jié)合”的教學(xué)。
            數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過數(shù)與形之間的對(duì)應(yīng)和轉(zhuǎn)化來解決數(shù)學(xué)問題。它包含以形助數(shù)和以數(shù)解形兩個(gè)方面,利用它可使復(fù)雜問題簡(jiǎn)單化,抽象問題具體化,它兼有數(shù)的嚴(yán)謹(jǐn)與形的直觀之長。
            (1)讓學(xué)生經(jīng)歷繪制函數(shù)圖象的具體過程。
            (2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡(jiǎn)單畫法。
            (3)注意讓學(xué)生體會(huì)研究具體函數(shù)圖象規(guī)律的方法。
            目標(biāo)。
            1、理解直線y=kx+b與y=kx之間的位置關(guān)系;。
            2、會(huì)選擇兩個(gè)合適的點(diǎn)畫出一次函數(shù)的圖象;
            3、掌握一次函數(shù)的性質(zhì).
            過程與方法目標(biāo)。
            2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗(yàn)數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
            2、在探究一次函數(shù)的圖象和性質(zhì)的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識(shí)和探究精神。
            一次函數(shù)的圖象和性質(zhì)。
            由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對(duì)性質(zhì)的理解。
            導(dǎo)函數(shù)教案篇十
            1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。
            (1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象。
            (2)能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問題。
            2.通過對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。
            3.通過指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
            (1)對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解。對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ)。
            (2)本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)。由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。
            (3)本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開。而通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。
            (1)對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
            (2)在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。
            導(dǎo)函數(shù)教案篇十一
            1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).
            (1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對(duì)底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.
            (2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識(shí)指數(shù)函數(shù)的性質(zhì).
            (3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用指數(shù)函數(shù)的圖象畫出形如的圖象.
            2.通過對(duì)指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.
            3.通過對(duì)指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.
            教材分析。
            (1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.
            (2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分.
            (3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.
            教法建議。
            (1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是指數(shù)函數(shù).
            (2)對(duì)底數(shù)的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)指數(shù)函數(shù)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來.
            關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.
            教學(xué)重點(diǎn)和難點(diǎn)。
            重點(diǎn)是理解指數(shù)函數(shù)的定義,把握?qǐng)D象和性質(zhì).
            難點(diǎn)是認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí).
            教學(xué)用具。
            投影儀。
            教學(xué)方法。
            啟發(fā)討論研究式。
            教學(xué)過程。
            一.引入新課。
            我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)-------指數(shù)函數(shù).
            這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要.比如我們看下面的問題:。
            由學(xué)生回答:與之間的關(guān)系式,可以表示為.
            問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系.
            由學(xué)生回答:.
            在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為指數(shù)函數(shù).
            1.定義:形如的函數(shù)稱為指數(shù)函數(shù).(板書)。
            教師在給出定義之后再對(duì)定義作幾點(diǎn)說明.
            2.幾點(diǎn)說明(板書)。
            (1)關(guān)于對(duì)的規(guī)定:。
            教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若會(huì)有什么問題?如,此時(shí),等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在.
            若對(duì)于都無意義,若則無論取何值,它總是1,對(duì)它沒有研究的必要.為了避免上述各種情況的.發(fā)生,所以規(guī)定且.
            教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù).此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時(shí),也是一個(gè)確定的實(shí)數(shù),對(duì)于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以指數(shù)函數(shù)的定義域?yàn)?擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值.
            (3)關(guān)于是否是指數(shù)函數(shù)的判斷(板書)。
            剛才分別認(rèn)識(shí)了指數(shù)函數(shù)中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是指數(shù)函數(shù),請(qǐng)看下面函數(shù)是否是指數(shù)函數(shù).
            (1),(2),(3)。
            (4),(5).
            學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是指數(shù)函數(shù),其中(3)可以寫成,也是指數(shù)圖象.
            最后提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì).
            3.歸納性質(zhì)。
            作圖的用什么方法.用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答.
            函數(shù)。
            1.定義域:。
            2.值域:。
            3.奇偶性:既不是奇函數(shù)也不是偶函數(shù)。
            4.截距:在軸上沒有,在軸上為1.
            對(duì)于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明.對(duì)于單調(diào)性,我建議找一些特殊點(diǎn).,先看一看,再下定論.對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù).(圖象位于軸上方,且與軸不相交.)。
            在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了.取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱性,故的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少.
            此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù).連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(shì)(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.
            二.圖象與性質(zhì)(板書)。
            1.圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法.
            2.草圖:。
            當(dāng)畫完第一個(gè)圖象之后,可問學(xué)生是否需要再畫第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫第二個(gè),不妨取為例.
            此時(shí)畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡(jiǎn)單.即=與圖象之間關(guān)于軸對(duì)稱,而此時(shí)的圖象已經(jīng)有了,具備了變換的條件.讓學(xué)生自己做對(duì)稱,教師借助計(jì)算機(jī)畫圖,在同一坐標(biāo)系下得到的圖象.
            最后問學(xué)生是否需要再畫.(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計(jì)算機(jī)再畫出如的圖象一起比較,再找共性)。
            由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個(gè)表,如下:。
            以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿.
            填好后,讓學(xué)生仿照此例再列一個(gè)的表,將相應(yīng)的內(nèi)容填好.為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來分類,整理函數(shù)的性質(zhì).
            3.性質(zhì).
            (1)無論為何值,指數(shù)函數(shù)都有定義域?yàn)?值域?yàn)?都過點(diǎn).
            (2)時(shí),在定義域內(nèi)為增函數(shù),時(shí),為減函數(shù).
            (3)時(shí),,時(shí),.
            總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì).
            三.簡(jiǎn)單應(yīng)用(板書)。
            一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡(jiǎn)單的問題.首先我們來看下面的問題.
            例1.比較下列各組數(shù)的大小。
            (1)與;(2)與;。
            (3)與1.(板書)。
            首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個(gè)特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想指數(shù)函數(shù),提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小.然后以第(1)題為例,給出解答過程.
            解:在上是增函數(shù),且。
            (板書)。
            教師最后再強(qiáng)調(diào)過程必須寫清三句話:。
            (1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性.
            (2)自變量的大小比較.
            (3)函數(shù)值的大小比較.
            后兩個(gè)題的過程略.要求學(xué)生仿照第(1)題敘述過程.
            例2.比較下列各組數(shù)的大小。
            (1)與;(2)與;。
            (3)與.(板書)。
            先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法.引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來說可以寫成,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(duì)(2)來說可以寫成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決.(教師可提示學(xué)生指數(shù)函數(shù)的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。
            最后由學(xué)生說出1,1,.
            解決后由教師小結(jié)比較大小的方法。
            (1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。
            (2)搭橋比較法:用特殊的數(shù)1或0.
            三.鞏固練習(xí)。
            練習(xí):比較下列各組數(shù)的大小(板書)。
            (1)與(2)與;。
            (3)與;(4)與.解答過程略。
            四.小結(jié)。
            3.簡(jiǎn)單應(yīng)用。
            導(dǎo)函數(shù)教案篇十二
            我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)-------.
            1.6.(板書)。
            這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要.比如我們看下面的問題:。
            由學(xué)生回答:與之間的關(guān)系式,可以表示為.
            問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系.
            由學(xué)生回答:.
            在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為.
            一.的概念(板書)。
            1.定義:形如的函數(shù)稱為.(板書)教師在給出定義之后再對(duì)定義作幾點(diǎn)說明.
            2.幾點(diǎn)說明(板書)。
            (1)關(guān)于對(duì)的規(guī)定:。
            教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若會(huì)有什么問題?如,此時(shí),等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在.
            若對(duì)于都無意義,若則無論取何值,它總是1,對(duì)它沒有研究的必要.為了避免上述各種情況的發(fā)生,所以規(guī)定且.
            (2)關(guān)于的定義域(板書)。
            教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù).此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時(shí),也是一個(gè)確定的實(shí)數(shù),對(duì)于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)?擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值.
            (3)關(guān)于是否是的判斷(板書)。
            剛才分別認(rèn)識(shí)了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是,請(qǐng)看下面函數(shù)是否是.
            學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是,其中(3)可以寫成,也是指數(shù)圖象.
            最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì).
            3.歸納性質(zhì)。
            作圖的用什么方法.用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答.
            函數(shù)。
            1.定義域:。
            2.值域:。
            3.奇偶性:既不是奇函數(shù)也不是偶函數(shù)。
            4.截距:在軸上沒有,在軸上為1.
            對(duì)于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明.對(duì)于單調(diào)性,我建議找一些特殊點(diǎn).,先看一看,再下定論.對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù).(圖象位于軸上方,且與軸不相交.)。
            在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了.取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱性,故的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少.
            此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù).連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(shì)(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.
            二.圖象與性質(zhì)(板書)。
            1.圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法.
            2.草圖:。
            當(dāng)畫完第一個(gè)圖象之后,可問學(xué)生是否需要再畫第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫第二個(gè),不妨取為例.
            此時(shí)畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡(jiǎn)單.即=與圖象之間關(guān)于軸對(duì)稱,而此時(shí)的圖象已經(jīng)有了,具備了變換的條件.讓學(xué)生自己做對(duì)稱,教師借助計(jì)算機(jī)畫圖,在同一坐標(biāo)系下得到的圖象.
            最后問學(xué)生是否需要再畫.(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計(jì)算機(jī)再畫出如的圖象一起比較,再找共性)。
            由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個(gè)表,如下:。
            以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿.
            填好后,讓學(xué)生仿照此例再列一個(gè)的表,將相應(yīng)的內(nèi)容填好.為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來分類,整理函數(shù)的性質(zhì).
            3.性質(zhì).
            (1)無論為何值,都有定義域?yàn)?值域?yàn)?都過點(diǎn).
            (2)時(shí),在定義域內(nèi)為增函數(shù),時(shí),為減函數(shù).
            (3)時(shí),,時(shí),.
            總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì).
            三.簡(jiǎn)單應(yīng)用(板書)。
            1.利用單調(diào)性比大小.(板書)。
            一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡(jiǎn)單的問題.首先我們來看下面的問題.
            例1.比較下列各組數(shù)的大小。
            (1)與;(2)與;(3)與1.(板書)。
            首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個(gè)特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小.然后以第(1)題為例,給出解答過程.
            解:在上是增函數(shù),且.(板書)教師最后再強(qiáng)調(diào)過程必須寫清三句話:。
            (1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性.
            (2)自變量的大小比較.
            (3)函數(shù)值的大小比較.
            后兩個(gè)題的過程略.要求學(xué)生仿照第(1)題敘述過程.
            例2.比較下列各組數(shù)的大小(1)與;(2)與;(3)與.(板書)。
            先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法.引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來說可以寫成,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(duì)(2)來說可以寫成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決.(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。
            最后由學(xué)生說出1,1,.
            解決后由教師小結(jié)比較大小的方法。
            (1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。
            (2)搭橋比較法:用特殊的數(shù)1或0.
            導(dǎo)函數(shù)教案篇十三
            (二)解析:本節(jié)課要學(xué)的內(nèi)容指的是會(huì)判定函數(shù)在某個(gè)區(qū)間上的單調(diào)性、會(huì)確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問題,理解它關(guān)鍵就是要學(xué)會(huì)轉(zhuǎn)換式子。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識(shí),本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點(diǎn)是應(yīng)用定義證明函數(shù)在某個(gè)區(qū)間上的單調(diào)性,解決重點(diǎn)的關(guān)鍵是嚴(yán)格按過程進(jìn)行證明。
            二、教學(xué)目標(biāo)及解析。
            (一)教學(xué)目標(biāo):
            掌握用定義證明函數(shù)單調(diào)性的步驟,會(huì)求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識(shí)解決問題的能力。
            (二)解析:
            會(huì)證明就是指會(huì)利用三步曲證明函數(shù)的單調(diào)性;會(huì)求函數(shù)的單調(diào)區(qū)間就是指會(huì)利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識(shí)解決問題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問題。
            三、問題診斷分析。
            在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是如何才能準(zhǔn)確確定的符號(hào),產(chǎn)生這一問題的原因是學(xué)生對(duì)代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學(xué)生的實(shí)際情況進(jìn)行知識(shí)補(bǔ)習(xí),特別是因式分解、二次根式中的分母有理化的補(bǔ)習(xí)。
            在本節(jié)課的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂茫ǎ?,有利于()?BR>    導(dǎo)函數(shù)教案篇十四
            (1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究.
            (2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分.
            (3)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.
            教法建議。
            (1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是.
            (2)對(duì)底數(shù)的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來.
            關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.
            導(dǎo)函數(shù)教案篇十五
            1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。
            2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。
            3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問題。
            過程與方法。
            1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
            2、經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
            情感與價(jià)值觀。
            1、經(jīng)歷函數(shù)概念的抽象概括過程,體會(huì)函數(shù)的模型思想。
            2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。
            1、掌握函數(shù)概念。
            2、判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。
            3、能把實(shí)際問題抽象概括為函數(shù)問題。
            1、理解函數(shù)的概念。
            2、能把實(shí)際問題抽象概括為函數(shù)問題。
            一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。
            『師』:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?
            導(dǎo)函數(shù)教案篇十六
            難點(diǎn):其一般的性質(zhì)分析,再由性質(zhì)得到一般圖像。
            三.教學(xué)方法和用具。
            方法:歸納總結(jié),數(shù)形結(jié)合,分析驗(yàn)證。
            用具:幻燈片,幾何畫板,黑板。
            四.教學(xué)過程。
            (幻燈片見附件)。
            1.設(shè)置問題情境,找出所得函數(shù)的共同形式,由形式給出冪函數(shù)的定義(幻燈片1?幻燈片2)(板書)。
            2.從形式上比較指數(shù)函數(shù)和冪函數(shù)的異同(幻燈片3)。
            3.利用定義的形式,判斷所給函數(shù)是否是冪函數(shù),并得出判斷依據(jù)(幻燈片4)。
            4.畫常見的三種冪函數(shù)的圖像,再讓學(xué)生用描點(diǎn)法畫另兩種,并用幾何畫板驗(yàn)證(幻燈片5)(幾何畫板)。
            5.用幾何畫板畫出這五個(gè)冪函數(shù)的圖像,觀察圖像完成書中冪函數(shù)的函數(shù)性質(zhì)的表格,并分析得出更一般的結(jié)論(板書)(幾何畫板)。
            導(dǎo)函數(shù)教案篇十七
            3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.
            利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
            (1). ;(2). ;(3). .
            喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
            由sin300= 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.
            1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;
            2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.
            遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對(duì)知識(shí)的理解與掌握以深入腦中,此時(shí)以類同問題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個(gè)過程,加深了知識(shí)的深刻記憶,對(duì)學(xué)生無形中鼓舞了氣勢(shì),增強(qiáng)了自信,加大了挑戰(zhàn).而新知識(shí)點(diǎn)的自主探討,對(duì)教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步.
            誘導(dǎo)公式(三)、(四)
            給出本節(jié)課的課題
            三角函數(shù)誘導(dǎo)公式
            標(biāo)題的后出,讓學(xué)生在經(jīng)歷整個(gè)探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識(shí)點(diǎn)已經(jīng)輕松掌握,同時(shí)也是對(duì)本節(jié)課內(nèi)容的小結(jié).
            的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個(gè)把 看成銳角時(shí)原函數(shù)值的符合.(即:函數(shù)名不變,符號(hào)看象限.)
            設(shè)計(jì)意圖
            簡(jiǎn)便記憶公式.
            求下列三角函數(shù)的值:(1).sin( ); (2). co.
            設(shè)計(jì)意圖
            本練習(xí)的設(shè)置重點(diǎn)體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會(huì)靈活運(yùn)用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對(duì)具體負(fù)角而言的.
            學(xué)生練習(xí)
            化簡(jiǎn): .
            設(shè)計(jì)意圖
            重點(diǎn)加強(qiáng)對(duì)三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用.
            1.小結(jié)使用誘導(dǎo)公式化簡(jiǎn)任意角的三角函數(shù)為銳角的步驟.
            2.體會(huì)數(shù)形結(jié)合、對(duì)稱、化歸的思想.
            3.“學(xué)會(huì)”學(xué)習(xí)的習(xí)慣.
            1.課本p-27,第1,2,3小題;
            2.附加課外題 略.
            設(shè)計(jì)意圖
            加強(qiáng)學(xué)生對(duì)三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”.
            八.課后反思
            對(duì)本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計(jì)之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,針對(duì)教材的內(nèi)容,編排了一系列問題,讓學(xué)生親歷知識(shí)發(fā)生、發(fā)展的過程,積極投入到思維活動(dòng)中來,通過與學(xué)生的互動(dòng)交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開中,引導(dǎo)學(xué)生用已學(xué)的知識(shí)、方法予以解決,并獲得知識(shí)體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),感受“觀察——?dú)w納——概括——應(yīng)用”等環(huán)節(jié),在知識(shí)的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識(shí),達(dá)到了設(shè)計(jì)中所預(yù)想的目標(biāo)。
            然而還有一些缺憾:對(duì)本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。
            在以后的教學(xué)中,對(duì)于一些較簡(jiǎn)單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計(jì)課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標(biāo)準(zhǔn)》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
            導(dǎo)函數(shù)教案篇十八
            (二)能畫出簡(jiǎn)單函數(shù)的圖象,會(huì)列表、描點(diǎn)、連線;。
            (三)能從圖象上由自變量的值求出對(duì)應(yīng)的函數(shù)的近似值。
            重點(diǎn):認(rèn)識(shí)函數(shù)圖象的意義,會(huì)對(duì)簡(jiǎn)單的函數(shù)列表、描點(diǎn)、連線畫出函數(shù)圖象。
            難點(diǎn):對(duì)已恬圖象能讀圖、識(shí)圖,從圖象解釋函數(shù)變化關(guān)系。
            1.什么叫函數(shù)?
            2.什么叫平面直角坐標(biāo)系?
            3.在坐標(biāo)平面內(nèi),什么叫點(diǎn)的橫坐標(biāo)?什么叫點(diǎn)的.縱坐標(biāo)?
            4.如果點(diǎn)a的橫坐標(biāo)為3,縱坐標(biāo)為5,請(qǐng)用記號(hào)表示a(3,5).
            5.請(qǐng)?jiān)谧鴺?biāo)平面內(nèi)畫出a點(diǎn)。
            6.如果已知一個(gè)點(diǎn)的坐標(biāo),可在坐標(biāo)平面內(nèi)畫出幾個(gè)點(diǎn)?反過來,如果坐標(biāo)平面內(nèi)的一個(gè)點(diǎn)確定,這個(gè)點(diǎn)的坐標(biāo)有幾個(gè)?這樣的點(diǎn)和坐標(biāo)的對(duì)應(yīng)關(guān)系,叫做什么對(duì)應(yīng)?(答:叫做坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)一一對(duì)應(yīng))。
            我們?cè)谇皫坠?jié)課已經(jīng)知道,函數(shù)關(guān)系可以用解析式表示,像y=2x+1就表示以x為自變量時(shí),y是x的函數(shù)。
            這個(gè)函數(shù)關(guān)系中,y與x的函數(shù)。
            這個(gè)函數(shù)關(guān)系中,y與x的對(duì)應(yīng)關(guān)系,我們還可通知在坐標(biāo)平面內(nèi)畫出圖象的方法來表示。
            導(dǎo)函數(shù)教案篇十九
            通過對(duì)這節(jié)課的教學(xué)研究,我深刻地認(rèn)識(shí)到新課程背景下的數(shù)學(xué)課堂教學(xué)應(yīng)注意:
            1、教師要“放得開”,做一個(gè)邊緣人。我們應(yīng)該充分相信學(xué)生,給學(xué)生成長的機(jī)會(huì)和空間。不再搞“包辦代替”,不能急性子。凡是學(xué)生能做的,就應(yīng)該讓他們自主去做;凡是學(xué)生之間能合作完成的,就應(yīng)該讓他們自主探究。給學(xué)生一滴水的機(jī)會(huì),也許他會(huì)收獲一片海洋。
            2、要做到“問題引領(lǐng)”,用問題牽引學(xué)習(xí)。本節(jié)課的設(shè)計(jì)給予學(xué)生的基礎(chǔ),設(shè)計(jì)了多個(gè)學(xué)生容易解決的問題串,這樣,能夠在循序漸進(jìn)中學(xué)到知識(shí)。
            3、要?jiǎng)?chuàng)造性地使用教材。教學(xué)過程中,不應(yīng)局限于教材,而應(yīng)充分利用教材這個(gè)平臺(tái),伸向與教材有關(guān)的領(lǐng)域。數(shù)學(xué)是思維的體操,因此,若能對(duì)數(shù)學(xué)教材科學(xué)安排,對(duì)問題妙引導(dǎo),有意識(shí)地引導(dǎo)學(xué)生有意識(shí)地主動(dòng)學(xué)習(xí)更多更全面的數(shù)學(xué)知識(shí),變“傳授”為“探究”,充分暴露知識(shí)的發(fā)生發(fā)展過程,以探索者的身份去發(fā)現(xiàn)問題、總結(jié)規(guī)律。
            4、注重探究,體驗(yàn)知識(shí)的形成過程。數(shù)學(xué)教學(xué)從本質(zhì)上講,是教師和學(xué)生以課堂為主渠道的交流活動(dòng),是教師和學(xué)生在某種教學(xué)情境中的探究活動(dòng)。這節(jié)課教師本著“讓學(xué)生充分經(jīng)歷知識(shí)的形成、發(fā)展和應(yīng)用過程,充分體驗(yàn)數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造歷程”的教學(xué)理念,對(duì)教學(xué)過程和教學(xué)手段作了充分的準(zhǔn)備。整節(jié)課學(xué)生在教師的引導(dǎo)下逐步探索、不斷發(fā)現(xiàn),品嘗到了數(shù)學(xué)學(xué)習(xí)的樂趣,教師的主導(dǎo)作用和學(xué)生的主體地位都得到了很好地體現(xiàn)。
            總之,我們的教學(xué)工作是一項(xiàng)內(nèi)涵豐富的系統(tǒng)工程。教學(xué)中用問題引領(lǐng)學(xué)生,提升效率,不是一朝一夕就可以取得明顯成效的,它更是一個(gè)復(fù)雜的課題。“冰凍三尺,非一日之寒”,在教學(xué)中必須循序漸進(jìn),長期實(shí)踐,與時(shí)俱進(jìn),爭(zhēng)取做教學(xué)改革的有心人,只有這樣才能在教學(xué)研究工作中有所作為。因此,在實(shí)際教學(xué)中,我們應(yīng)時(shí)刻以學(xué)生為中心,充分給予學(xué)生成長的時(shí)間,鼓勵(lì)學(xué)生自主探究,采用適時(shí)激勵(lì)與點(diǎn)撥的方法使學(xué)生的思維活躍起來,讓課堂真正成為學(xué)生學(xué)習(xí)、發(fā)現(xiàn)的樂園。
            導(dǎo)函數(shù)教案篇二十
            學(xué)生能理解函數(shù)的概念,掌握常見的函數(shù)(sum,average,max,min等)。學(xué)生能夠根據(jù)所學(xué)函數(shù)知識(shí)判別計(jì)算得到的數(shù)據(jù)的正確性。
            學(xué)生能夠使用函數(shù)(sum,average,max,min等)計(jì)算所給數(shù)據(jù)的和、平均值、最大最小值。學(xué)生通過自主探究學(xué)會(huì)新函數(shù)的使用。并且能夠根據(jù)實(shí)際工作生活中的需求選擇和正確使用函數(shù),并能夠?qū)τ?jì)算的數(shù)據(jù)結(jié)果合理利用。
            學(xué)生自主學(xué)習(xí)意識(shí)得到提高,在任務(wù)的完成過程中體會(huì)到成功的喜悅,并在具體的任務(wù)中感受環(huán)境保護(hù)的重要性及艱巨性。
            sum函數(shù)的插入和使用。
            函數(shù)的格式、函數(shù)參數(shù)正確使用以及修改。
            任務(wù)驅(qū)動(dòng),觀察分析,通過實(shí)踐掌握,發(fā)現(xiàn)問題,協(xié)作學(xué)習(xí)。
            excel文件《2000年全國各省固體廢棄物情況》、統(tǒng)計(jì)表格一張。
            1、展示投影片,創(chuàng)設(shè)數(shù)據(jù)處理環(huán)境。
            2、以環(huán)境污染中的固體廢棄物數(shù)據(jù)為素材來進(jìn)行教學(xué)。
            3、展示《2000年全國各省固體廢棄物情況》工作簿中的《固體廢棄物數(shù)量狀況》工作表,要求根據(jù)已學(xué)知識(shí)計(jì)算各省各類廢棄物的總量。
            函數(shù)名表示函數(shù)的計(jì)算關(guān)系。
            =sum(起始單元格:結(jié)束單元格)。
            4、問:求某一種廢棄物的全國總量用公式法和自動(dòng)求和哪個(gè)方便?
            注意參數(shù)的正確性。
            1、簡(jiǎn)單描述函數(shù):函數(shù)是一些預(yù)定義了的計(jì)算關(guān)系,可將參數(shù)按特定的順序或結(jié)構(gòu)進(jìn)行計(jì)算。
            在公式中計(jì)算關(guān)系是我們自己定義的,而函數(shù)給我們提供了大量的已定義好的計(jì)算關(guān)系,我們只需要根據(jù)不同的處理目的去選擇、提供參數(shù)去套用就可以了。
            2、使用函數(shù)sum計(jì)算各廢棄物的全國總計(jì)。(強(qiáng)調(diào)計(jì)算范圍的正確性)。
            3、通過介紹average函數(shù)學(xué)習(xí)函數(shù)的輸入。
            函數(shù)的輸入與一般的公式?jīng)]有什么不同,用戶可以直接在“=”后鍵入函數(shù)及其參數(shù)。例如我們選定一個(gè)單元格后,直接鍵入“=average(d3:d13)”就可以在該單元格中創(chuàng)建一個(gè)統(tǒng)計(jì)函數(shù),統(tǒng)計(jì)出該表格中比去年同期增長%的平均數(shù)。
            (參數(shù)的格式要嚴(yán)格;符號(hào)要用英文符號(hào),以避免出錯(cuò)。)。
            有的同學(xué)開始瞪眼睛了,不大好用吧?
            因?yàn)檫@種方法要求我們對(duì)函數(shù)的使用比較熟悉,如果我們對(duì)需要使用的函數(shù)名稱、參數(shù)格式等不是非常有把握,則建議使用“插入函數(shù)”對(duì)話框來輸入函數(shù)。
            用相同任務(wù)演示操作過程。
            4、引出max和min函數(shù)。
            探索任務(wù):利用提示應(yīng)用max和min函數(shù)計(jì)算各廢棄物的最大和最小值。
            5、引出countif函數(shù)。
            探索任務(wù):利用countif函數(shù)按要求計(jì)算并體會(huì)函數(shù)的不同格式。
            1、教師小結(jié)比較。
            2、根據(jù)得到的數(shù)據(jù)引發(fā)出怎樣的思考。
            四、???????。
            1、廢棄物數(shù)量大危害大,各個(gè)省都在想各種辦法進(jìn)行處理,把對(duì)環(huán)境的污染降到最低。
            2、研究任務(wù):運(yùn)用表格數(shù)據(jù),計(jì)算各省廢棄物處理率的最大,最小值,以及廢棄物處理率大于90%,小于70%的省份個(gè)數(shù),并對(duì)應(yīng)計(jì)算各省處理的廢棄物量和剩余的廢棄物量及全國總數(shù)。
            1、分析存在問題,表揚(yáng)練習(xí)完成比較好的同學(xué),強(qiáng)調(diào)鼓勵(lì)大家探究學(xué)習(xí)的精神。
            2、把結(jié)果進(jìn)行記錄,上繳或在課后進(jìn)行分析比較,寫出一小論文。
            1、讓學(xué)生體會(huì)到固體廢棄物數(shù)量的巨大。
            2、處理真實(shí)數(shù)據(jù)引發(fā)學(xué)生興趣。
            通過比較得到兩種方法的優(yōu)劣。
            學(xué)生的計(jì)算結(jié)果在現(xiàn)實(shí)中的運(yùn)用,真正體現(xiàn)信息技術(shù)課是收集,分析數(shù)據(jù),的工具。
            通過類比學(xué)習(xí),提高學(xué)生的自學(xué)能力和分析問題能力。
            實(shí)際數(shù)據(jù),引發(fā)思考。
            學(xué)生應(yīng)用課堂所學(xué)知識(shí)。
            學(xué)生帶著任務(wù)離開教室,課程之間整合,學(xué)生環(huán)境保護(hù)知識(shí)得到加強(qiáng)。
            觀看投影。
            學(xué)生用公式法和自動(dòng)求和兩種方法計(jì)算各省廢棄物總量。
            回答可用自動(dòng)求和。
            動(dòng)手操作。
            計(jì)算各類廢氣物的全國各省平均。
            練習(xí)。
            練習(xí)。
            用自己計(jì)算所得數(shù)據(jù)對(duì)現(xiàn)實(shí)進(jìn)行分析。
            應(yīng)用所學(xué)知識(shí)。
            練習(xí)并記錄數(shù)據(jù)。
            導(dǎo)函數(shù)教案篇二十一
            2.通過對(duì)抽象符號(hào)的認(rèn)識(shí)與使用,使學(xué)生在符號(hào)表示方面的能力得以提高.。
            難點(diǎn):重點(diǎn)是在映射的基礎(chǔ)上理解的概念;
            難點(diǎn)是對(duì)抽象符號(hào)的認(rèn)識(shí)與使用.。
            投影儀。
            自學(xué)研究與啟發(fā)討論式.。
            (要求學(xué)生盡量用自己的話描述初中的定義,并試舉出各類學(xué)過的例子)。
            提問1.是嗎?
            (由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是,理由是沒有兩個(gè)變量,也有的認(rèn)為是,理由是可以可做.)。
            現(xiàn)在請(qǐng)同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)。
            提問2.新的的定義是什么?能否用最簡(jiǎn)單的語言來概括一下.。
            (板書)2.2。
            一、的概念。
            問題3:映射與有何關(guān)系?(一定是映射嗎?映射一定是嗎?)。
            引導(dǎo)學(xué)生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。
            2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書)。
            然后讓學(xué)生試回答剛才關(guān)于是不是的問題,要求從映射的角度解釋.。
            此時(shí)學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的定義,故是一個(gè),這樣解釋就很自然.。
            教師繼續(xù)把問題引向深入,提出在映射的觀點(diǎn)下如何解釋是個(gè)?
            從映射角度看可以是其中定義域是,值域是.。
            3.的三要素及其作用(板書)。
            例1以下關(guān)系式表示嗎?為什么?
            (1);(2).。
            解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。
            (2)由有意義得,解得.定義域?yàn)?,值域?yàn)椋?BR>    由以上兩題可以看出三要素的作用。
            (1)判斷一個(gè)關(guān)系是否存在.(板書)。
            例2下列各中,哪一個(gè)與是同一個(gè).。
            (1);(2)(3);(4).。
            解:先認(rèn)清,它是(定義域)到(值域)的映射,其中。
            .
            再看(1)定義域?yàn)榍遥遣煌模?2)定義域?yàn)?,是不同的?BR>    (4),法則是不同的;
            而(3)定義域是,值域是,法則是乘2減1,與完全相同.。
            (2)判斷兩個(gè)是否相同.(板書)。
            4.對(duì)符號(hào)的理解(板書)。
            例3已知試求(板書)。
            分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計(jì)算.。
            含義1:當(dāng)自變量取3時(shí),對(duì)應(yīng)的值即;
            含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.。
            計(jì)算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個(gè)特殊值.。
            1.的定義。
            2.對(duì)三要素的認(rèn)識(shí)。
            3.對(duì)符號(hào)的認(rèn)識(shí)。
            五、
            2.2例1.例3.。
            一.的概念。
            1.定義。
            2.本質(zhì)例2.小結(jié):
            3.三要素的認(rèn)識(shí)及作用。
            4.對(duì)符號(hào)的理解。
            探究活動(dòng)。
            答案:
            導(dǎo)函數(shù)教案篇二十二
            (要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)
            提問1.是函數(shù)嗎?
            (由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個(gè)變量,也有的認(rèn)為是函數(shù),理由是可以可做.)
            二、新課
            現(xiàn)在請(qǐng)同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
            提問2.新的函數(shù)的定義是什么?能否用最簡(jiǎn)單的語言來概括一下.
            (板書)2.2函數(shù)
            一、函數(shù)的概念
            問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
            引導(dǎo)學(xué)生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.
            2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)
            然后讓學(xué)生試回答剛才關(guān)于是不是函數(shù)的問題,要求從映射的角度解釋.
            此時(shí)學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的函數(shù)定義,故是一個(gè)函數(shù),這樣解釋就很自然.
            教師繼續(xù)把問題引向深入,提出在映射的觀點(diǎn)下如何解釋是個(gè)函數(shù)?
            從映射角度看可以是其中定義域是,值域是.
            3.函數(shù)的三要素及其作用(板書)
            以下關(guān)系式表示函數(shù)嗎?為什么?
            (1);(2).
            解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).
            (2)由有意義得,解得.定義域?yàn)?,值域?yàn)椋?BR>    由以上兩題可以看出三要素的作用
            (1)判斷一個(gè)函數(shù)關(guān)系是否存在.(板書)
            (1);(2) (3);(4).
            解:先認(rèn)清,它是(定義域)到(值域)的映射,其中
            .
            再看(1)定義域?yàn)榍遥遣煌模?2)定義域?yàn)?,是不同的?BR>    (4),法則是不同的;
            而(3)定義域是,值域是,法則是乘2減1,與完全相同.
            (2)判斷兩個(gè)函數(shù)是否相同.(板書)
            4.對(duì)函數(shù)符號(hào)的理解(板書)
            已知函數(shù)試求(板書)
            分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計(jì)算.
            含義1:當(dāng)自變量取3時(shí),對(duì)應(yīng)的函數(shù)值即;
            含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.
            計(jì)算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個(gè)特殊值.
            三、小結(jié)
            1.函數(shù)的定義
            2.對(duì)函數(shù)三要素的認(rèn)識(shí)
            3.對(duì)函數(shù)符號(hào)的認(rèn)識(shí)
            四、作業(yè):略
            五、
            2.2函數(shù)例1.例3.
            一.函數(shù)的概念
            1.定義
            2.本質(zhì)例2.小結(jié):
            3.函數(shù)三要素的認(rèn)識(shí)及作用
            4.對(duì)函數(shù)符號(hào)的理解
            答案: