家庭是人們生活中最溫暖的港灣,是人們心靈的歸宿。結(jié)合實(shí)際情況進(jìn)行客觀評(píng)價(jià)。在寫(xiě)總結(jié)時(shí),可以參考以下的范文,了解一些寫(xiě)作技巧和方法。
初中數(shù)學(xué)建模論文篇一
使學(xué)生的綜合應(yīng)用能力、實(shí)踐創(chuàng)新能力和綜合應(yīng)用素質(zhì)等多方面均能得到提升和發(fā)展。
對(duì)于醫(yī)學(xué)專業(yè)的學(xué)生來(lái)說(shuō),在校所學(xué)的數(shù)學(xué)基礎(chǔ)理論課程比較有限,并且學(xué)生對(duì)純粹的數(shù)學(xué)知識(shí)與復(fù)雜的理論推導(dǎo)已經(jīng)極為厭倦,如果數(shù)學(xué)建模還是以傳統(tǒng)的“灌輸式”和教師“主導(dǎo)型”為主、簡(jiǎn)單的應(yīng)用案例為主要教學(xué)內(nèi)容的話,其結(jié)果勢(shì)必會(huì)使學(xué)生有一種再講數(shù)學(xué)課和做應(yīng)用題的感覺(jué),既不能很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,也不能體現(xiàn)數(shù)學(xué)建模的思想方法和本質(zhì)特色。
因此,如何使學(xué)生擺脫這種尷尬的現(xiàn)狀已成為我們教學(xué)的一大難點(diǎn)。針對(duì)這種情況,在教學(xué)模式上,我們大膽嘗試研究型教學(xué)模式,即采用“從實(shí)踐中來(lái),到實(shí)踐中去”的教學(xué)理念。一方面,從最現(xiàn)實(shí)、最熱門(mén)的醫(yī)學(xué)話題出發(fā),從學(xué)生最感興趣的.問(wèn)題入手,激發(fā)學(xué)生的學(xué)習(xí)興趣和進(jìn)一步學(xué)習(xí)的主動(dòng)性,使他們從一開(kāi)始就能進(jìn)入到學(xué)習(xí)的角色中去;另一方面,通過(guò)開(kāi)展多種方式的實(shí)踐教學(xué)活動(dòng),使學(xué)生在實(shí)踐中掌握數(shù)學(xué)建模的常用方法和基本技能,忽略繁瑣的數(shù)學(xué)推導(dǎo)過(guò)程,讓學(xué)生體會(huì)發(fā)現(xiàn)問(wèn)題和思考問(wèn)題的過(guò)程,培養(yǎng)學(xué)生解決問(wèn)題的創(chuàng)新能力。
近些年來(lái),我們開(kāi)設(shè)的醫(yī)藥數(shù)學(xué)建模課受到了學(xué)生的一致好評(píng),其關(guān)鍵之處在于我們一改傳統(tǒng)的教學(xué)模式,通過(guò)組織數(shù)學(xué)建模興趣研討班,讓每位同學(xué)都能充分地參與到研究中去并且使每位學(xué)生都有發(fā)言的機(jī)會(huì)。這些舉措旨在進(jìn)一步激發(fā)學(xué)生的創(chuàng)新意識(shí),提高學(xué)生的數(shù)學(xué)建模實(shí)踐能力。研討班面向全校各類醫(yī)學(xué)專業(yè)的學(xué)生,并以三人為單位,劃分成若干個(gè)組,通過(guò)專題研討的形式開(kāi)展活動(dòng)。實(shí)踐證明:通過(guò)這種研討過(guò)程,學(xué)生不僅對(duì)所學(xué)的醫(yī)學(xué)知識(shí)有了更深刻的理解與認(rèn)識(shí),在文獻(xiàn)資料查閱、計(jì)算機(jī)編程、語(yǔ)言表達(dá)能力等諸多方面也都有了顯著的提高。通過(guò)這個(gè)過(guò)程的學(xué)習(xí),為學(xué)生今后從事醫(yī)學(xué)科研工作打下了良好的基礎(chǔ)。
為了有效的培養(yǎng)學(xué)生綜合應(yīng)用能力和深層次學(xué)習(xí)的習(xí)慣與意識(shí),我們?cè)诮虒W(xué)方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導(dǎo),突出知識(shí)的應(yīng)用思想和應(yīng)用意識(shí),讓學(xué)生帶著問(wèn)題上課,嘗試在解決問(wèn)題中與教師進(jìn)行交流,下課帶著問(wèn)題回去。
在課堂教學(xué)中,重點(diǎn)講解發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的方法與技巧。通過(guò)課前作業(yè),引導(dǎo)學(xué)生自我發(fā)現(xiàn)問(wèn)題;通過(guò)課堂講解和研討,引導(dǎo)學(xué)生解決問(wèn)題;通過(guò)課后作業(yè),總結(jié)和鞏固所學(xué)知識(shí),學(xué)習(xí)應(yīng)用與拓展知識(shí)。這種完全以學(xué)生為主,教師為輔的做法,有利于培養(yǎng)學(xué)生樹(shù)立勇于探索求知的信心和探索新知識(shí)的能力與意識(shí),提高學(xué)生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學(xué)生的綜合應(yīng)用素質(zhì)。
在現(xiàn)實(shí)生活中的實(shí)際問(wèn)題是比較復(fù)雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應(yīng)用方能解決。
因此,以實(shí)際問(wèn)題驅(qū)動(dòng)的教學(xué)模式,主要是引導(dǎo)學(xué)生如何將復(fù)雜的實(shí)際問(wèn)題分解為一系列簡(jiǎn)單的小問(wèn)題,在解決每一個(gè)小問(wèn)題的過(guò)程中,讓學(xué)生學(xué)習(xí)并掌握相關(guān)的數(shù)學(xué)知識(shí)與方法。這種在應(yīng)用中學(xué)習(xí)的教學(xué)方法,在很大程度上解決了學(xué)生普遍存在的“學(xué)數(shù)學(xué)有什么用、學(xué)了數(shù)學(xué)不知怎么用”的困惑。
在整個(gè)教學(xué)過(guò)程中,貫穿以學(xué)生為主體,通過(guò)案例分析引導(dǎo)學(xué)生的思維方法,針對(duì)一個(gè)案例的解決過(guò)程和方法,要求實(shí)現(xiàn)舉一反三,促使學(xué)生對(duì)所掌握的知識(shí)進(jìn)行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學(xué)生在學(xué)習(xí)和問(wèn)題的解決中學(xué)會(huì)不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問(wèn)題,通過(guò)不斷地歸納演繹、對(duì)比分析、總結(jié)經(jīng)驗(yàn)、彌補(bǔ)不足,進(jìn)一步學(xué)習(xí)相關(guān)知識(shí)和方法,再進(jìn)行實(shí)踐,從而不斷增強(qiáng)自身的綜合應(yīng)用能力和素質(zhì)。
隨著醫(yī)學(xué)院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對(duì)培養(yǎng)適應(yīng)科學(xué)技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學(xué)人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專業(yè)人才已成為亟待解決的問(wèn)題之一。本文探討了醫(yī)藥數(shù)學(xué)建模課程的開(kāi)設(shè)對(duì)培養(yǎng)大學(xué)生實(shí)踐創(chuàng)新能力的幾點(diǎn)做法。教學(xué)實(shí)踐證明:數(shù)學(xué)建模課充分鍛煉了學(xué)生的各項(xiàng)能力,是提高醫(yī)學(xué)專業(yè)學(xué)生綜合應(yīng)用素質(zhì)行之有效的方法。
初中數(shù)學(xué)建模論文篇二
數(shù)學(xué)是在實(shí)際應(yīng)用的需求中產(chǎn)生的,要描述一個(gè)實(shí)際現(xiàn)象可以有很多種方式,為了實(shí)際問(wèn)題描述的更具邏輯性、科學(xué)性、客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語(yǔ)言來(lái)描述各種現(xiàn)象,這種語(yǔ)言就是數(shù)學(xué)。數(shù)學(xué)建模則是架于數(shù)學(xué)理論和實(shí)際問(wèn)題之間的橋梁,數(shù)學(xué)模型是對(duì)于現(xiàn)實(shí)生活中的特定對(duì)象,根據(jù)其內(nèi)在的規(guī)律,做出一些必要的假設(shè),為了一個(gè)特定目的,運(yùn)用數(shù)學(xué)工具,得到的一個(gè)數(shù)學(xué)結(jié)構(gòu),用來(lái)解釋現(xiàn)實(shí)現(xiàn)象,預(yù)測(cè)未來(lái)狀況。因此,數(shù)學(xué)建模就是用數(shù)學(xué)語(yǔ)言描述實(shí)際現(xiàn)象的過(guò)程。
大部分的獨(dú)立院校的數(shù)學(xué)建模工作純?cè)谝欢ǖ膯?wèn)題,主要體現(xiàn)在以下幾個(gè)方面:(一)學(xué)生方面的問(wèn)題。獨(dú)立院校的大部分學(xué)生的數(shù)學(xué)功底差,對(duì)數(shù)學(xué)的學(xué)習(xí)興趣不大,普遍認(rèn)為數(shù)學(xué)的學(xué)習(xí)對(duì)自身的專業(yè)的幫助不大。從而更不愿意接觸與數(shù)學(xué)有關(guān)的數(shù)學(xué)建模,對(duì)數(shù)學(xué)建模競(jìng)賽的興趣不大。在獨(dú)立院校中,參加數(shù)學(xué)建模競(jìng)賽的大都是低年級(jí)的學(xué)生,而這些學(xué)生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整,他們往往參加了一屆數(shù)學(xué)競(jìng)賽并未獲得獎(jiǎng)項(xiàng)后就不愿意再次參加。而高年級(jí)的同學(xué)忙于其他的就業(yè)、考研等壓力,無(wú)暇參加數(shù)學(xué)建模競(jìng)賽的培訓(xùn)。(二)教資方面的問(wèn)題。首先。傳統(tǒng)的教學(xué)是知識(shí)為中心、以教師的講解為中心。數(shù)學(xué)建模的教學(xué)要求教師以學(xué)生為中心,培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)的能力,發(fā)展學(xué)生的創(chuàng)新能力和創(chuàng)造能力。獨(dú)立院校外聘的老師常常對(duì)獨(dú)立院校的學(xué)生不夠了解,這直接影響到教學(xué)成果。其次,數(shù)學(xué)建模涉及的知識(shí)面廣,不但包括數(shù)學(xué)的各個(gè)分支,還包含了其他背景的專業(yè)知識(shí)。獨(dú)立院校的教師一部分是才從大學(xué)畢業(yè)不久的研究生,他們對(duì)于數(shù)學(xué)建模教學(xué)和競(jìng)賽的培訓(xùn)經(jīng)驗(yàn)不足,科研能力不是很強(qiáng),對(duì)數(shù)學(xué)的各個(gè)分支的把控能力不強(qiáng),對(duì)其他專業(yè)的了解不夠全面。(三)教學(xué)實(shí)施方面的問(wèn)題。大學(xué)生數(shù)學(xué)建模競(jìng)賽的目的決不僅僅是獲獎(jiǎng),更重要的是通過(guò)參加大學(xué)生數(shù)學(xué)建模競(jìng)賽活動(dòng),促進(jìn)高校數(shù)學(xué)教學(xué)改革,起到培養(yǎng)全體學(xué)生能力、提高全體學(xué)生素質(zhì)的作用。獨(dú)立院校數(shù)學(xué)建模教學(xué)存在很多的問(wèn)題。首先,大學(xué)數(shù)學(xué)建模教育在獨(dú)立院校中的普及性不夠。數(shù)學(xué)建模的宣傳力度不大,課程大多開(kāi)在大一和大二的跨選課,這個(gè)時(shí)候?qū)W生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整。其次就是教材的選取,數(shù)學(xué)建模的相關(guān)教材大都是為了數(shù)學(xué)建模競(jìng)賽而編寫(xiě)的,對(duì)于獨(dú)立院校的學(xué)生來(lái)說(shuō),這些教材的難度系數(shù)大,涉及的知識(shí)面廣,遠(yuǎn)遠(yuǎn)超過(guò)了學(xué)生的接受能力。
(一)讓學(xué)生了解數(shù)學(xué)建模,培養(yǎng)學(xué)習(xí)數(shù)學(xué)建模的興趣。數(shù)學(xué)建模課程的開(kāi)設(shè)有利于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)具體解決實(shí)際問(wèn)題的能力,讓學(xué)生發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué)的用處,改變學(xué)生學(xué)習(xí)數(shù)學(xué)的態(tài)度,提高學(xué)習(xí)數(shù)學(xué)的能力,認(rèn)識(shí)到數(shù)學(xué)的意義和價(jià)值。獨(dú)立院校學(xué)生的數(shù)學(xué)基礎(chǔ)雖然比較差,但是學(xué)生的動(dòng)手能力強(qiáng)。學(xué)??梢栽诙嚅_(kāi)展數(shù)學(xué)建模的講座和課程,讓學(xué)生了解數(shù)學(xué)建模。同時(shí)多向?qū)W生宣傳數(shù)學(xué)建模的成果。(二)在教學(xué)內(nèi)容中滲透數(shù)學(xué)建模思想和方法。1.在日常數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)教學(xué)重視的是知識(shí)的培養(yǎng)和傳輸,而忽視的是實(shí)際應(yīng)用能力。教師的教學(xué)目標(biāo)是使學(xué)生掌握數(shù)學(xué)理論知識(shí)。一般的教學(xué)方法是:教師引入相關(guān)的的基本概念,證明定理,推導(dǎo)公式,列舉例題,學(xué)生記住公式,套用公式,掌握解題方法與技巧。學(xué)生往往學(xué)習(xí)了不少的純粹的數(shù)學(xué)理論知識(shí),卻不知道如何應(yīng)用到實(shí)際問(wèn)題中。數(shù)學(xué)建模課程與傳統(tǒng)數(shù)學(xué)課程相比差別較大,學(xué)校開(kāi)設(shè)的數(shù)學(xué)建模跨選課及數(shù)學(xué)建模培訓(xùn)班,對(duì)培養(yǎng)學(xué)生觀察能力、分析能力、想象力、邏輯能力、解決實(shí)際問(wèn)題的能力起到了很好的作用。由于學(xué)校開(kāi)設(shè)的數(shù)學(xué)建模課程大多是選修課程,課時(shí)較少,參選的學(xué)生也有限,數(shù)學(xué)建模的作用不能很好的向?qū)W生傳輸。高等數(shù)學(xué)中的很多內(nèi)容都與數(shù)學(xué)建模的思想有關(guān),因此,在大學(xué)數(shù)學(xué)課程的教學(xué)過(guò)程中,教師應(yīng)有意識(shí)地結(jié)合傳統(tǒng)的數(shù)學(xué)課程的特點(diǎn),將數(shù)學(xué)建模的思想和內(nèi)容融入到數(shù)學(xué)課堂教學(xué)中。這樣既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又能很好的將突出數(shù)學(xué)建模的思想。2.數(shù)學(xué)建模與專業(yè)緊密聯(lián)系,發(fā)揮數(shù)學(xué)對(duì)專業(yè)知識(shí)的服務(wù)作用。數(shù)學(xué)建模與專業(yè)知識(shí)的結(jié)合,不僅可以讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的重要作用,在專業(yè)知識(shí)學(xué)習(xí)中的地位,還可以培養(yǎng)學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣,增強(qiáng)數(shù)學(xué)學(xué)習(xí)的凝聚力,同時(shí)加深對(duì)專業(yè)知識(shí)的理解。通過(guò)專業(yè)知識(shí)作為背景,學(xué)生更愿意嘗試問(wèn)題的研究。在學(xué)習(xí)中遇到的專業(yè)問(wèn)題也可以嘗試用數(shù)學(xué)建模的思想進(jìn)行解決。這有利于提高學(xué)生的綜合能力的培養(yǎng)。3.分層次進(jìn)行數(shù)學(xué)建模教育。大體說(shuō)來(lái)獨(dú)立院校的數(shù)學(xué)建模課程的開(kāi)設(shè)應(yīng)該分成兩個(gè)階段:(1)第一階段:大學(xué)一年級(jí),在這個(gè)階段,大部分學(xué)生對(duì)數(shù)學(xué)建模沒(méi)有了解,這時(shí)候適合開(kāi)設(shè)一些數(shù)學(xué)建模的講座和活動(dòng),讓學(xué)生了解數(shù)學(xué)建模。同時(shí),在日常的數(shù)學(xué)教學(xué)中選擇簡(jiǎn)單的應(yīng)用問(wèn)題和改變后的數(shù)學(xué)建模題目,結(jié)合自身的專業(yè)知識(shí)進(jìn)行講解,讓學(xué)生了解數(shù)學(xué)建模的一般含義?;痉椒ê筒襟E,讓學(xué)生具備初步的建模能力。(2)中級(jí)層次:大學(xué)二、三年級(jí)。在這個(gè)階段,學(xué)生基本具備了完整的數(shù)學(xué)結(jié)構(gòu),具有了基本的建模能力。這個(gè)時(shí)候應(yīng)該開(kāi)設(shè)數(shù)學(xué)建模專業(yè)課程,讓學(xué)生處理比較復(fù)雜的數(shù)學(xué)建模問(wèn)題,讓學(xué)生自己去采集有用的信息,學(xué)會(huì)提出模型的假設(shè),對(duì)數(shù)據(jù)和信息需進(jìn)行整理、分析和判斷,并模型進(jìn)行分析和評(píng)價(jià),最終完成科技論文。
(一)提高數(shù)學(xué)教師自身水平。在數(shù)學(xué)建模教學(xué)過(guò)程中,教師扮演著重要的角色。教師水平的高低決定著數(shù)學(xué)建模教學(xué)能否達(dá)到預(yù)期的目的。數(shù)學(xué)建模的教學(xué),不僅要求教師具備較高的專業(yè)水平,還要求教師具備解決實(shí)際問(wèn)題的能力和豐富的數(shù)學(xué)建模實(shí)踐經(jīng)驗(yàn)。而獨(dú)立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實(shí)踐經(jīng)驗(yàn)。這就對(duì)獨(dú)立院校的的數(shù)學(xué)建模教學(xué)工作產(chǎn)生了很大的障礙。為了提高教師的水平,可以多派青年教師進(jìn)行專業(yè)培訓(xùn)學(xué)習(xí)和學(xué)術(shù)交流,參加各種學(xué)術(shù)會(huì)議、到名校去做訪問(wèn)學(xué)者等等。同時(shí)可以多請(qǐng)著名的數(shù)學(xué)專家教授來(lái)到校園做建模學(xué)術(shù)報(bào)告,使師生拓寬視野,增長(zhǎng)知識(shí),了解建模的新趨勢(shì)、新動(dòng)態(tài)。青年教師還需要依據(jù)特定的教學(xué)內(nèi)容、教學(xué)對(duì)象和教學(xué)環(huán)境對(duì)自己的教學(xué)工作作出計(jì)劃、實(shí)施和調(diào)整以及反思和總結(jié)。青年數(shù)學(xué)教師還必須更新教育理念,改變傳統(tǒng)的教學(xué)理念。只有不斷創(chuàng)新,努力提高自身素質(zhì),才能適應(yīng)新的形勢(shì),符合建模發(fā)展的要求。(二)選取合適的教材。數(shù)學(xué)建模教材使用也存在諸多不足之處。絕大部分高校教學(xué)建模課程采用的是理工類專業(yè)數(shù)學(xué)建模教材。這些教材主要涵蓋的數(shù)學(xué)模型的難度系數(shù)大。而獨(dú)立院校的學(xué)生的基礎(chǔ)薄弱,無(wú)法接收這些模型。在教學(xué)過(guò)程中,教師可以將具體的案例或是歷年的數(shù)學(xué)建模題目做為教學(xué)內(nèi)容。通過(guò)具體的建模實(shí)例,講解建模的思想和方法。一邊講解,一邊讓學(xué)生分組討論,提出對(duì)問(wèn)題的新的理解和對(duì)魔性的認(rèn)識(shí),嘗試提出新的模型。(三)豐富建模活動(dòng)。全面開(kāi)展數(shù)學(xué)建?;顒?dòng)是數(shù)學(xué)建模思想的最重要的形式,它既使課內(nèi)和課外知識(shí)相互結(jié)合,又可以普及建模知識(shí)與提高建模能力結(jié)合,可以培養(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)分析和解決實(shí)際問(wèn)題的能力,可以有效地提升了學(xué)生的數(shù)學(xué)綜合素質(zhì)。學(xué)??梢远ㄆ诘拈_(kāi)展數(shù)學(xué)建模宣傳活動(dòng),擴(kuò)大數(shù)學(xué)建模的知名度。學(xué)校還可以邀請(qǐng)有經(jīng)驗(yàn)的專家和獲獎(jiǎng)學(xué)生開(kāi)展建模講座,提高對(duì)數(shù)學(xué)建模的重視,積極的組織建?;顒?dòng)。實(shí)踐證明,只有根據(jù)獨(dú)立院校的自身特點(diǎn)和培養(yǎng)目標(biāo),對(duì)數(shù)學(xué)建模課程的教學(xué)不斷進(jìn)行改革,才能解決獨(dú)立院校數(shù)學(xué)建模課程教學(xué)的問(wèn)題,才能真正的讓學(xué)生喜歡上數(shù)學(xué),喜歡上數(shù)學(xué)建模。
[1]李大潛.將數(shù)學(xué)建模思想融入數(shù)學(xué)主干課程[j].中國(guó)大學(xué)教育.20xx.
[2]賈曉峰等.大學(xué)生數(shù)學(xué)建模競(jìng)賽與高等學(xué)校數(shù)學(xué)改革[j].工科數(shù)學(xué).20xx:162.
[3]融入數(shù)學(xué)建模思想的高等數(shù)學(xué)教學(xué)研究[j].科技創(chuàng)新導(dǎo)報(bào).20xx:162.
作者:李雙單位:湖北文理學(xué)院理工學(xué)院。
初中數(shù)學(xué)建模論文篇三
大學(xué)數(shù)學(xué)具有高度抽象性和概括性等特點(diǎn),知識(shí)本身難度大再加上學(xué)時(shí)少、內(nèi)容多等教學(xué)現(xiàn)狀常常造成學(xué)生的學(xué)習(xí)積極性不高、知識(shí)掌握不夠透徹、遇到實(shí)際問(wèn)題時(shí)束手無(wú)策,而數(shù)學(xué)建模思想能激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),提高其解決實(shí)際問(wèn)題的能力。數(shù)學(xué)建模活動(dòng)為學(xué)生構(gòu)建了一個(gè)由數(shù)學(xué)知識(shí)通向?qū)嶋H問(wèn)題的橋梁,是學(xué)生的數(shù)學(xué)知識(shí)和應(yīng)用能力共同提高的最佳結(jié)合方式。因此在大學(xué)數(shù)學(xué)教育中應(yīng)加強(qiáng)數(shù)學(xué)建模教育和活動(dòng),讓學(xué)生積極主動(dòng)學(xué)習(xí)建模思想,認(rèn)真體驗(yàn)和感知建模過(guò)程,以此啟迪創(chuàng)新意識(shí)和創(chuàng)新思維,提高其素質(zhì)和創(chuàng)新能力,實(shí)現(xiàn)向素質(zhì)教育的轉(zhuǎn)化和深入。
數(shù)學(xué)建模即抓住問(wèn)題的本質(zhì),抽取影響研究對(duì)象的主因素,將其轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,利用數(shù)學(xué)思維、數(shù)學(xué)邏輯進(jìn)行分析,借助于數(shù)學(xué)方法及相關(guān)工具進(jìn)行計(jì)算,最后將所得的答案回歸實(shí)際問(wèn)題,即模型的檢驗(yàn),這就是數(shù)學(xué)建模的全過(guò)程。一般來(lái)說(shuō)",數(shù)學(xué)建模"包含五個(gè)階段。
1.準(zhǔn)備階段。
主要分析問(wèn)題背景,已知條件,建模目的等問(wèn)題。
2.假設(shè)階段。
做出科學(xué)合理的假設(shè),既能簡(jiǎn)化問(wèn)題,又能抓住問(wèn)題的本質(zhì)。
3.建立階段。
從眾多影響研究對(duì)象的因素中適當(dāng)?shù)厝∩?,抽取主因素予以考慮,建立能刻畫(huà)實(shí)際問(wèn)題本質(zhì)的數(shù)學(xué)模型。
4.求解階段。
對(duì)已建立的數(shù)學(xué)模型,運(yùn)用數(shù)學(xué)方法、數(shù)學(xué)軟件及相關(guān)的工具進(jìn)行求解。
5.驗(yàn)證階段。
用實(shí)際數(shù)據(jù)檢驗(yàn)?zāi)P?,如果偏差較大,就要分析假設(shè)中某些因素的合理性,修改模型,直至吻合或接近現(xiàn)實(shí)。如果建立的模型經(jīng)得起實(shí)踐的檢驗(yàn),那么此模型就是符合實(shí)際規(guī)律的,能解決實(shí)際問(wèn)題或有效預(yù)測(cè)未來(lái)的,這樣的建模就是成功的,得到的模型必被推廣應(yīng)用。
二、加強(qiáng)數(shù)學(xué)建模教育的作用和意義。
(一)加強(qiáng)數(shù)學(xué)建模教育有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高數(shù)學(xué)修養(yǎng)和素質(zhì)。
數(shù)學(xué)建模教育強(qiáng)調(diào)如何把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,進(jìn)而利用數(shù)學(xué)及其有關(guān)的工具解決這些問(wèn)題,因此在大學(xué)數(shù)學(xué)的教學(xué)活動(dòng)中融入數(shù)學(xué)建模思想,鼓勵(lì)學(xué)生參與數(shù)學(xué)建模實(shí)踐活動(dòng),不但可以使學(xué)生學(xué)以致用,做到理論聯(lián)系實(shí)際,而且還會(huì)使他們感受到數(shù)學(xué)的生機(jī)與活力,激發(fā)求知的興趣和探索的欲望,變被動(dòng)學(xué)習(xí)為主動(dòng)參與其效率就會(huì)大為改善。數(shù)學(xué)修養(yǎng)和素質(zhì)自然而然得以培養(yǎng)并提高。
(二)加強(qiáng)數(shù)學(xué)建模教育有助于提高學(xué)生的分析解決問(wèn)題能力、綜合應(yīng)用能力。
數(shù)學(xué)建模問(wèn)題來(lái)源于社會(huì)生活的眾多領(lǐng)域,在建模過(guò)程中,學(xué)生首先需要閱讀相關(guān)的文獻(xiàn)資料,然后應(yīng)用數(shù)學(xué)思維、數(shù)學(xué)邏輯及相關(guān)知識(shí)對(duì)實(shí)際問(wèn)題進(jìn)行深入剖析研究并經(jīng)過(guò)一系列復(fù)雜計(jì)算,得出反映實(shí)際問(wèn)題的最佳數(shù)學(xué)模型及模型最優(yōu)解。因此通過(guò)數(shù)學(xué)建?;顒?dòng)學(xué)生的視野將會(huì)得以拓寬,應(yīng)用意識(shí)、解決復(fù)雜問(wèn)題的能力也會(huì)得到增強(qiáng)和提高。
(三)加強(qiáng)數(shù)學(xué)建模教育有助于培養(yǎng)學(xué)生的創(chuàng)造性思維和創(chuàng)新能力。
所謂創(chuàng)造力是指"對(duì)已積累的知識(shí)和經(jīng)驗(yàn)進(jìn)行科學(xué)地加工和創(chuàng)造,產(chǎn)生新概念、新知識(shí)、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構(gòu)成".現(xiàn)今教育界認(rèn)為,創(chuàng)造力的培養(yǎng)是人才培養(yǎng)的關(guān)鍵,數(shù)學(xué)建?;顒?dòng)的各個(gè)環(huán)節(jié)無(wú)不充滿了創(chuàng)造性思維的挑戰(zhàn)。
很多不同的實(shí)際問(wèn)題,其數(shù)學(xué)模型可以是相同或相似的,這就要求學(xué)生在建模時(shí)觸類旁通,挖掘不同事物間的本質(zhì),尋找其內(nèi)在聯(lián)系。而對(duì)一個(gè)具體的建模問(wèn)題,能否把握其本質(zhì)轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,是完成建模過(guò)程的關(guān)鍵所在。同時(shí)建模題材有較大的靈活性,沒(méi)有統(tǒng)一的標(biāo)準(zhǔn)答案,因此數(shù)學(xué)建模過(guò)程是培養(yǎng)學(xué)生創(chuàng)造性思維,提高創(chuàng)新能力的過(guò)程.
(四)加強(qiáng)數(shù)學(xué)建模教育有助于提高學(xué)生科技論文的撰寫(xiě)能力。
數(shù)學(xué)建模的結(jié)果是以論文形式呈現(xiàn)的,如何將建模思想、建立的`模型、最優(yōu)解及其關(guān)鍵環(huán)節(jié)的處理在論文中清晰地表述出來(lái),對(duì)本科生來(lái)說(shuō)是一個(gè)挑戰(zhàn)。經(jīng)歷數(shù)學(xué)建模全過(guò)程的磨練,特別是數(shù)模論文的撰寫(xiě),學(xué)生的文字語(yǔ)言、數(shù)學(xué)表述能力及論文的撰寫(xiě)能力無(wú)疑會(huì)得到前所未有的提高。
(五)加強(qiáng)數(shù)學(xué)建模教育有助于增強(qiáng)學(xué)生的團(tuán)結(jié)合作精神并提高協(xié)調(diào)組織能力建模問(wèn)題通常較復(fù)雜,涉及的知識(shí)面也很廣,因此數(shù)學(xué)建模實(shí)踐活動(dòng)一般效仿正規(guī)競(jìng)賽的規(guī)則,三人為一隊(duì)在三天內(nèi)以論文形式完成建模題目。要較好地完成任務(wù),離不開(kāi)良好的組織與管理、分工與協(xié)作.
三、開(kāi)展數(shù)學(xué)建模教育及活動(dòng)的具體途徑和有效方法。
即在課堂教學(xué)中,教師以具體的案例作為主要的教學(xué)內(nèi)容,通過(guò)具體問(wèn)題的建模,介紹建模的過(guò)程和思想方法及建模中要注意的問(wèn)題。案例教學(xué)法的關(guān)鍵在于把握兩個(gè)重要環(huán)節(jié):
案例的選取和課堂教學(xué)的組織。
教學(xué)案例一定要精心選取,才能達(dá)到預(yù)期的教學(xué)效果。其選取一般要遵循以下幾點(diǎn)。
1.代表性:案例的選取要具有科學(xué)性,能拓寬學(xué)生的知識(shí)面,突出數(shù)學(xué)建模活動(dòng)重在培養(yǎng)興趣提高能力等特點(diǎn)。
2.原始性:來(lái)自媒體的信息,企事業(yè)單位的報(bào)告,現(xiàn)實(shí)生活和各學(xué)科中的問(wèn)題等等,都是數(shù)學(xué)建模問(wèn)題原始資料的重要來(lái)源。
3.創(chuàng)新性:案例應(yīng)注意選取在建模的某些環(huán)節(jié)上具有挑戰(zhàn)性,能激發(fā)學(xué)生的創(chuàng)造性思維,培養(yǎng)學(xué)生的創(chuàng)新精神和提高創(chuàng)造能力。
案例教學(xué)的課堂組織,一部分是教師講授,從實(shí)際問(wèn)題出發(fā),講清問(wèn)題的背景、建模的要求和已掌握的信息,介紹如何通過(guò)合理的假設(shè)和簡(jiǎn)化建立優(yōu)化的數(shù)學(xué)模型。還要強(qiáng)調(diào)如何用求解結(jié)果去解釋實(shí)際現(xiàn)象即檢驗(yàn)?zāi)P?。另一部分是課堂討論,讓學(xué)生自由發(fā)言各抒己見(jiàn)并提出新的模型,簡(jiǎn)介關(guān)鍵環(huán)節(jié)的處理。最后教師做出點(diǎn)評(píng),提供一些改進(jìn)的方向,讓學(xué)生自己課外獨(dú)立探索和鉆研,這樣既突出了教學(xué)重點(diǎn),又給學(xué)生留下了進(jìn)一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學(xué)生的課堂學(xué)習(xí)興趣和積極性,使傳授知識(shí)變?yōu)閷W(xué)習(xí)知識(shí)、應(yīng)用知識(shí),真正地達(dá)到提高素質(zhì)和培養(yǎng)能力的教學(xué)目的.
(二)開(kāi)展數(shù)模競(jìng)賽的專題培訓(xùn)指導(dǎo)工作。
建立數(shù)學(xué)建模競(jìng)賽指導(dǎo)團(tuán)隊(duì),分專題實(shí)行教師負(fù)責(zé)制。每位教師根據(jù)自己的專長(zhǎng),負(fù)責(zé)講授某一方面的數(shù)學(xué)建模知識(shí)與技巧,并選取相應(yīng)地建模案例進(jìn)行剖析。如離散模型、連續(xù)模型、優(yōu)化模型、微分方程模型、概率模型、統(tǒng)計(jì)回歸模型及數(shù)學(xué)軟件的使用等。學(xué)生根據(jù)自己的薄弱點(diǎn),選擇適合的專題培訓(xùn)班進(jìn)行學(xué)習(xí),以彌補(bǔ)自己的不足。這種針對(duì)性的數(shù)模教學(xué),會(huì)極大地提高教學(xué)效率。
以現(xiàn)代網(wǎng)絡(luò)技術(shù)為依托,建立數(shù)學(xué)建模課程網(wǎng)站,內(nèi)容包括:課程介紹,課程大綱,教師教案,電子課件,教學(xué)實(shí)驗(yàn),教學(xué)錄像,網(wǎng)上答疑等;還可以增加一些有關(guān)欄目,如歷年國(guó)內(nèi)外數(shù)模競(jìng)賽介紹,校內(nèi)競(jìng)賽,專家點(diǎn)評(píng),獲獎(jiǎng)心得交流;同時(shí)提供數(shù)模學(xué)習(xí)資源下載如講義,背景材料,歷年國(guó)內(nèi)外競(jìng)賽題,優(yōu)秀論文等。以此為學(xué)生提供良好的自主學(xué)習(xí)網(wǎng)絡(luò)平臺(tái),實(shí)現(xiàn)課堂教學(xué)與網(wǎng)絡(luò)教學(xué)的有機(jī)結(jié)合,達(dá)到有效地提高學(xué)生數(shù)學(xué)建模綜合應(yīng)用能力的目的。
完全模擬全國(guó)大學(xué)生數(shù)模競(jìng)賽的形式規(guī)則:定時(shí)公布賽題,三人一組,只能隊(duì)內(nèi)討論,按時(shí)提交論文,之后指導(dǎo)教師、參賽同學(xué)集中討論,進(jìn)一步完善。筆者負(fù)責(zé)數(shù)學(xué)建模競(jìng)賽培訓(xùn)近20年,多年的實(shí)踐證明,每進(jìn)行一次這樣的訓(xùn)練,學(xué)生在建模思路、建模水平、使用軟件能力、論文書(shū)寫(xiě)方面就有大幅提高。多次訓(xùn)練之后,學(xué)生的建模水平更是突飛猛進(jìn),效果甚佳。
如20xx年我指導(dǎo)的隊(duì)榮獲全國(guó)高教社杯大學(xué)生數(shù)學(xué)建模競(jìng)賽的最高獎(jiǎng)---高教社杯獎(jiǎng),這是此賽設(shè)置的唯一一個(gè)名額,也是當(dāng)年從全國(guó)(包括香港)院校的約1萬(wàn)多個(gè)本科參賽隊(duì)中脫穎而出的。又如20xx年我校57隊(duì)參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,43隊(duì)獲獎(jiǎng),獲獎(jiǎng)比例達(dá)75%,創(chuàng)歷年之最。
(五)鼓勵(lì)學(xué)生積極參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽、國(guó)際數(shù)學(xué)建模競(jìng)賽。
全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽創(chuàng)辦于1992年,每年一屆,目前已成為全國(guó)高校規(guī)模最大的基礎(chǔ)性學(xué)科競(jìng)賽,國(guó)際大學(xué)生數(shù)學(xué)建模競(jìng)賽是世界上影響范圍最大的高水平大學(xué)生學(xué)術(shù)賽事。參加數(shù)學(xué)建模大賽可以激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高運(yùn)用數(shù)學(xué)及相關(guān)工具分析問(wèn)題解決問(wèn)題的綜合能力,開(kāi)拓知識(shí)面,培養(yǎng)創(chuàng)造精神及合作意識(shí)。
四、結(jié)束語(yǔ)。
數(shù)學(xué)建模本身是一個(gè)創(chuàng)造性的思維過(guò)程,它是對(duì)數(shù)學(xué)知識(shí)的綜合應(yīng)用,具有較強(qiáng)的創(chuàng)新性,而高校數(shù)學(xué)教學(xué)改革的目的之一是要著力培養(yǎng)學(xué)生的創(chuàng)造性思維,提高學(xué)生的創(chuàng)新能力。因此應(yīng)將數(shù)學(xué)建模思想融入教學(xué)活動(dòng)中,通過(guò)不斷的數(shù)學(xué)建模教育和實(shí)踐培養(yǎng)學(xué)生的創(chuàng)新能力和應(yīng)用能力從而提高學(xué)生的基本素質(zhì)以適應(yīng)社會(huì)發(fā)展的要求。
初中數(shù)學(xué)建模論文篇四
摘要:隨著現(xiàn)代社會(huì)的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無(wú)需質(zhì)疑,他深入到我們生活的方方面面。現(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識(shí)解決日常問(wèn)題的一個(gè)重要手段。本文通過(guò)簡(jiǎn)述數(shù)學(xué)建模的方法與過(guò)程,以及應(yīng)用數(shù)學(xué)建模解決實(shí)際經(jīng)濟(jì)問(wèn)題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟(jì)問(wèn)題解決中的重要作用。
經(jīng)濟(jì)現(xiàn)象具有多變性,隨著經(jīng)濟(jì)社會(huì)的發(fā)展,國(guó)際間貿(mào)易往來(lái)的日趨緊密,日常經(jīng)濟(jì)形勢(shì)受到的影響因素越來(lái)越復(fù)雜多變。而日常經(jīng)濟(jì)生活中所遇到的經(jīng)濟(jì)現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對(duì)這些難以把控的變量,做好風(fēng)險(xiǎn)的預(yù)估、成本的核算、進(jìn)行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識(shí)、應(yīng)用數(shù)學(xué)建模為工具進(jìn)行較為理性的計(jì)算,為經(jīng)濟(jì)決策、企業(yè)規(guī)劃提供重要的幫助。
數(shù)學(xué)建模,其實(shí)就是建立數(shù)學(xué)模型的簡(jiǎn)稱,實(shí)際上數(shù)學(xué)建??梢苑Q之為解決問(wèn)題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進(jìn)行合理的運(yùn)算,推導(dǎo)出一種理性的結(jié)果的過(guò)程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個(gè)中介和橋梁,在工業(yè)設(shè)計(jì)、經(jīng)濟(jì)領(lǐng)域、工程建設(shè)等各個(gè)方面,運(yùn)用數(shù)學(xué)的語(yǔ)言和方法進(jìn)行問(wèn)題的求解和推導(dǎo),實(shí)際上,都是一種數(shù)學(xué)建模的過(guò)程。數(shù)學(xué)建模的主要過(guò)程可以總結(jié)為如下的框圖形式:實(shí)際上,數(shù)學(xué)模型的最終建立是一個(gè)反復(fù)驗(yàn)證、修改、完善的動(dòng)態(tài)過(guò)程,很少能夠通過(guò)一次過(guò)程就建立起完美適合實(shí)際問(wèn)題的數(shù)學(xué)模型。通過(guò)上述過(guò)程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問(wèn)題,明確建模的目的,統(tǒng)計(jì)各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實(shí)際對(duì)象的特性,對(duì)復(fù)雜問(wèn)題進(jìn)行簡(jiǎn)化,提取主要因素,提煉精確的數(shù)學(xué)語(yǔ)言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個(gè)量(變量、常量)間的數(shù)學(xué)關(guān)系,化實(shí)際問(wèn)題為數(shù)學(xué)語(yǔ)言;4.模型求解:對(duì)上述數(shù)學(xué)關(guān)系進(jìn)行求解(包括解方程、圖形分析、邏輯運(yùn)算等);5.模型分析:將求解結(jié)果與實(shí)際問(wèn)題結(jié)合,綜合分析,找到模型的缺陷和不足,進(jìn)行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗(yàn):將模型得到的結(jié)果與實(shí)際情況相驗(yàn)證,檢驗(yàn)?zāi)P偷暮侠硇院瓦m用性。
二、經(jīng)濟(jì)問(wèn)題數(shù)學(xué)模型的建立。
經(jīng)濟(jì)類問(wèn)題因?yàn)槠涮赜械奶攸c(diǎn),可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機(jī)性情況的模型,可以解決類似風(fēng)險(xiǎn)評(píng)估、最優(yōu)產(chǎn)量計(jì)算、庫(kù)存平衡等問(wèn)題;確定型則可以基于一定的條件與假設(shè),精確的對(duì)一種特定情況的結(jié)果做出判斷,如成本核算、損失評(píng)估等。對(duì)經(jīng)濟(jì)問(wèn)題的建模計(jì)算實(shí)際上是一個(gè)從經(jīng)濟(jì)世界進(jìn)入數(shù)學(xué)世界再回到經(jīng)濟(jì)世界的過(guò)程。建立經(jīng)濟(jì)數(shù)學(xué)模型,需要首先對(duì)實(shí)際經(jīng)濟(jì)問(wèn)題和情況有一個(gè)較為深入的認(rèn)識(shí),然后通過(guò)細(xì)致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟(jì)問(wèn)題簡(jiǎn)化提煉為一個(gè)較為理想的自然模型,然后基于這個(gè)原始模型應(yīng)用數(shù)學(xué)知識(shí)建立完整的數(shù)學(xué)經(jīng)濟(jì)模型。
三、建模舉例。
四、結(jié)語(yǔ)。
綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟(jì)中的應(yīng)用可以非常廣泛,對(duì)很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤(rùn)、規(guī)避風(fēng)險(xiǎn)、降低成本、節(jié)省開(kāi)支等各個(gè)方面。上文只提供了一個(gè)簡(jiǎn)單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。
初中數(shù)學(xué)建模論文篇五
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重?cái)?shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過(guò)程中,教師應(yīng)充分考慮小學(xué)生的性格特點(diǎn),提高數(shù)學(xué)建模思想培養(yǎng)的有效性?;诖耍恼聦牟煌姆矫鎸?duì)小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動(dòng)的順利開(kāi)展,有利于提高復(fù)雜數(shù)學(xué)問(wèn)題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實(shí)現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實(shí)際培養(yǎng)效果,需要加強(qiáng)對(duì)學(xué)生動(dòng)手實(shí)踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過(guò)程涉及問(wèn)題表述、求解、必要解釋及有效驗(yàn)證,在這四個(gè)環(huán)節(jié)中,可能會(huì)存在一定的問(wèn)題,影響著數(shù)學(xué)教學(xué)計(jì)劃的實(shí)施。因此,教師需要利用學(xué)生動(dòng)手實(shí)踐能力的作用,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過(guò)程中享受到更多的快樂(lè)。比如,在講解“認(rèn)識(shí)角”知識(shí)的過(guò)程中,某些學(xué)生認(rèn)為邊越長(zhǎng)角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R(shí)點(diǎn)有更加正確而全面的認(rèn)識(shí),教師可以通過(guò)在黑板上設(shè)置一些能夠活動(dòng)的三角板,讓學(xué)生親自動(dòng)手操作,以此得出角與邊長(zhǎng)的正確關(guān)系,為后續(xù)教學(xué)計(jì)劃的實(shí)施打下堅(jiān)實(shí)的基礎(chǔ)。通過(guò)這種教學(xué)方法的合理運(yùn)用,可以激發(fā)出學(xué)生們?cè)跀?shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對(duì)數(shù)學(xué)建模思想有一定的了解,在未來(lái)學(xué)習(xí)過(guò)程中能夠保持良好的`數(shù)學(xué)建模能力。
通過(guò)對(duì)小學(xué)階段各種數(shù)學(xué)實(shí)踐教學(xué)活動(dòng)實(shí)際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對(duì)各知識(shí)(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點(diǎn)的深入理解,增強(qiáng)其主動(dòng)參與數(shù)學(xué)建模教學(xué)活動(dòng)的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達(dá)到預(yù)期的效果,教師需要結(jié)合實(shí)際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對(duì)數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識(shí)的過(guò)程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問(wèn)題,向?qū)W生提問(wèn)是否可以直接計(jì)算,并說(shuō)出原因。當(dāng)學(xué)生通過(guò)對(duì)問(wèn)題的深入思考,總結(jié)出“單位不同不能直接計(jì)算”的結(jié)論后,繼續(xù)向?qū)W生提問(wèn)小數(shù)計(jì)算中為什么每一位都要對(duì)齊,實(shí)現(xiàn)“計(jì)數(shù)單位統(tǒng)一后才能計(jì)算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過(guò)程中,學(xué)生可以加深對(duì)知識(shí)點(diǎn)的理解,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強(qiáng)小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動(dòng)開(kāi)展中注重對(duì)數(shù)學(xué)思想的靈活運(yùn)用,增強(qiáng)相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長(zhǎng)期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運(yùn)用各種數(shù)學(xué)知識(shí)處理實(shí)際問(wèn)題。比如,在“角的度量”這部分內(nèi)容講解的過(guò)程中,為了提高學(xué)生對(duì)角的分類及畫(huà)角相關(guān)知識(shí)點(diǎn)的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過(guò)小組討論的方式,對(duì)角的正確分類及如何畫(huà)角有一定的了解,并讓每個(gè)小組代表在講臺(tái)上演示畫(huà)角的過(guò)程。此時(shí),教師可以通過(guò)對(duì)多媒體教學(xué)設(shè)備的合理運(yùn)用,利用動(dòng)態(tài)化的文字與圖片對(duì)其中的知識(shí)要點(diǎn)進(jìn)行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過(guò)程中逐漸形成良好的創(chuàng)造性思維,強(qiáng)化自身的創(chuàng)新意識(shí)。比如,在講解“圖形變換”中的軸對(duì)稱、旋轉(zhuǎn)知識(shí)點(diǎn)的過(guò)程中,教師應(yīng)通過(guò)對(duì)學(xué)生的正確引導(dǎo),運(yùn)用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對(duì)各種軸對(duì)稱圖形、旋轉(zhuǎn)后得到的圖形進(jìn)行深入思考,提高自身數(shù)學(xué)建模過(guò)程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過(guò)程,對(duì)這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對(duì)性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強(qiáng)小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實(shí)施,有利于滿足素質(zhì)教育的更高要求,實(shí)現(xiàn)對(duì)小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計(jì)劃能夠在規(guī)定的時(shí)間內(nèi)順利地完成。與此同時(shí),結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實(shí)際發(fā)展概況,可知靈活運(yùn)用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實(shí)現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
初中數(shù)學(xué)建模論文篇六
3.3增強(qiáng)選擇數(shù)學(xué)模型的能力。
選擇數(shù)學(xué)模型是數(shù)學(xué)能力的反映。數(shù)學(xué)模型的建立有多種方法,怎樣選擇一個(gè)最佳的模型,體現(xiàn)數(shù)學(xué)能力的強(qiáng)弱。建立數(shù)學(xué)模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項(xiàng)公式、求和公式、曲線方程等類型。結(jié)合教學(xué)內(nèi)容,以函數(shù)建模為例,以下實(shí)際問(wèn)題所選擇的數(shù)學(xué)模型列表:
一次函數(shù)成本、利潤(rùn)、銷售收入等。
二次函數(shù)優(yōu)化問(wèn)題、用料最省問(wèn)題、造價(jià)最低、利潤(rùn)最大等。
冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)細(xì)胞分裂、生物繁殖等。
三角函數(shù)測(cè)量、交流量、力學(xué)問(wèn)題等。
3.4加強(qiáng)數(shù)學(xué)運(yùn)算能力。
數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計(jì)算。有的盡管思路正確、建模合理,但計(jì)算能力欠缺,就會(huì)前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計(jì)算能力的培養(yǎng),只重視推理過(guò)程,不重視計(jì)算過(guò)程的做法是不可取的。
利用數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題對(duì)于多角度、多層次、多側(cè)面思考問(wèn)題,培養(yǎng)學(xué)生發(fā)散思維能力是很有益的,是提高學(xué)生素質(zhì),進(jìn)行素質(zhì)教育的一條有效途徑。同時(shí)數(shù)學(xué)建模的`應(yīng)用也是科學(xué)實(shí)踐,有利于實(shí)踐能力的培養(yǎng),是實(shí)施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。
初中數(shù)學(xué)建模論文篇七
2.1、建立引導(dǎo)機(jī)制,激發(fā)學(xué)習(xí)動(dòng)力。
2.2、建立轉(zhuǎn)化機(jī)制,促進(jìn)知識(shí)向能力的轉(zhuǎn)化。
2.3、建立協(xié)作機(jī)制,增強(qiáng)團(tuán)隊(duì)意識(shí)。
高校學(xué)生在平時(shí)的學(xué)習(xí)過(guò)程中,絕大多數(shù)情況下,基本上都是獨(dú)自學(xué)習(xí),與他人合作研究和解決問(wèn)題機(jī)會(huì)很少.而在各種層次級(jí)別的數(shù)學(xué)建模競(jìng)賽中,參賽學(xué)生要3人一組,以團(tuán)隊(duì)而不是個(gè)人身份參賽.在正式比賽之前,要按照學(xué)科、特長(zhǎng)等因素尋找隊(duì)友,組成隊(duì)伍.在比賽期間,由于隊(duì)友經(jīng)常是來(lái)自不同專業(yè),知識(shí)能力水平各有所長(zhǎng),脾氣秉性各有特點(diǎn),需要在比賽時(shí)認(rèn)真溝通,相互協(xié)調(diào),合理分工,團(tuán)結(jié)協(xié)作共同完成整個(gè)比賽.為了比賽,在發(fā)生矛盾時(shí),要學(xué)會(huì)忍耐和妥協(xié),而不能意氣用事.在整個(gè)比賽期間,求同存異,取長(zhǎng)補(bǔ)短,優(yōu)勢(shì)互補(bǔ),最終合作完成任務(wù).這個(gè)過(guò)程,無(wú)形中就培養(yǎng)了學(xué)生的合作意識(shí)和團(tuán)隊(duì)精神,使學(xué)生親身感受到現(xiàn)代社會(huì)與人合作是大多數(shù)人成功的必要選擇.依托數(shù)學(xué)建模競(jìng)賽,培養(yǎng)創(chuàng)新型人才的團(tuán)隊(duì)協(xié)作意識(shí),建立培養(yǎng)人才的.合作交流機(jī)制,這是適應(yīng)社會(huì)和時(shí)代需要的人才培養(yǎng)過(guò)程中的重要環(huán)節(jié)之一。
2.4、建立溝通表達(dá)機(jī)制,提高學(xué)生的語(yǔ)言及文字表達(dá)能力。
2.5、建立問(wèn)題導(dǎo)向機(jī)制,培養(yǎng)學(xué)生主動(dòng)式學(xué)習(xí)的自主學(xué)習(xí)能力。
3.1、促進(jìn)了學(xué)生全面發(fā)展。
3.2、提高了學(xué)生的就業(yè)質(zhì)量。
初中數(shù)學(xué)建模論文篇八
走美杯”是“走進(jìn)美妙的數(shù)學(xué)花園”的簡(jiǎn)稱。
“走進(jìn)美妙的數(shù)學(xué)花園”中國(guó)青少年數(shù)學(xué)論壇是中國(guó)少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動(dòng)。20xx年,由國(guó)際數(shù)學(xué)家大會(huì)組委會(huì)、中國(guó)數(shù)學(xué)會(huì)、中國(guó)教育學(xué)會(huì)、中國(guó)少年科學(xué)院成功舉辦了首屆“走進(jìn)美妙的數(shù)學(xué)花園”中國(guó)少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國(guó)三十多個(gè)城市近三十萬(wàn)人參與了此項(xiàng)活動(dòng),在全國(guó)青少年中產(chǎn)生了巨大的影響?!白哌M(jìn)美妙的數(shù)學(xué)花園”中國(guó)青少年數(shù)學(xué)論壇活動(dòng)是一項(xiàng)面對(duì)小學(xué)三年級(jí)至初中二年級(jí)學(xué)生的綜合性數(shù)學(xué)活動(dòng)。通過(guò)“趣味數(shù)學(xué)解題技能展示”、“數(shù)學(xué)建模小論文答辯”、“數(shù)學(xué)益智游戲”、“團(tuán)體對(duì)抗賽”等一系列內(nèi)容豐富的活動(dòng)提高廣大中小學(xué)生的數(shù)學(xué)建模意識(shí)和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞“數(shù)學(xué)好玩”和“走進(jìn)美妙的數(shù)學(xué)花園”,大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺(jué)地成為學(xué)習(xí)的主人,實(shí)現(xiàn)從“學(xué)數(shù)學(xué)”到“用數(shù)學(xué)”過(guò)程的轉(zhuǎn)變,從而進(jìn)一步推動(dòng)我國(guó)數(shù)學(xué)文化的傳播與普及。
“走美”活動(dòng)已連續(xù)舉辦七屆,近30萬(wàn)青少年踴躍參與,已取得良好社會(huì)效果,并被寫(xiě)入全國(guó)少工委《少先隊(duì)輔導(dǎo)員工作綱要(試行)》,向全國(guó)少年兒童推廣。
“走美”作為數(shù)學(xué)競(jìng)賽中的后起之秀,憑借其新穎的考試形式以及較高的競(jìng)賽難度取得了非常迅速的發(fā)展,近年來(lái)在重點(diǎn)中學(xué)選拔中引起了廣泛的關(guān)注??陀^地說(shuō)“走美”一、二等獎(jiǎng)對(duì)小升初作用非常大,三等獎(jiǎng)作用不大。
1、活動(dòng)對(duì)象。
全國(guó)各地小學(xué)三年級(jí)至初中二年級(jí)學(xué)生。
2、總成績(jī)計(jì)算。
筆試獲獎(jiǎng)率:
一等獎(jiǎng)5%,二等獎(jiǎng)10%,三等獎(jiǎng)15%。
3、筆試時(shí)間。
每年3月上、中旬。
報(bào)名截止時(shí)間:每年12月底。
走美杯比賽流程。
1、全國(guó)組委會(huì)下發(fā)通知,各地組委會(huì)開(kāi)始組織工作。
2、學(xué)生到當(dāng)?shù)亟M委會(huì)報(bào)名,填寫(xiě)《報(bào)名表》。
3、各地組委會(huì)將報(bào)名學(xué)生名單全部匯總至全國(guó)組委會(huì)。
4、全國(guó)“走進(jìn)美妙的數(shù)學(xué)花園”趣味數(shù)學(xué)解題技能展示初賽(全國(guó)統(tǒng)一筆試)。
6、全國(guó)組委會(huì)公布初賽獲獎(jiǎng)名單并頒發(fā)獲獎(jiǎng)證書(shū)。
7、獲得初賽一、二、三等獎(jiǎng)選手有資格報(bào)名參加暑期赴英國(guó)劍橋大學(xué)數(shù)學(xué)交流活動(dòng)。
8、各地按照組委會(huì)要求提交數(shù)學(xué)建模小論文。
9、前各地組委會(huì)上報(bào)參加全國(guó)總論壇學(xué)生名單。
10、全國(guó)總論壇和表彰活動(dòng)。
初中數(shù)學(xué)建模論文篇九
第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁(yè)邊距;從左側(cè)裝訂。
第二條,論文第一頁(yè)為承諾書(shū),第二頁(yè)為編號(hào)專用頁(yè),具體內(nèi)容見(jiàn)本規(guī)范第3、4頁(yè)。
第三條,論文第三頁(yè)為摘要專用頁(yè)(含標(biāo)題和關(guān)鍵詞,但不需要翻譯成英文),從此頁(yè)開(kāi)始編寫(xiě)頁(yè)碼;頁(yè)碼必須位于每頁(yè)頁(yè)腳中部,用阿拉伯?dāng)?shù)字從“1”開(kāi)始連續(xù)編號(hào)。摘要專用頁(yè)必須單獨(dú)一頁(yè),且篇幅不能超過(guò)一頁(yè)。
第四條,從第四頁(yè)開(kāi)始是論文正文(不要目錄,盡量控制在20頁(yè)以內(nèi));正文之后是論文附錄(頁(yè)數(shù)不限)。
第五條,論文附錄至少應(yīng)包括參賽論文的所有源程序代碼,如實(shí)際使用的軟件名稱、命令和編寫(xiě)的全部可運(yùn)行的源程序(含excel、spss等軟件的交互命令);通常還應(yīng)包括自主查閱使用的數(shù)據(jù)等資料。賽題中提供的數(shù)據(jù)不要放在附錄。如果缺少必要的源程序或程序不能運(yùn)行,可能會(huì)被取消評(píng)獎(jiǎng)資格。論文附錄必須打印裝訂在論文紙質(zhì)版中。如果確實(shí)沒(méi)有需要以附錄形式提供的信息,論文可以沒(méi)有附錄。
第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學(xué)校及賽區(qū)的信息。
第七條,引用別人的成果或其他公開(kāi)的資料(包括網(wǎng)上資料)必須按照科技論文寫(xiě)作的規(guī)范格式列出參考文獻(xiàn),并在正文引用處予以標(biāo)注。
第八條,本規(guī)范中未作規(guī)定的,如排版格式(字號(hào)、字體、行距、顏色等)不做統(tǒng)一要求,可由賽區(qū)自行決定。在不違反本規(guī)范的前提下,各賽區(qū)可以對(duì)論文增加其他要求。
第九條,參賽隊(duì)?wèi)?yīng)按照《全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽報(bào)名和參賽須知》的要求命名和提交以下兩個(gè)電子文件,分別對(duì)應(yīng)于參賽論文和相關(guān)的支撐材料。
第十條,參賽論文的電子版不能包含承諾書(shū)和編號(hào)專用頁(yè)(即電子版論文第一頁(yè)為摘要頁(yè))。除此之外,其內(nèi)容及格式必須與紙質(zhì)版完全一致(包括正文及附錄),且必須是一個(gè)單獨(dú)的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過(guò)20mb。
第十一條,支撐材料(不超過(guò)20mb)包括用于支撐論文模型、結(jié)果、結(jié)論的所有必要文件,至少應(yīng)包含參賽論文的所有源程序,通常還應(yīng)包含參賽論文使用的`數(shù)據(jù)(賽題中提供的原始數(shù)據(jù)除外)、較大篇幅的中間結(jié)果的圖形或表格、難以從公開(kāi)渠道找到的相關(guān)資料等。所有支撐材料使用winrar軟件壓縮在一個(gè)文件中(后綴為rar);如果支撐材料與論文內(nèi)容不相符,該論文可能會(huì)被取消評(píng)獎(jiǎng)資格。支撐材料中不能包含承諾書(shū)和編號(hào)專用頁(yè),不能有任何可能顯示答題人身份和所在學(xué)校及賽區(qū)的信息。如果確實(shí)沒(méi)有需要提供的支撐材料,可以不提供支撐材料。
第十二條,不符合本格式規(guī)范的論文將被視為違反競(jìng)賽規(guī)則,可能被取消評(píng)獎(jiǎng)資格。
第十三條,本規(guī)范的解釋權(quán)屬于全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽組委會(huì)。
說(shuō)明:
(1)本科組參賽隊(duì)從a、b題中任選一題,??平M參賽隊(duì)從c、d題中任選一題。
(2)賽區(qū)可自行決定是否在競(jìng)賽結(jié)束時(shí)收集參賽論文的紙質(zhì)版,但對(duì)于送全國(guó)評(píng)閱的論文,賽區(qū)必須提供符合本規(guī)范要求的紙質(zhì)版論文(承諾書(shū)由賽區(qū)組委會(huì)保存,不必提交給全國(guó)組委會(huì))。
(3)賽區(qū)評(píng)閱前將紙質(zhì)版論文第一頁(yè)(承諾書(shū))取下保存,同時(shí)在第一頁(yè)和第二頁(yè)建立“賽區(qū)評(píng)閱編號(hào)”(由各賽區(qū)規(guī)定編號(hào)方式),“賽區(qū)評(píng)閱紀(jì)錄”表格可供賽區(qū)評(píng)閱時(shí)使用(由各賽區(qū)自行決定是否使用)。評(píng)閱后,賽區(qū)對(duì)送全國(guó)評(píng)閱的論文在第二頁(yè)建立“送全國(guó)評(píng)閱統(tǒng)一編號(hào)”(編號(hào)方式由全國(guó)組委會(huì)規(guī)定),然后送全國(guó)評(píng)閱。
初中數(shù)學(xué)建模論文篇十
隨著社會(huì)的不斷發(fā)展和科學(xué)技術(shù)的進(jìn)步,數(shù)學(xué)在現(xiàn)實(shí)生活中的應(yīng)用越來(lái)越廣泛,尤其是計(jì)算機(jī)技術(shù)的發(fā)展及廣泛應(yīng)用,使數(shù)學(xué)建模思想在解決社會(huì)各個(gè)領(lǐng)域中的實(shí)際問(wèn)題的應(yīng)用越來(lái)越深入。本文筆者簡(jiǎn)要談?wù)剶?shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)類課程的意義和方法。
所謂數(shù)學(xué)建模就是指構(gòu)造數(shù)學(xué)模型的過(guò)程,也就是說(shuō)用公式、符號(hào)和圖表等數(shù)學(xué)語(yǔ)言來(lái)刻畫(huà)和描述一個(gè)實(shí)際問(wèn)題,再經(jīng)過(guò)計(jì)算、迭代等數(shù)學(xué)處理得到定量的結(jié)果,從而供人們分析、預(yù)報(bào)、決策與控制。那么數(shù)學(xué)模型就是利用數(shù)學(xué)術(shù)語(yǔ)對(duì)一部分現(xiàn)實(shí)世界的描述。數(shù)學(xué)建模思想是指理論聯(lián)系實(shí)際,將實(shí)際的事物抽象成數(shù)學(xué)模型,然后利用所學(xué)的理論來(lái)解決問(wèn)題的一種思想。
在新形勢(shì)下,傳統(tǒng)的數(shù)學(xué)教學(xué)方法已經(jīng)無(wú)法適應(yīng)現(xiàn)在大學(xué)數(shù)學(xué)教育改革的需求,數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程教育融合成為目前高等院校數(shù)學(xué)教學(xué)改革的突破口。
(1)數(shù)學(xué)知識(shí)在各個(gè)領(lǐng)域的應(yīng)用越來(lái)越廣泛。如今數(shù)學(xué)知識(shí)在各個(gè)領(lǐng)域的應(yīng)用越來(lái)越廣泛,尤其是在經(jīng)濟(jì)學(xué)中的應(yīng)用最為顯著。自從1969年創(chuàng)設(shè)諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)以來(lái),就有不少理論成果來(lái)自利用數(shù)學(xué)工具分析經(jīng)濟(jì)問(wèn)題。事實(shí)上,從1969年到20xx年這35年中,一共產(chǎn)生了53位獲獎(jiǎng)?wù)?,其中擁有?shù)學(xué)學(xué)位的共有19人,所占比例為35.8%;其中擁有理工學(xué)位的有9人,所占比例為17%;二者共計(jì)占52.8%;其中共有29位諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)的獲得者是以數(shù)學(xué)方法為主要的研究方法,約占總?cè)藬?shù)的63.1%。然而幾乎所有的諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)獲得者都運(yùn)用了數(shù)學(xué)方法來(lái)研究經(jīng)濟(jì)學(xué)理論。除了在經(jīng)濟(jì)領(lǐng)域,數(shù)學(xué)建模思想也廣泛應(yīng)用于生物醫(yī)學(xué),包括超聲波、電磁診斷等方面。同時(shí)數(shù)學(xué)建模還將數(shù)學(xué)與生物學(xué)融合進(jìn)了基因科學(xué),例如基因表達(dá)的定型、基因組測(cè)序、基因分類等等,在生物學(xué)領(lǐng)域需要建立大規(guī)模的模擬以及復(fù)雜的數(shù)學(xué)模型??梢?jiàn)數(shù)學(xué)建模思想的應(yīng)用是非常廣泛的,并對(duì)其他領(lǐng)域的發(fā)展起著重要的推動(dòng)作用。
(2)有利于激發(fā)學(xué)生的學(xué)習(xí)熱情,豐富大學(xué)數(shù)學(xué)課程。一般的數(shù)學(xué)課,通常只是重視理論知識(shí)的講解和傳授,對(duì)知識(shí)點(diǎn)的推理和思想方法的分析較少。而且多數(shù)學(xué)生為了應(yīng)付考試,也只是以“類型題”的方式去復(fù)習(xí)知識(shí)點(diǎn)。這樣的方式雖然能夠讓學(xué)生掌握一部分?jǐn)?shù)學(xué)知識(shí),可是卻不能提高學(xué)生的數(shù)學(xué)素質(zhì),不能提高學(xué)生對(duì)大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣。而數(shù)學(xué)建模思想運(yùn)用數(shù)學(xué)知識(shí)來(lái)解決生活中的實(shí)際問(wèn)題,這樣就使數(shù)學(xué)活了起來(lái),而不是死的理論知識(shí)。運(yùn)用數(shù)學(xué)建模思想能夠讓學(xué)生在數(shù)學(xué)中感悟生活,在生活中體會(huì)數(shù)學(xué)的價(jià)值,更容易吸引學(xué)生的學(xué)習(xí)興趣。而興趣是學(xué)習(xí)最有效的動(dòng)力,讓學(xué)生主動(dòng)參與學(xué)習(xí)而非被動(dòng)學(xué)習(xí),取得的教學(xué)效果會(huì)更好。
(3)是加強(qiáng)數(shù)學(xué)教學(xué)改革,適應(yīng)時(shí)代發(fā)展的需要。在大學(xué)數(shù)學(xué)教學(xué)活動(dòng)中,許多學(xué)生常常陷入這樣的困惑之中:花費(fèi)了大量的精力,做了很多習(xí)題,但是卻感受不到數(shù)學(xué)的作用和價(jià)值。而教師在教學(xué)中也總是告訴學(xué)生數(shù)學(xué)是一門(mén)很有用的課程,但是卻舉不出現(xiàn)實(shí)的例子。并且傳統(tǒng)的教學(xué)方式也只是教會(huì)學(xué)生掌握簡(jiǎn)單的理論知識(shí),并不能提高學(xué)生的數(shù)學(xué)素養(yǎng)和數(shù)學(xué)意識(shí)。而將數(shù)學(xué)建模思想融入到大學(xué)的數(shù)學(xué)類課程之中就能很好地解決這些問(wèn)題。因?yàn)閷?shù)學(xué)建模思想運(yùn)用到數(shù)學(xué)類課程中,就能夠讓學(xué)生在獨(dú)立思考和探索中感受到數(shù)學(xué)在現(xiàn)實(shí)生活中的實(shí)用價(jià)值,提高學(xué)生運(yùn)用數(shù)學(xué)的眼光去觀察、分析以及表示各種事物的空間關(guān)系、數(shù)量關(guān)系和數(shù)學(xué)信息的能力,提高學(xué)生的創(chuàng)造能力和創(chuàng)新意識(shí)。
(1)教師在教學(xué)過(guò)程中較少滲入數(shù)學(xué)建模思想。目前在高校數(shù)學(xué)教學(xué)中數(shù)學(xué)建模的思想應(yīng)用得仍然較少,重視程度不夠。不少高校的教師在開(kāi)展大學(xué)數(shù)學(xué)類課程時(shí),仍然只是停留在數(shù)學(xué)知識(shí)的教學(xué)方面,并沒(méi)有對(duì)學(xué)生進(jìn)行研究性學(xué)習(xí)探索。據(jù)調(diào)查,大多數(shù)高校教師對(duì)日常的教學(xué)工作能夠認(rèn)真完成規(guī)定的教學(xué)任務(wù),但能夠真正創(chuàng)造性地把數(shù)學(xué)建模思想融入到數(shù)學(xué)教學(xué)任務(wù)中的教師較少。大多數(shù)高校數(shù)學(xué)老師都意識(shí)到探索式的數(shù)學(xué)建模教學(xué)很重要,但真正將數(shù)學(xué)建模思想與數(shù)學(xué)教學(xué)融合的嘗試和探索卻很少??梢?jiàn)多數(shù)高校教師雖然明白數(shù)學(xué)建模思想的重要性,但是由于缺乏足夠的數(shù)學(xué)建模教學(xué)的相關(guān)知識(shí)及經(jīng)驗(yàn),在實(shí)際教學(xué)中數(shù)學(xué)建模思想仍未得到充分的運(yùn)用。
(2)開(kāi)設(shè)的有關(guān)數(shù)學(xué)建模的課程和活動(dòng)較少。雖然數(shù)學(xué)建模思想得到了越來(lái)越廣泛的應(yīng)用,但是在高校中實(shí)際開(kāi)設(shè)的有關(guān)數(shù)學(xué)建模的課程并不多,尤其是應(yīng)用數(shù)學(xué)、數(shù)學(xué)實(shí)驗(yàn)以及計(jì)算機(jī)應(yīng)用等一些需要滲入數(shù)學(xué)建模思想的課程在實(shí)際的教學(xué)過(guò)程中并沒(méi)有創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。另一方面,校內(nèi)自主開(kāi)展的有關(guān)數(shù)學(xué)建模競(jìng)賽和活動(dòng)并不多,宣傳力度也不夠,無(wú)法讓更多的學(xué)生了解數(shù)學(xué)建模的意義和價(jià)值,更無(wú)法參與到數(shù)學(xué)建?;顒?dòng)中去。
(3)學(xué)生對(duì)數(shù)學(xué)的態(tài)度和觀念還未改變,對(duì)數(shù)學(xué)建模缺乏深入的了解。大學(xué)數(shù)學(xué)是一門(mén)較為抽象的學(xué)科,其概念、定理和性質(zhì)都不容易掌握,由于其具有一定的難度,所以不少學(xué)生對(duì)大學(xué)數(shù)學(xué)類課程以及數(shù)學(xué)建模沒(méi)有興趣。并且這些學(xué)生在初中和高中階段也學(xué)習(xí)數(shù)學(xué),但是不少學(xué)生是為了應(yīng)付考試,并沒(méi)有見(jiàn)識(shí)到數(shù)學(xué)的應(yīng)用性,覺(jué)得數(shù)學(xué)是一門(mén)純理論的課程,沒(méi)有實(shí)用價(jià)值。同時(shí)很多學(xué)生對(duì)數(shù)學(xué)建模思想的運(yùn)用并不夠了解,不知道如何將數(shù)學(xué)知識(shí)和數(shù)學(xué)方法應(yīng)用到實(shí)際的生活中去,覺(jué)得數(shù)學(xué)沒(méi)有用,也沒(méi)有深入學(xué)習(xí)的意義。
(1)提高課堂教學(xué)質(zhì)量,創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。大學(xué)的數(shù)學(xué)類課程主要有“線性代數(shù)”、“高等數(shù)學(xué)”、“運(yùn)籌學(xué)”、“數(shù)學(xué)建?!?、“概率論與數(shù)理統(tǒng)計(jì)”等,這些課程的核心部分都跟高等數(shù)學(xué)有關(guān),所以要注重提高數(shù)學(xué)類課程的教學(xué)質(zhì)量關(guān)鍵就在于高等數(shù)學(xué),而要提高高等數(shù)學(xué)的教學(xué)質(zhì)量就必須在教學(xué)過(guò)程中創(chuàng)造性地應(yīng)用數(shù)學(xué)建模思想。對(duì)于主修數(shù)學(xué)的學(xué)生,要加強(qiáng)對(duì)計(jì)算機(jī)軟件和語(yǔ)言的學(xué)習(xí),系統(tǒng)性地對(duì)數(shù)學(xué)原理進(jìn)行剖解和分析,合理運(yùn)用數(shù)學(xué)知識(shí)和數(shù)學(xué)方法解決社會(huì)實(shí)際問(wèn)題。在教學(xué)中多引導(dǎo)、啟發(fā)學(xué)生利用對(duì)生活問(wèn)題和科學(xué)問(wèn)題的深入研究,主動(dòng)結(jié)合自己的課程理論知識(shí)和數(shù)學(xué)建模,使數(shù)學(xué)建模思想融入到學(xué)生的整個(gè)學(xué)習(xí)過(guò)程中去。對(duì)于非數(shù)學(xué)領(lǐng)域的問(wèn)題,要啟發(fā)學(xué)生運(yùn)用計(jì)算機(jī)軟件建模,從而解決不同領(lǐng)域中的數(shù)學(xué)建模問(wèn)題。
(2)多開(kāi)設(shè)跟數(shù)學(xué)建模有關(guān)的數(shù)學(xué)類課程。例如除了開(kāi)設(shè)跟數(shù)學(xué)建模有關(guān)的必修課,還可以開(kāi)設(shè)一些跟數(shù)學(xué)建模有關(guān)的選修課,為其他專業(yè)的學(xué)生提供接觸和了解數(shù)學(xué)建模思想的機(jī)會(huì),為學(xué)生拓展知識(shí)領(lǐng)域,為其解決該領(lǐng)域的問(wèn)題提供有效的方法。例如,經(jīng)濟(jì)學(xué)有關(guān)專業(yè)的學(xué)生就可以通過(guò)選修跟數(shù)學(xué)建模有關(guān)的課程,解決其在經(jīng)濟(jì)學(xué)中遇到的問(wèn)題,因?yàn)楹芏喔?jīng)濟(jì)學(xué)有關(guān)的問(wèn)題僅僅靠經(jīng)濟(jì)學(xué)的知識(shí)是無(wú)法解決的,像貸款計(jì)算這樣的問(wèn)題就要將數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系起來(lái)才能解決實(shí)際問(wèn)題。
(3)廣泛宣傳,讓學(xué)生了解數(shù)學(xué)建模的意義和價(jià)值。學(xué)生是教學(xué)過(guò)程中的主體,目前,大學(xué)數(shù)學(xué)建模課程開(kāi)設(shè)效果不佳,學(xué)生參與度低的主要原因就是學(xué)生缺乏對(duì)數(shù)學(xué)建模的深入了解。那么,要提高學(xué)生的參與性,促進(jìn)數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程的融合就必須加強(qiáng)宣傳,讓學(xué)生深入了解什么是數(shù)學(xué)建模。同時(shí),在課堂上就是也要轉(zhuǎn)變傳統(tǒng)枯燥的教學(xué)方式,多使用啟發(fā)式教學(xué)和探索式教學(xué),吸引學(xué)生的學(xué)習(xí)興趣,讓他們發(fā)現(xiàn)數(shù)學(xué)對(duì)社會(huì)實(shí)際生活的重要作用,轉(zhuǎn)變他們對(duì)數(shù)學(xué)的態(tài)度,并引導(dǎo)學(xué)生對(duì)數(shù)學(xué)建模和數(shù)學(xué)課程感興趣。
(4)轉(zhuǎn)變數(shù)學(xué)教育理念及教育方式。要轉(zhuǎn)變傳統(tǒng)的教育方式,將教學(xué)的重點(diǎn)放在數(shù)學(xué)知識(shí)在生活中的應(yīng)用問(wèn)題上,而不是將知識(shí)與實(shí)際生活割裂開(kāi)來(lái)。同時(shí)在教學(xué)中要注重證明和推理,加強(qiáng)學(xué)生對(duì)數(shù)學(xué)方法的掌握注重培養(yǎng)學(xué)生對(duì)實(shí)際問(wèn)題的邏輯分析、簡(jiǎn)化、抽象并運(yùn)用數(shù)學(xué)語(yǔ)言表達(dá)的能力。也就是說(shuō)教學(xué)的重點(diǎn)在于提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力和加強(qiáng)數(shù)學(xué)意識(shí)和數(shù)學(xué)方法的應(yīng)用,這樣才能夠培養(yǎng)出具有創(chuàng)新能力和創(chuàng)新意識(shí)的人才。
(5)多開(kāi)展數(shù)學(xué)建?;顒?dòng)和競(jìng)賽,提高學(xué)生參與性。在高校內(nèi)部要多開(kāi)展跟數(shù)學(xué)有關(guān)的活動(dòng)和競(jìng)賽以及專家講座等,一方面加強(qiáng)學(xué)生對(duì)數(shù)學(xué)建模的認(rèn)識(shí),另一方面也提高了學(xué)生的參與性。通過(guò)專家講座,不僅可以讓學(xué)生更深入地了解數(shù)學(xué)建模的價(jià)值,也加強(qiáng)了學(xué)術(shù)交流,提高學(xué)生的數(shù)學(xué)建模應(yīng)用能力。通過(guò)數(shù)學(xué)建模競(jìng)賽,為學(xué)生提供展示自己智慧、充分發(fā)揮其能力的平臺(tái)。同時(shí),競(jìng)賽也可以讓學(xué)生在競(jìng)賽中發(fā)現(xiàn)自己的不足,在交流中不斷完善自己的缺陷,拓展學(xué)生的思維。而且,在數(shù)學(xué)建模比賽中,通過(guò)讓學(xué)生探究跟生活實(shí)際有關(guān)的例子,提高學(xué)生對(duì)數(shù)學(xué)建模的興趣,加強(qiáng)學(xué)生對(duì)模型應(yīng)用的直觀性認(rèn)識(shí),促進(jìn)學(xué)校應(yīng)用型人才的培養(yǎng)。
總之,數(shù)學(xué)建模思想和高校數(shù)學(xué)類課程的融合,對(duì)于高等數(shù)學(xué)教學(xué)改革具有非常重要的意義。把數(shù)學(xué)建模思想融入到高等數(shù)學(xué)教學(xué)中,可以更好地提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,提高他們運(yùn)用數(shù)學(xué)思想和數(shù)學(xué)方法分析問(wèn)題、解決問(wèn)題和抽象思維的能力。高校教師要加強(qiáng)數(shù)學(xué)建模思想的應(yīng)用,讓學(xué)生初步掌握從實(shí)際問(wèn)題中總結(jié)數(shù)學(xué)內(nèi)涵的方法,提高學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,為高校學(xué)生專業(yè)課的學(xué)習(xí)奠定堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。
初中數(shù)學(xué)建模論文篇十一
運(yùn)籌學(xué)與數(shù)學(xué)建模2門(mén)課程聯(lián)系密切,在運(yùn)籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力.從運(yùn)籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面進(jìn)行了探索與實(shí)踐.教學(xué)實(shí)踐表明,將數(shù)學(xué)建模思想融入到運(yùn)籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動(dòng)手實(shí)踐能力.
初中數(shù)學(xué)建模論文篇十二
在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時(shí)期對(duì)大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識(shí)的同時(shí),要注重學(xué)生學(xué)習(xí)能力和解決問(wèn)題能力的培養(yǎng)。
數(shù)學(xué)知識(shí)來(lái)源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識(shí)中的典型代表,在各個(gè)行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力十分重要,在傳授知識(shí)的過(guò)程中幫助學(xué)生利用所學(xué)知識(shí)來(lái)解決實(shí)際問(wèn)題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會(huì)公式的應(yīng)用過(guò)程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識(shí)的同時(shí),促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識(shí)應(yīng)用到實(shí)踐中來(lái)解決數(shù)學(xué)問(wèn)題是一個(gè)首要問(wèn)題。從大量教學(xué)實(shí)踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實(shí)提升學(xué)生的數(shù)學(xué)專業(yè)水平。
在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實(shí)際情況,深入挖掘數(shù)學(xué)知識(shí)。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識(shí)實(shí)際學(xué)習(xí)情況,有針對(duì)性地整合數(shù)學(xué)知識(shí),了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
(一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)。
閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識(shí)理論性較強(qiáng),知識(shí)較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識(shí)后,可以引入椅子的穩(wěn)定問(wèn)題,創(chuàng)建數(shù)學(xué)模型,提問(wèn)學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問(wèn)題同所學(xué)知識(shí)相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問(wèn)題。學(xué)生整合所學(xué)知識(shí),通過(guò)對(duì)問(wèn)題的分析,可以了解到利用介值定理來(lái)解決問(wèn)題。通過(guò)建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識(shí)學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。
(二)定積分。
定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問(wèn)題時(shí)均有所應(yīng)用,并且被廣泛應(yīng)用在實(shí)際生活中。如,在一道全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目中,計(jì)算煤矸石的堆積,煤礦采煤時(shí)所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來(lái)堆放煤矸石,根據(jù)上級(jí)主管部門(mén)的年產(chǎn)量計(jì)劃和經(jīng)費(fèi)如何堆放煤矸石?題目中的關(guān)鍵點(diǎn)在于堆放煤矸石的征地費(fèi)用和電費(fèi)的計(jì)算。征地費(fèi)計(jì)算難度較小,但是煤矸石堆積的電費(fèi)計(jì)算難度較高,但此項(xiàng)內(nèi)容涉及定積分中的變力做功知識(shí)點(diǎn)。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開(kāi)采量來(lái)堆放煤矸石。通過(guò)數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實(shí)際生活之間的聯(lián)系,學(xué)習(xí)積極性就會(huì)大大提升。
(三)最值問(wèn)題。
在高等數(shù)學(xué)中,最值問(wèn)題占比比較大,同時(shí)在實(shí)際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識(shí)可以解決實(shí)際生活中的最值問(wèn)題,這就需要提高對(duì)導(dǎo)數(shù)知識(shí)實(shí)際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識(shí)后,通過(guò)建立關(guān)于天空的采空模型,提問(wèn)學(xué)生為什么雨后太陽(yáng)出來(lái)了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問(wèn)彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對(duì)此,學(xué)生的興趣較為濃厚,可以分為若干個(gè)小組進(jìn)行討論。通過(guò)分析可以得出,雨滴可以反射太陽(yáng)光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識(shí)來(lái)計(jì)算得出太陽(yáng)光偏轉(zhuǎn)角度的最值,有效解決實(shí)際學(xué)習(xí)的問(wèn)題,加深對(duì)知識(shí)的理解和記憶,提升數(shù)學(xué)知識(shí)學(xué)習(xí)成效。
(四)微分方程。
微分方程知識(shí)同實(shí)際生活之間息息相關(guān),建立微分方程可以有效解決實(shí)際生活中的問(wèn)題。這就需要學(xué)生在了解微分方程知識(shí)的基礎(chǔ)上,進(jìn)一步建立數(shù)學(xué)模型來(lái)解決問(wèn)題。如,在當(dāng)前社會(huì)進(jìn)步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問(wèn)題之一,受到社會(huì)各界廣泛的關(guān)注和重視。通過(guò)問(wèn)題精簡(jiǎn)化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運(yùn)動(dòng)鍛煉兩個(gè)關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹(shù)立正確的減肥理念。
(五)矩陣。
在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問(wèn)題之前,應(yīng)該根據(jù)知識(shí)點(diǎn)來(lái)創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動(dòng)。通過(guò)引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動(dòng)力,并且詳細(xì)記錄管理費(fèi)用。這有助于加深人們對(duì)矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時(shí)幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識(shí)。
綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過(guò)數(shù)學(xué)建模思想來(lái)引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動(dòng)性和創(chuàng)新能力,提升學(xué)生解決問(wèn)題的能力,將所學(xué)知識(shí)靈活運(yùn)用到實(shí)際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
初中數(shù)學(xué)建模論文篇十三
就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對(duì)學(xué)生的計(jì)算能力、思考能力以及邏輯思維能力過(guò)于重視,一切以課本為基礎(chǔ)開(kāi)展教學(xué)活動(dòng)。作為一門(mén)充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒(méi)有穿插應(yīng)用實(shí)例,在工作的時(shí)候?qū)W生不知道怎樣把問(wèn)題解決,工作效率無(wú)法進(jìn)一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動(dòng)力。
(二)教學(xué)方法傳統(tǒng)化。
教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過(guò)程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績(jī)。一般高數(shù)老師在授課的時(shí)候都是以課本的順次進(jìn)行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無(wú)法為學(xué)生營(yíng)造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨(dú)自學(xué)習(xí)、思考的能力進(jìn)一步下降。這就要求教師致力于和諧課堂氛圍營(yíng)造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動(dòng)參與學(xué)習(xí)。
二、建模在高等數(shù)學(xué)教學(xué)中的作用。
對(duì)學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問(wèn)題的能力進(jìn)行培養(yǎng)的過(guò)程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國(guó)內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動(dòng)以及教研活動(dòng),其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實(shí)的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識(shí)、實(shí)際應(yīng)用能力等上有突出的作用。雖然國(guó)內(nèi)高等院校大都開(kāi)設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認(rèn)知水平差異較大,所以課程無(wú)法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對(duì)學(xué)生的整體素質(zhì)進(jìn)行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會(huì)對(duì)復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。
高等數(shù)學(xué)作為工科類學(xué)生的一門(mén)基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識(shí)的本來(lái)面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識(shí)的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡(jiǎn)化、抽象、翻譯部分現(xiàn)實(shí)世界信息的過(guò)程中使用數(shù)學(xué)的語(yǔ)言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來(lái),以便于提升學(xué)生的表達(dá)能力。在實(shí)際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗(yàn)現(xiàn)實(shí)的信息,確定最后的結(jié)果是否正確,通過(guò)這一過(guò)程中的鍛煉,學(xué)生在分析問(wèn)題的過(guò)程中可以主動(dòng)地、客觀的辯證的運(yùn)用數(shù)學(xué)方法,最終得出解決問(wèn)題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。
三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施。
(一)在公式中使用建模思想。
在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的'教學(xué)效果進(jìn)一步提升,在課堂上老師不僅要讓學(xué)生對(duì)計(jì)算的技巧進(jìn)一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對(duì)公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實(shí)例開(kāi)展教學(xué)。
(二)講解習(xí)題的時(shí)候使用數(shù)學(xué)模型的方式。
課本例題使用建模思想進(jìn)行解決,老師通過(guò)對(duì)例題的講解,很好的講述使用數(shù)學(xué)建模解決問(wèn)題的方式,讓學(xué)生清醒的認(rèn)識(shí)在解決問(wèn)題的過(guò)程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時(shí)間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問(wèn)題的全部過(guò)程,提升學(xué)生解決問(wèn)題的效率。
(三)組織學(xué)生積極參加數(shù)學(xué)建模競(jìng)賽。
一般而言,在競(jìng)賽中可以很好地鍛煉學(xué)生競(jìng)爭(zhēng)意識(shí)以及獨(dú)立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競(jìng)賽,在實(shí)踐中鍛煉學(xué)生的實(shí)際能力。在日常生活中使用數(shù)學(xué)建模解決問(wèn)題,讓學(xué)生獨(dú)自思考,然后在競(jìng)爭(zhēng)的過(guò)程中意識(shí)到自己的不足,今后也會(huì)努力學(xué)習(xí),改正錯(cuò)誤,提升自身的能力。
四、結(jié)束語(yǔ)。
高等數(shù)學(xué)主要對(duì)學(xué)生從理論學(xué)習(xí)走向解決實(shí)際問(wèn)題的能力進(jìn)行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對(duì)高數(shù)知識(shí)更充分的理解,學(xué)習(xí)的難度進(jìn)一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過(guò)程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進(jìn)行深入的研究和探索的同時(shí)也需要學(xué)生很好的配合,以便于今后的教學(xué)中進(jìn)一步提升教學(xué)的質(zhì)量。
參考文獻(xiàn)。
[1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。齊齊哈爾師范高等??茖W(xué)校學(xué)報(bào),20xx(02):119—120。
[2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實(shí)踐[j]。教育實(shí)踐與改革,20xx(04):177—178,189。
[3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[j]。長(zhǎng)春教育學(xué)院學(xué)報(bào),20xx(30):89,95。
[4]劉合財(cái)。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。貴陽(yáng)學(xué)院學(xué)報(bào),20xx(03):63—65。
初中數(shù)學(xué)建模論文篇一
使學(xué)生的綜合應(yīng)用能力、實(shí)踐創(chuàng)新能力和綜合應(yīng)用素質(zhì)等多方面均能得到提升和發(fā)展。
對(duì)于醫(yī)學(xué)專業(yè)的學(xué)生來(lái)說(shuō),在校所學(xué)的數(shù)學(xué)基礎(chǔ)理論課程比較有限,并且學(xué)生對(duì)純粹的數(shù)學(xué)知識(shí)與復(fù)雜的理論推導(dǎo)已經(jīng)極為厭倦,如果數(shù)學(xué)建模還是以傳統(tǒng)的“灌輸式”和教師“主導(dǎo)型”為主、簡(jiǎn)單的應(yīng)用案例為主要教學(xué)內(nèi)容的話,其結(jié)果勢(shì)必會(huì)使學(xué)生有一種再講數(shù)學(xué)課和做應(yīng)用題的感覺(jué),既不能很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,也不能體現(xiàn)數(shù)學(xué)建模的思想方法和本質(zhì)特色。
因此,如何使學(xué)生擺脫這種尷尬的現(xiàn)狀已成為我們教學(xué)的一大難點(diǎn)。針對(duì)這種情況,在教學(xué)模式上,我們大膽嘗試研究型教學(xué)模式,即采用“從實(shí)踐中來(lái),到實(shí)踐中去”的教學(xué)理念。一方面,從最現(xiàn)實(shí)、最熱門(mén)的醫(yī)學(xué)話題出發(fā),從學(xué)生最感興趣的.問(wèn)題入手,激發(fā)學(xué)生的學(xué)習(xí)興趣和進(jìn)一步學(xué)習(xí)的主動(dòng)性,使他們從一開(kāi)始就能進(jìn)入到學(xué)習(xí)的角色中去;另一方面,通過(guò)開(kāi)展多種方式的實(shí)踐教學(xué)活動(dòng),使學(xué)生在實(shí)踐中掌握數(shù)學(xué)建模的常用方法和基本技能,忽略繁瑣的數(shù)學(xué)推導(dǎo)過(guò)程,讓學(xué)生體會(huì)發(fā)現(xiàn)問(wèn)題和思考問(wèn)題的過(guò)程,培養(yǎng)學(xué)生解決問(wèn)題的創(chuàng)新能力。
近些年來(lái),我們開(kāi)設(shè)的醫(yī)藥數(shù)學(xué)建模課受到了學(xué)生的一致好評(píng),其關(guān)鍵之處在于我們一改傳統(tǒng)的教學(xué)模式,通過(guò)組織數(shù)學(xué)建模興趣研討班,讓每位同學(xué)都能充分地參與到研究中去并且使每位學(xué)生都有發(fā)言的機(jī)會(huì)。這些舉措旨在進(jìn)一步激發(fā)學(xué)生的創(chuàng)新意識(shí),提高學(xué)生的數(shù)學(xué)建模實(shí)踐能力。研討班面向全校各類醫(yī)學(xué)專業(yè)的學(xué)生,并以三人為單位,劃分成若干個(gè)組,通過(guò)專題研討的形式開(kāi)展活動(dòng)。實(shí)踐證明:通過(guò)這種研討過(guò)程,學(xué)生不僅對(duì)所學(xué)的醫(yī)學(xué)知識(shí)有了更深刻的理解與認(rèn)識(shí),在文獻(xiàn)資料查閱、計(jì)算機(jī)編程、語(yǔ)言表達(dá)能力等諸多方面也都有了顯著的提高。通過(guò)這個(gè)過(guò)程的學(xué)習(xí),為學(xué)生今后從事醫(yī)學(xué)科研工作打下了良好的基礎(chǔ)。
為了有效的培養(yǎng)學(xué)生綜合應(yīng)用能力和深層次學(xué)習(xí)的習(xí)慣與意識(shí),我們?cè)诮虒W(xué)方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導(dǎo),突出知識(shí)的應(yīng)用思想和應(yīng)用意識(shí),讓學(xué)生帶著問(wèn)題上課,嘗試在解決問(wèn)題中與教師進(jìn)行交流,下課帶著問(wèn)題回去。
在課堂教學(xué)中,重點(diǎn)講解發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的方法與技巧。通過(guò)課前作業(yè),引導(dǎo)學(xué)生自我發(fā)現(xiàn)問(wèn)題;通過(guò)課堂講解和研討,引導(dǎo)學(xué)生解決問(wèn)題;通過(guò)課后作業(yè),總結(jié)和鞏固所學(xué)知識(shí),學(xué)習(xí)應(yīng)用與拓展知識(shí)。這種完全以學(xué)生為主,教師為輔的做法,有利于培養(yǎng)學(xué)生樹(shù)立勇于探索求知的信心和探索新知識(shí)的能力與意識(shí),提高學(xué)生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學(xué)生的綜合應(yīng)用素質(zhì)。
在現(xiàn)實(shí)生活中的實(shí)際問(wèn)題是比較復(fù)雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應(yīng)用方能解決。
因此,以實(shí)際問(wèn)題驅(qū)動(dòng)的教學(xué)模式,主要是引導(dǎo)學(xué)生如何將復(fù)雜的實(shí)際問(wèn)題分解為一系列簡(jiǎn)單的小問(wèn)題,在解決每一個(gè)小問(wèn)題的過(guò)程中,讓學(xué)生學(xué)習(xí)并掌握相關(guān)的數(shù)學(xué)知識(shí)與方法。這種在應(yīng)用中學(xué)習(xí)的教學(xué)方法,在很大程度上解決了學(xué)生普遍存在的“學(xué)數(shù)學(xué)有什么用、學(xué)了數(shù)學(xué)不知怎么用”的困惑。
在整個(gè)教學(xué)過(guò)程中,貫穿以學(xué)生為主體,通過(guò)案例分析引導(dǎo)學(xué)生的思維方法,針對(duì)一個(gè)案例的解決過(guò)程和方法,要求實(shí)現(xiàn)舉一反三,促使學(xué)生對(duì)所掌握的知識(shí)進(jìn)行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學(xué)生在學(xué)習(xí)和問(wèn)題的解決中學(xué)會(huì)不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問(wèn)題,通過(guò)不斷地歸納演繹、對(duì)比分析、總結(jié)經(jīng)驗(yàn)、彌補(bǔ)不足,進(jìn)一步學(xué)習(xí)相關(guān)知識(shí)和方法,再進(jìn)行實(shí)踐,從而不斷增強(qiáng)自身的綜合應(yīng)用能力和素質(zhì)。
隨著醫(yī)學(xué)院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對(duì)培養(yǎng)適應(yīng)科學(xué)技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學(xué)人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專業(yè)人才已成為亟待解決的問(wèn)題之一。本文探討了醫(yī)藥數(shù)學(xué)建模課程的開(kāi)設(shè)對(duì)培養(yǎng)大學(xué)生實(shí)踐創(chuàng)新能力的幾點(diǎn)做法。教學(xué)實(shí)踐證明:數(shù)學(xué)建模課充分鍛煉了學(xué)生的各項(xiàng)能力,是提高醫(yī)學(xué)專業(yè)學(xué)生綜合應(yīng)用素質(zhì)行之有效的方法。
初中數(shù)學(xué)建模論文篇二
數(shù)學(xué)是在實(shí)際應(yīng)用的需求中產(chǎn)生的,要描述一個(gè)實(shí)際現(xiàn)象可以有很多種方式,為了實(shí)際問(wèn)題描述的更具邏輯性、科學(xué)性、客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語(yǔ)言來(lái)描述各種現(xiàn)象,這種語(yǔ)言就是數(shù)學(xué)。數(shù)學(xué)建模則是架于數(shù)學(xué)理論和實(shí)際問(wèn)題之間的橋梁,數(shù)學(xué)模型是對(duì)于現(xiàn)實(shí)生活中的特定對(duì)象,根據(jù)其內(nèi)在的規(guī)律,做出一些必要的假設(shè),為了一個(gè)特定目的,運(yùn)用數(shù)學(xué)工具,得到的一個(gè)數(shù)學(xué)結(jié)構(gòu),用來(lái)解釋現(xiàn)實(shí)現(xiàn)象,預(yù)測(cè)未來(lái)狀況。因此,數(shù)學(xué)建模就是用數(shù)學(xué)語(yǔ)言描述實(shí)際現(xiàn)象的過(guò)程。
大部分的獨(dú)立院校的數(shù)學(xué)建模工作純?cè)谝欢ǖ膯?wèn)題,主要體現(xiàn)在以下幾個(gè)方面:(一)學(xué)生方面的問(wèn)題。獨(dú)立院校的大部分學(xué)生的數(shù)學(xué)功底差,對(duì)數(shù)學(xué)的學(xué)習(xí)興趣不大,普遍認(rèn)為數(shù)學(xué)的學(xué)習(xí)對(duì)自身的專業(yè)的幫助不大。從而更不愿意接觸與數(shù)學(xué)有關(guān)的數(shù)學(xué)建模,對(duì)數(shù)學(xué)建模競(jìng)賽的興趣不大。在獨(dú)立院校中,參加數(shù)學(xué)建模競(jìng)賽的大都是低年級(jí)的學(xué)生,而這些學(xué)生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整,他們往往參加了一屆數(shù)學(xué)競(jìng)賽并未獲得獎(jiǎng)項(xiàng)后就不愿意再次參加。而高年級(jí)的同學(xué)忙于其他的就業(yè)、考研等壓力,無(wú)暇參加數(shù)學(xué)建模競(jìng)賽的培訓(xùn)。(二)教資方面的問(wèn)題。首先。傳統(tǒng)的教學(xué)是知識(shí)為中心、以教師的講解為中心。數(shù)學(xué)建模的教學(xué)要求教師以學(xué)生為中心,培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)的能力,發(fā)展學(xué)生的創(chuàng)新能力和創(chuàng)造能力。獨(dú)立院校外聘的老師常常對(duì)獨(dú)立院校的學(xué)生不夠了解,這直接影響到教學(xué)成果。其次,數(shù)學(xué)建模涉及的知識(shí)面廣,不但包括數(shù)學(xué)的各個(gè)分支,還包含了其他背景的專業(yè)知識(shí)。獨(dú)立院校的教師一部分是才從大學(xué)畢業(yè)不久的研究生,他們對(duì)于數(shù)學(xué)建模教學(xué)和競(jìng)賽的培訓(xùn)經(jīng)驗(yàn)不足,科研能力不是很強(qiáng),對(duì)數(shù)學(xué)的各個(gè)分支的把控能力不強(qiáng),對(duì)其他專業(yè)的了解不夠全面。(三)教學(xué)實(shí)施方面的問(wèn)題。大學(xué)生數(shù)學(xué)建模競(jìng)賽的目的決不僅僅是獲獎(jiǎng),更重要的是通過(guò)參加大學(xué)生數(shù)學(xué)建模競(jìng)賽活動(dòng),促進(jìn)高校數(shù)學(xué)教學(xué)改革,起到培養(yǎng)全體學(xué)生能力、提高全體學(xué)生素質(zhì)的作用。獨(dú)立院校數(shù)學(xué)建模教學(xué)存在很多的問(wèn)題。首先,大學(xué)數(shù)學(xué)建模教育在獨(dú)立院校中的普及性不夠。數(shù)學(xué)建模的宣傳力度不大,課程大多開(kāi)在大一和大二的跨選課,這個(gè)時(shí)候?qū)W生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整。其次就是教材的選取,數(shù)學(xué)建模的相關(guān)教材大都是為了數(shù)學(xué)建模競(jìng)賽而編寫(xiě)的,對(duì)于獨(dú)立院校的學(xué)生來(lái)說(shuō),這些教材的難度系數(shù)大,涉及的知識(shí)面廣,遠(yuǎn)遠(yuǎn)超過(guò)了學(xué)生的接受能力。
(一)讓學(xué)生了解數(shù)學(xué)建模,培養(yǎng)學(xué)習(xí)數(shù)學(xué)建模的興趣。數(shù)學(xué)建模課程的開(kāi)設(shè)有利于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)具體解決實(shí)際問(wèn)題的能力,讓學(xué)生發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué)的用處,改變學(xué)生學(xué)習(xí)數(shù)學(xué)的態(tài)度,提高學(xué)習(xí)數(shù)學(xué)的能力,認(rèn)識(shí)到數(shù)學(xué)的意義和價(jià)值。獨(dú)立院校學(xué)生的數(shù)學(xué)基礎(chǔ)雖然比較差,但是學(xué)生的動(dòng)手能力強(qiáng)。學(xué)??梢栽诙嚅_(kāi)展數(shù)學(xué)建模的講座和課程,讓學(xué)生了解數(shù)學(xué)建模。同時(shí)多向?qū)W生宣傳數(shù)學(xué)建模的成果。(二)在教學(xué)內(nèi)容中滲透數(shù)學(xué)建模思想和方法。1.在日常數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)教學(xué)重視的是知識(shí)的培養(yǎng)和傳輸,而忽視的是實(shí)際應(yīng)用能力。教師的教學(xué)目標(biāo)是使學(xué)生掌握數(shù)學(xué)理論知識(shí)。一般的教學(xué)方法是:教師引入相關(guān)的的基本概念,證明定理,推導(dǎo)公式,列舉例題,學(xué)生記住公式,套用公式,掌握解題方法與技巧。學(xué)生往往學(xué)習(xí)了不少的純粹的數(shù)學(xué)理論知識(shí),卻不知道如何應(yīng)用到實(shí)際問(wèn)題中。數(shù)學(xué)建模課程與傳統(tǒng)數(shù)學(xué)課程相比差別較大,學(xué)校開(kāi)設(shè)的數(shù)學(xué)建模跨選課及數(shù)學(xué)建模培訓(xùn)班,對(duì)培養(yǎng)學(xué)生觀察能力、分析能力、想象力、邏輯能力、解決實(shí)際問(wèn)題的能力起到了很好的作用。由于學(xué)校開(kāi)設(shè)的數(shù)學(xué)建模課程大多是選修課程,課時(shí)較少,參選的學(xué)生也有限,數(shù)學(xué)建模的作用不能很好的向?qū)W生傳輸。高等數(shù)學(xué)中的很多內(nèi)容都與數(shù)學(xué)建模的思想有關(guān),因此,在大學(xué)數(shù)學(xué)課程的教學(xué)過(guò)程中,教師應(yīng)有意識(shí)地結(jié)合傳統(tǒng)的數(shù)學(xué)課程的特點(diǎn),將數(shù)學(xué)建模的思想和內(nèi)容融入到數(shù)學(xué)課堂教學(xué)中。這樣既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又能很好的將突出數(shù)學(xué)建模的思想。2.數(shù)學(xué)建模與專業(yè)緊密聯(lián)系,發(fā)揮數(shù)學(xué)對(duì)專業(yè)知識(shí)的服務(wù)作用。數(shù)學(xué)建模與專業(yè)知識(shí)的結(jié)合,不僅可以讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的重要作用,在專業(yè)知識(shí)學(xué)習(xí)中的地位,還可以培養(yǎng)學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣,增強(qiáng)數(shù)學(xué)學(xué)習(xí)的凝聚力,同時(shí)加深對(duì)專業(yè)知識(shí)的理解。通過(guò)專業(yè)知識(shí)作為背景,學(xué)生更愿意嘗試問(wèn)題的研究。在學(xué)習(xí)中遇到的專業(yè)問(wèn)題也可以嘗試用數(shù)學(xué)建模的思想進(jìn)行解決。這有利于提高學(xué)生的綜合能力的培養(yǎng)。3.分層次進(jìn)行數(shù)學(xué)建模教育。大體說(shuō)來(lái)獨(dú)立院校的數(shù)學(xué)建模課程的開(kāi)設(shè)應(yīng)該分成兩個(gè)階段:(1)第一階段:大學(xué)一年級(jí),在這個(gè)階段,大部分學(xué)生對(duì)數(shù)學(xué)建模沒(méi)有了解,這時(shí)候適合開(kāi)設(shè)一些數(shù)學(xué)建模的講座和活動(dòng),讓學(xué)生了解數(shù)學(xué)建模。同時(shí),在日常的數(shù)學(xué)教學(xué)中選擇簡(jiǎn)單的應(yīng)用問(wèn)題和改變后的數(shù)學(xué)建模題目,結(jié)合自身的專業(yè)知識(shí)進(jìn)行講解,讓學(xué)生了解數(shù)學(xué)建模的一般含義?;痉椒ê筒襟E,讓學(xué)生具備初步的建模能力。(2)中級(jí)層次:大學(xué)二、三年級(jí)。在這個(gè)階段,學(xué)生基本具備了完整的數(shù)學(xué)結(jié)構(gòu),具有了基本的建模能力。這個(gè)時(shí)候應(yīng)該開(kāi)設(shè)數(shù)學(xué)建模專業(yè)課程,讓學(xué)生處理比較復(fù)雜的數(shù)學(xué)建模問(wèn)題,讓學(xué)生自己去采集有用的信息,學(xué)會(huì)提出模型的假設(shè),對(duì)數(shù)據(jù)和信息需進(jìn)行整理、分析和判斷,并模型進(jìn)行分析和評(píng)價(jià),最終完成科技論文。
(一)提高數(shù)學(xué)教師自身水平。在數(shù)學(xué)建模教學(xué)過(guò)程中,教師扮演著重要的角色。教師水平的高低決定著數(shù)學(xué)建模教學(xué)能否達(dá)到預(yù)期的目的。數(shù)學(xué)建模的教學(xué),不僅要求教師具備較高的專業(yè)水平,還要求教師具備解決實(shí)際問(wèn)題的能力和豐富的數(shù)學(xué)建模實(shí)踐經(jīng)驗(yàn)。而獨(dú)立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實(shí)踐經(jīng)驗(yàn)。這就對(duì)獨(dú)立院校的的數(shù)學(xué)建模教學(xué)工作產(chǎn)生了很大的障礙。為了提高教師的水平,可以多派青年教師進(jìn)行專業(yè)培訓(xùn)學(xué)習(xí)和學(xué)術(shù)交流,參加各種學(xué)術(shù)會(huì)議、到名校去做訪問(wèn)學(xué)者等等。同時(shí)可以多請(qǐng)著名的數(shù)學(xué)專家教授來(lái)到校園做建模學(xué)術(shù)報(bào)告,使師生拓寬視野,增長(zhǎng)知識(shí),了解建模的新趨勢(shì)、新動(dòng)態(tài)。青年教師還需要依據(jù)特定的教學(xué)內(nèi)容、教學(xué)對(duì)象和教學(xué)環(huán)境對(duì)自己的教學(xué)工作作出計(jì)劃、實(shí)施和調(diào)整以及反思和總結(jié)。青年數(shù)學(xué)教師還必須更新教育理念,改變傳統(tǒng)的教學(xué)理念。只有不斷創(chuàng)新,努力提高自身素質(zhì),才能適應(yīng)新的形勢(shì),符合建模發(fā)展的要求。(二)選取合適的教材。數(shù)學(xué)建模教材使用也存在諸多不足之處。絕大部分高校教學(xué)建模課程采用的是理工類專業(yè)數(shù)學(xué)建模教材。這些教材主要涵蓋的數(shù)學(xué)模型的難度系數(shù)大。而獨(dú)立院校的學(xué)生的基礎(chǔ)薄弱,無(wú)法接收這些模型。在教學(xué)過(guò)程中,教師可以將具體的案例或是歷年的數(shù)學(xué)建模題目做為教學(xué)內(nèi)容。通過(guò)具體的建模實(shí)例,講解建模的思想和方法。一邊講解,一邊讓學(xué)生分組討論,提出對(duì)問(wèn)題的新的理解和對(duì)魔性的認(rèn)識(shí),嘗試提出新的模型。(三)豐富建模活動(dòng)。全面開(kāi)展數(shù)學(xué)建?;顒?dòng)是數(shù)學(xué)建模思想的最重要的形式,它既使課內(nèi)和課外知識(shí)相互結(jié)合,又可以普及建模知識(shí)與提高建模能力結(jié)合,可以培養(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)分析和解決實(shí)際問(wèn)題的能力,可以有效地提升了學(xué)生的數(shù)學(xué)綜合素質(zhì)。學(xué)??梢远ㄆ诘拈_(kāi)展數(shù)學(xué)建模宣傳活動(dòng),擴(kuò)大數(shù)學(xué)建模的知名度。學(xué)校還可以邀請(qǐng)有經(jīng)驗(yàn)的專家和獲獎(jiǎng)學(xué)生開(kāi)展建模講座,提高對(duì)數(shù)學(xué)建模的重視,積極的組織建?;顒?dòng)。實(shí)踐證明,只有根據(jù)獨(dú)立院校的自身特點(diǎn)和培養(yǎng)目標(biāo),對(duì)數(shù)學(xué)建模課程的教學(xué)不斷進(jìn)行改革,才能解決獨(dú)立院校數(shù)學(xué)建模課程教學(xué)的問(wèn)題,才能真正的讓學(xué)生喜歡上數(shù)學(xué),喜歡上數(shù)學(xué)建模。
[1]李大潛.將數(shù)學(xué)建模思想融入數(shù)學(xué)主干課程[j].中國(guó)大學(xué)教育.20xx.
[2]賈曉峰等.大學(xué)生數(shù)學(xué)建模競(jìng)賽與高等學(xué)校數(shù)學(xué)改革[j].工科數(shù)學(xué).20xx:162.
[3]融入數(shù)學(xué)建模思想的高等數(shù)學(xué)教學(xué)研究[j].科技創(chuàng)新導(dǎo)報(bào).20xx:162.
作者:李雙單位:湖北文理學(xué)院理工學(xué)院。
初中數(shù)學(xué)建模論文篇三
大學(xué)數(shù)學(xué)具有高度抽象性和概括性等特點(diǎn),知識(shí)本身難度大再加上學(xué)時(shí)少、內(nèi)容多等教學(xué)現(xiàn)狀常常造成學(xué)生的學(xué)習(xí)積極性不高、知識(shí)掌握不夠透徹、遇到實(shí)際問(wèn)題時(shí)束手無(wú)策,而數(shù)學(xué)建模思想能激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),提高其解決實(shí)際問(wèn)題的能力。數(shù)學(xué)建模活動(dòng)為學(xué)生構(gòu)建了一個(gè)由數(shù)學(xué)知識(shí)通向?qū)嶋H問(wèn)題的橋梁,是學(xué)生的數(shù)學(xué)知識(shí)和應(yīng)用能力共同提高的最佳結(jié)合方式。因此在大學(xué)數(shù)學(xué)教育中應(yīng)加強(qiáng)數(shù)學(xué)建模教育和活動(dòng),讓學(xué)生積極主動(dòng)學(xué)習(xí)建模思想,認(rèn)真體驗(yàn)和感知建模過(guò)程,以此啟迪創(chuàng)新意識(shí)和創(chuàng)新思維,提高其素質(zhì)和創(chuàng)新能力,實(shí)現(xiàn)向素質(zhì)教育的轉(zhuǎn)化和深入。
數(shù)學(xué)建模即抓住問(wèn)題的本質(zhì),抽取影響研究對(duì)象的主因素,將其轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,利用數(shù)學(xué)思維、數(shù)學(xué)邏輯進(jìn)行分析,借助于數(shù)學(xué)方法及相關(guān)工具進(jìn)行計(jì)算,最后將所得的答案回歸實(shí)際問(wèn)題,即模型的檢驗(yàn),這就是數(shù)學(xué)建模的全過(guò)程。一般來(lái)說(shuō)",數(shù)學(xué)建模"包含五個(gè)階段。
1.準(zhǔn)備階段。
主要分析問(wèn)題背景,已知條件,建模目的等問(wèn)題。
2.假設(shè)階段。
做出科學(xué)合理的假設(shè),既能簡(jiǎn)化問(wèn)題,又能抓住問(wèn)題的本質(zhì)。
3.建立階段。
從眾多影響研究對(duì)象的因素中適當(dāng)?shù)厝∩?,抽取主因素予以考慮,建立能刻畫(huà)實(shí)際問(wèn)題本質(zhì)的數(shù)學(xué)模型。
4.求解階段。
對(duì)已建立的數(shù)學(xué)模型,運(yùn)用數(shù)學(xué)方法、數(shù)學(xué)軟件及相關(guān)的工具進(jìn)行求解。
5.驗(yàn)證階段。
用實(shí)際數(shù)據(jù)檢驗(yàn)?zāi)P?,如果偏差較大,就要分析假設(shè)中某些因素的合理性,修改模型,直至吻合或接近現(xiàn)實(shí)。如果建立的模型經(jīng)得起實(shí)踐的檢驗(yàn),那么此模型就是符合實(shí)際規(guī)律的,能解決實(shí)際問(wèn)題或有效預(yù)測(cè)未來(lái)的,這樣的建模就是成功的,得到的模型必被推廣應(yīng)用。
二、加強(qiáng)數(shù)學(xué)建模教育的作用和意義。
(一)加強(qiáng)數(shù)學(xué)建模教育有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高數(shù)學(xué)修養(yǎng)和素質(zhì)。
數(shù)學(xué)建模教育強(qiáng)調(diào)如何把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,進(jìn)而利用數(shù)學(xué)及其有關(guān)的工具解決這些問(wèn)題,因此在大學(xué)數(shù)學(xué)的教學(xué)活動(dòng)中融入數(shù)學(xué)建模思想,鼓勵(lì)學(xué)生參與數(shù)學(xué)建模實(shí)踐活動(dòng),不但可以使學(xué)生學(xué)以致用,做到理論聯(lián)系實(shí)際,而且還會(huì)使他們感受到數(shù)學(xué)的生機(jī)與活力,激發(fā)求知的興趣和探索的欲望,變被動(dòng)學(xué)習(xí)為主動(dòng)參與其效率就會(huì)大為改善。數(shù)學(xué)修養(yǎng)和素質(zhì)自然而然得以培養(yǎng)并提高。
(二)加強(qiáng)數(shù)學(xué)建模教育有助于提高學(xué)生的分析解決問(wèn)題能力、綜合應(yīng)用能力。
數(shù)學(xué)建模問(wèn)題來(lái)源于社會(huì)生活的眾多領(lǐng)域,在建模過(guò)程中,學(xué)生首先需要閱讀相關(guān)的文獻(xiàn)資料,然后應(yīng)用數(shù)學(xué)思維、數(shù)學(xué)邏輯及相關(guān)知識(shí)對(duì)實(shí)際問(wèn)題進(jìn)行深入剖析研究并經(jīng)過(guò)一系列復(fù)雜計(jì)算,得出反映實(shí)際問(wèn)題的最佳數(shù)學(xué)模型及模型最優(yōu)解。因此通過(guò)數(shù)學(xué)建?;顒?dòng)學(xué)生的視野將會(huì)得以拓寬,應(yīng)用意識(shí)、解決復(fù)雜問(wèn)題的能力也會(huì)得到增強(qiáng)和提高。
(三)加強(qiáng)數(shù)學(xué)建模教育有助于培養(yǎng)學(xué)生的創(chuàng)造性思維和創(chuàng)新能力。
所謂創(chuàng)造力是指"對(duì)已積累的知識(shí)和經(jīng)驗(yàn)進(jìn)行科學(xué)地加工和創(chuàng)造,產(chǎn)生新概念、新知識(shí)、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構(gòu)成".現(xiàn)今教育界認(rèn)為,創(chuàng)造力的培養(yǎng)是人才培養(yǎng)的關(guān)鍵,數(shù)學(xué)建?;顒?dòng)的各個(gè)環(huán)節(jié)無(wú)不充滿了創(chuàng)造性思維的挑戰(zhàn)。
很多不同的實(shí)際問(wèn)題,其數(shù)學(xué)模型可以是相同或相似的,這就要求學(xué)生在建模時(shí)觸類旁通,挖掘不同事物間的本質(zhì),尋找其內(nèi)在聯(lián)系。而對(duì)一個(gè)具體的建模問(wèn)題,能否把握其本質(zhì)轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,是完成建模過(guò)程的關(guān)鍵所在。同時(shí)建模題材有較大的靈活性,沒(méi)有統(tǒng)一的標(biāo)準(zhǔn)答案,因此數(shù)學(xué)建模過(guò)程是培養(yǎng)學(xué)生創(chuàng)造性思維,提高創(chuàng)新能力的過(guò)程.
(四)加強(qiáng)數(shù)學(xué)建模教育有助于提高學(xué)生科技論文的撰寫(xiě)能力。
數(shù)學(xué)建模的結(jié)果是以論文形式呈現(xiàn)的,如何將建模思想、建立的`模型、最優(yōu)解及其關(guān)鍵環(huán)節(jié)的處理在論文中清晰地表述出來(lái),對(duì)本科生來(lái)說(shuō)是一個(gè)挑戰(zhàn)。經(jīng)歷數(shù)學(xué)建模全過(guò)程的磨練,特別是數(shù)模論文的撰寫(xiě),學(xué)生的文字語(yǔ)言、數(shù)學(xué)表述能力及論文的撰寫(xiě)能力無(wú)疑會(huì)得到前所未有的提高。
(五)加強(qiáng)數(shù)學(xué)建模教育有助于增強(qiáng)學(xué)生的團(tuán)結(jié)合作精神并提高協(xié)調(diào)組織能力建模問(wèn)題通常較復(fù)雜,涉及的知識(shí)面也很廣,因此數(shù)學(xué)建模實(shí)踐活動(dòng)一般效仿正規(guī)競(jìng)賽的規(guī)則,三人為一隊(duì)在三天內(nèi)以論文形式完成建模題目。要較好地完成任務(wù),離不開(kāi)良好的組織與管理、分工與協(xié)作.
三、開(kāi)展數(shù)學(xué)建模教育及活動(dòng)的具體途徑和有效方法。
即在課堂教學(xué)中,教師以具體的案例作為主要的教學(xué)內(nèi)容,通過(guò)具體問(wèn)題的建模,介紹建模的過(guò)程和思想方法及建模中要注意的問(wèn)題。案例教學(xué)法的關(guān)鍵在于把握兩個(gè)重要環(huán)節(jié):
案例的選取和課堂教學(xué)的組織。
教學(xué)案例一定要精心選取,才能達(dá)到預(yù)期的教學(xué)效果。其選取一般要遵循以下幾點(diǎn)。
1.代表性:案例的選取要具有科學(xué)性,能拓寬學(xué)生的知識(shí)面,突出數(shù)學(xué)建模活動(dòng)重在培養(yǎng)興趣提高能力等特點(diǎn)。
2.原始性:來(lái)自媒體的信息,企事業(yè)單位的報(bào)告,現(xiàn)實(shí)生活和各學(xué)科中的問(wèn)題等等,都是數(shù)學(xué)建模問(wèn)題原始資料的重要來(lái)源。
3.創(chuàng)新性:案例應(yīng)注意選取在建模的某些環(huán)節(jié)上具有挑戰(zhàn)性,能激發(fā)學(xué)生的創(chuàng)造性思維,培養(yǎng)學(xué)生的創(chuàng)新精神和提高創(chuàng)造能力。
案例教學(xué)的課堂組織,一部分是教師講授,從實(shí)際問(wèn)題出發(fā),講清問(wèn)題的背景、建模的要求和已掌握的信息,介紹如何通過(guò)合理的假設(shè)和簡(jiǎn)化建立優(yōu)化的數(shù)學(xué)模型。還要強(qiáng)調(diào)如何用求解結(jié)果去解釋實(shí)際現(xiàn)象即檢驗(yàn)?zāi)P?。另一部分是課堂討論,讓學(xué)生自由發(fā)言各抒己見(jiàn)并提出新的模型,簡(jiǎn)介關(guān)鍵環(huán)節(jié)的處理。最后教師做出點(diǎn)評(píng),提供一些改進(jìn)的方向,讓學(xué)生自己課外獨(dú)立探索和鉆研,這樣既突出了教學(xué)重點(diǎn),又給學(xué)生留下了進(jìn)一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學(xué)生的課堂學(xué)習(xí)興趣和積極性,使傳授知識(shí)變?yōu)閷W(xué)習(xí)知識(shí)、應(yīng)用知識(shí),真正地達(dá)到提高素質(zhì)和培養(yǎng)能力的教學(xué)目的.
(二)開(kāi)展數(shù)模競(jìng)賽的專題培訓(xùn)指導(dǎo)工作。
建立數(shù)學(xué)建模競(jìng)賽指導(dǎo)團(tuán)隊(duì),分專題實(shí)行教師負(fù)責(zé)制。每位教師根據(jù)自己的專長(zhǎng),負(fù)責(zé)講授某一方面的數(shù)學(xué)建模知識(shí)與技巧,并選取相應(yīng)地建模案例進(jìn)行剖析。如離散模型、連續(xù)模型、優(yōu)化模型、微分方程模型、概率模型、統(tǒng)計(jì)回歸模型及數(shù)學(xué)軟件的使用等。學(xué)生根據(jù)自己的薄弱點(diǎn),選擇適合的專題培訓(xùn)班進(jìn)行學(xué)習(xí),以彌補(bǔ)自己的不足。這種針對(duì)性的數(shù)模教學(xué),會(huì)極大地提高教學(xué)效率。
以現(xiàn)代網(wǎng)絡(luò)技術(shù)為依托,建立數(shù)學(xué)建模課程網(wǎng)站,內(nèi)容包括:課程介紹,課程大綱,教師教案,電子課件,教學(xué)實(shí)驗(yàn),教學(xué)錄像,網(wǎng)上答疑等;還可以增加一些有關(guān)欄目,如歷年國(guó)內(nèi)外數(shù)模競(jìng)賽介紹,校內(nèi)競(jìng)賽,專家點(diǎn)評(píng),獲獎(jiǎng)心得交流;同時(shí)提供數(shù)模學(xué)習(xí)資源下載如講義,背景材料,歷年國(guó)內(nèi)外競(jìng)賽題,優(yōu)秀論文等。以此為學(xué)生提供良好的自主學(xué)習(xí)網(wǎng)絡(luò)平臺(tái),實(shí)現(xiàn)課堂教學(xué)與網(wǎng)絡(luò)教學(xué)的有機(jī)結(jié)合,達(dá)到有效地提高學(xué)生數(shù)學(xué)建模綜合應(yīng)用能力的目的。
完全模擬全國(guó)大學(xué)生數(shù)模競(jìng)賽的形式規(guī)則:定時(shí)公布賽題,三人一組,只能隊(duì)內(nèi)討論,按時(shí)提交論文,之后指導(dǎo)教師、參賽同學(xué)集中討論,進(jìn)一步完善。筆者負(fù)責(zé)數(shù)學(xué)建模競(jìng)賽培訓(xùn)近20年,多年的實(shí)踐證明,每進(jìn)行一次這樣的訓(xùn)練,學(xué)生在建模思路、建模水平、使用軟件能力、論文書(shū)寫(xiě)方面就有大幅提高。多次訓(xùn)練之后,學(xué)生的建模水平更是突飛猛進(jìn),效果甚佳。
如20xx年我指導(dǎo)的隊(duì)榮獲全國(guó)高教社杯大學(xué)生數(shù)學(xué)建模競(jìng)賽的最高獎(jiǎng)---高教社杯獎(jiǎng),這是此賽設(shè)置的唯一一個(gè)名額,也是當(dāng)年從全國(guó)(包括香港)院校的約1萬(wàn)多個(gè)本科參賽隊(duì)中脫穎而出的。又如20xx年我校57隊(duì)參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,43隊(duì)獲獎(jiǎng),獲獎(jiǎng)比例達(dá)75%,創(chuàng)歷年之最。
(五)鼓勵(lì)學(xué)生積極參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽、國(guó)際數(shù)學(xué)建模競(jìng)賽。
全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽創(chuàng)辦于1992年,每年一屆,目前已成為全國(guó)高校規(guī)模最大的基礎(chǔ)性學(xué)科競(jìng)賽,國(guó)際大學(xué)生數(shù)學(xué)建模競(jìng)賽是世界上影響范圍最大的高水平大學(xué)生學(xué)術(shù)賽事。參加數(shù)學(xué)建模大賽可以激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高運(yùn)用數(shù)學(xué)及相關(guān)工具分析問(wèn)題解決問(wèn)題的綜合能力,開(kāi)拓知識(shí)面,培養(yǎng)創(chuàng)造精神及合作意識(shí)。
四、結(jié)束語(yǔ)。
數(shù)學(xué)建模本身是一個(gè)創(chuàng)造性的思維過(guò)程,它是對(duì)數(shù)學(xué)知識(shí)的綜合應(yīng)用,具有較強(qiáng)的創(chuàng)新性,而高校數(shù)學(xué)教學(xué)改革的目的之一是要著力培養(yǎng)學(xué)生的創(chuàng)造性思維,提高學(xué)生的創(chuàng)新能力。因此應(yīng)將數(shù)學(xué)建模思想融入教學(xué)活動(dòng)中,通過(guò)不斷的數(shù)學(xué)建模教育和實(shí)踐培養(yǎng)學(xué)生的創(chuàng)新能力和應(yīng)用能力從而提高學(xué)生的基本素質(zhì)以適應(yīng)社會(huì)發(fā)展的要求。
初中數(shù)學(xué)建模論文篇四
摘要:隨著現(xiàn)代社會(huì)的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無(wú)需質(zhì)疑,他深入到我們生活的方方面面。現(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識(shí)解決日常問(wèn)題的一個(gè)重要手段。本文通過(guò)簡(jiǎn)述數(shù)學(xué)建模的方法與過(guò)程,以及應(yīng)用數(shù)學(xué)建模解決實(shí)際經(jīng)濟(jì)問(wèn)題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟(jì)問(wèn)題解決中的重要作用。
經(jīng)濟(jì)現(xiàn)象具有多變性,隨著經(jīng)濟(jì)社會(huì)的發(fā)展,國(guó)際間貿(mào)易往來(lái)的日趨緊密,日常經(jīng)濟(jì)形勢(shì)受到的影響因素越來(lái)越復(fù)雜多變。而日常經(jīng)濟(jì)生活中所遇到的經(jīng)濟(jì)現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對(duì)這些難以把控的變量,做好風(fēng)險(xiǎn)的預(yù)估、成本的核算、進(jìn)行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識(shí)、應(yīng)用數(shù)學(xué)建模為工具進(jìn)行較為理性的計(jì)算,為經(jīng)濟(jì)決策、企業(yè)規(guī)劃提供重要的幫助。
數(shù)學(xué)建模,其實(shí)就是建立數(shù)學(xué)模型的簡(jiǎn)稱,實(shí)際上數(shù)學(xué)建??梢苑Q之為解決問(wèn)題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進(jìn)行合理的運(yùn)算,推導(dǎo)出一種理性的結(jié)果的過(guò)程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個(gè)中介和橋梁,在工業(yè)設(shè)計(jì)、經(jīng)濟(jì)領(lǐng)域、工程建設(shè)等各個(gè)方面,運(yùn)用數(shù)學(xué)的語(yǔ)言和方法進(jìn)行問(wèn)題的求解和推導(dǎo),實(shí)際上,都是一種數(shù)學(xué)建模的過(guò)程。數(shù)學(xué)建模的主要過(guò)程可以總結(jié)為如下的框圖形式:實(shí)際上,數(shù)學(xué)模型的最終建立是一個(gè)反復(fù)驗(yàn)證、修改、完善的動(dòng)態(tài)過(guò)程,很少能夠通過(guò)一次過(guò)程就建立起完美適合實(shí)際問(wèn)題的數(shù)學(xué)模型。通過(guò)上述過(guò)程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問(wèn)題,明確建模的目的,統(tǒng)計(jì)各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實(shí)際對(duì)象的特性,對(duì)復(fù)雜問(wèn)題進(jìn)行簡(jiǎn)化,提取主要因素,提煉精確的數(shù)學(xué)語(yǔ)言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個(gè)量(變量、常量)間的數(shù)學(xué)關(guān)系,化實(shí)際問(wèn)題為數(shù)學(xué)語(yǔ)言;4.模型求解:對(duì)上述數(shù)學(xué)關(guān)系進(jìn)行求解(包括解方程、圖形分析、邏輯運(yùn)算等);5.模型分析:將求解結(jié)果與實(shí)際問(wèn)題結(jié)合,綜合分析,找到模型的缺陷和不足,進(jìn)行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗(yàn):將模型得到的結(jié)果與實(shí)際情況相驗(yàn)證,檢驗(yàn)?zāi)P偷暮侠硇院瓦m用性。
二、經(jīng)濟(jì)問(wèn)題數(shù)學(xué)模型的建立。
經(jīng)濟(jì)類問(wèn)題因?yàn)槠涮赜械奶攸c(diǎn),可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機(jī)性情況的模型,可以解決類似風(fēng)險(xiǎn)評(píng)估、最優(yōu)產(chǎn)量計(jì)算、庫(kù)存平衡等問(wèn)題;確定型則可以基于一定的條件與假設(shè),精確的對(duì)一種特定情況的結(jié)果做出判斷,如成本核算、損失評(píng)估等。對(duì)經(jīng)濟(jì)問(wèn)題的建模計(jì)算實(shí)際上是一個(gè)從經(jīng)濟(jì)世界進(jìn)入數(shù)學(xué)世界再回到經(jīng)濟(jì)世界的過(guò)程。建立經(jīng)濟(jì)數(shù)學(xué)模型,需要首先對(duì)實(shí)際經(jīng)濟(jì)問(wèn)題和情況有一個(gè)較為深入的認(rèn)識(shí),然后通過(guò)細(xì)致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟(jì)問(wèn)題簡(jiǎn)化提煉為一個(gè)較為理想的自然模型,然后基于這個(gè)原始模型應(yīng)用數(shù)學(xué)知識(shí)建立完整的數(shù)學(xué)經(jīng)濟(jì)模型。
三、建模舉例。
四、結(jié)語(yǔ)。
綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟(jì)中的應(yīng)用可以非常廣泛,對(duì)很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤(rùn)、規(guī)避風(fēng)險(xiǎn)、降低成本、節(jié)省開(kāi)支等各個(gè)方面。上文只提供了一個(gè)簡(jiǎn)單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。
初中數(shù)學(xué)建模論文篇五
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重?cái)?shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過(guò)程中,教師應(yīng)充分考慮小學(xué)生的性格特點(diǎn),提高數(shù)學(xué)建模思想培養(yǎng)的有效性?;诖耍恼聦牟煌姆矫鎸?duì)小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動(dòng)的順利開(kāi)展,有利于提高復(fù)雜數(shù)學(xué)問(wèn)題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實(shí)現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實(shí)際培養(yǎng)效果,需要加強(qiáng)對(duì)學(xué)生動(dòng)手實(shí)踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過(guò)程涉及問(wèn)題表述、求解、必要解釋及有效驗(yàn)證,在這四個(gè)環(huán)節(jié)中,可能會(huì)存在一定的問(wèn)題,影響著數(shù)學(xué)教學(xué)計(jì)劃的實(shí)施。因此,教師需要利用學(xué)生動(dòng)手實(shí)踐能力的作用,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過(guò)程中享受到更多的快樂(lè)。比如,在講解“認(rèn)識(shí)角”知識(shí)的過(guò)程中,某些學(xué)生認(rèn)為邊越長(zhǎng)角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R(shí)點(diǎn)有更加正確而全面的認(rèn)識(shí),教師可以通過(guò)在黑板上設(shè)置一些能夠活動(dòng)的三角板,讓學(xué)生親自動(dòng)手操作,以此得出角與邊長(zhǎng)的正確關(guān)系,為后續(xù)教學(xué)計(jì)劃的實(shí)施打下堅(jiān)實(shí)的基礎(chǔ)。通過(guò)這種教學(xué)方法的合理運(yùn)用,可以激發(fā)出學(xué)生們?cè)跀?shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對(duì)數(shù)學(xué)建模思想有一定的了解,在未來(lái)學(xué)習(xí)過(guò)程中能夠保持良好的`數(shù)學(xué)建模能力。
通過(guò)對(duì)小學(xué)階段各種數(shù)學(xué)實(shí)踐教學(xué)活動(dòng)實(shí)際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對(duì)各知識(shí)(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點(diǎn)的深入理解,增強(qiáng)其主動(dòng)參與數(shù)學(xué)建模教學(xué)活動(dòng)的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達(dá)到預(yù)期的效果,教師需要結(jié)合實(shí)際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對(duì)數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識(shí)的過(guò)程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問(wèn)題,向?qū)W生提問(wèn)是否可以直接計(jì)算,并說(shuō)出原因。當(dāng)學(xué)生通過(guò)對(duì)問(wèn)題的深入思考,總結(jié)出“單位不同不能直接計(jì)算”的結(jié)論后,繼續(xù)向?qū)W生提問(wèn)小數(shù)計(jì)算中為什么每一位都要對(duì)齊,實(shí)現(xiàn)“計(jì)數(shù)單位統(tǒng)一后才能計(jì)算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過(guò)程中,學(xué)生可以加深對(duì)知識(shí)點(diǎn)的理解,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強(qiáng)小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動(dòng)開(kāi)展中注重對(duì)數(shù)學(xué)思想的靈活運(yùn)用,增強(qiáng)相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長(zhǎng)期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運(yùn)用各種數(shù)學(xué)知識(shí)處理實(shí)際問(wèn)題。比如,在“角的度量”這部分內(nèi)容講解的過(guò)程中,為了提高學(xué)生對(duì)角的分類及畫(huà)角相關(guān)知識(shí)點(diǎn)的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過(guò)小組討論的方式,對(duì)角的正確分類及如何畫(huà)角有一定的了解,并讓每個(gè)小組代表在講臺(tái)上演示畫(huà)角的過(guò)程。此時(shí),教師可以通過(guò)對(duì)多媒體教學(xué)設(shè)備的合理運(yùn)用,利用動(dòng)態(tài)化的文字與圖片對(duì)其中的知識(shí)要點(diǎn)進(jìn)行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過(guò)程中逐漸形成良好的創(chuàng)造性思維,強(qiáng)化自身的創(chuàng)新意識(shí)。比如,在講解“圖形變換”中的軸對(duì)稱、旋轉(zhuǎn)知識(shí)點(diǎn)的過(guò)程中,教師應(yīng)通過(guò)對(duì)學(xué)生的正確引導(dǎo),運(yùn)用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對(duì)各種軸對(duì)稱圖形、旋轉(zhuǎn)后得到的圖形進(jìn)行深入思考,提高自身數(shù)學(xué)建模過(guò)程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過(guò)程,對(duì)這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對(duì)性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強(qiáng)小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實(shí)施,有利于滿足素質(zhì)教育的更高要求,實(shí)現(xiàn)對(duì)小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計(jì)劃能夠在規(guī)定的時(shí)間內(nèi)順利地完成。與此同時(shí),結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實(shí)際發(fā)展概況,可知靈活運(yùn)用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實(shí)現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
初中數(shù)學(xué)建模論文篇六
3.3增強(qiáng)選擇數(shù)學(xué)模型的能力。
選擇數(shù)學(xué)模型是數(shù)學(xué)能力的反映。數(shù)學(xué)模型的建立有多種方法,怎樣選擇一個(gè)最佳的模型,體現(xiàn)數(shù)學(xué)能力的強(qiáng)弱。建立數(shù)學(xué)模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項(xiàng)公式、求和公式、曲線方程等類型。結(jié)合教學(xué)內(nèi)容,以函數(shù)建模為例,以下實(shí)際問(wèn)題所選擇的數(shù)學(xué)模型列表:
一次函數(shù)成本、利潤(rùn)、銷售收入等。
二次函數(shù)優(yōu)化問(wèn)題、用料最省問(wèn)題、造價(jià)最低、利潤(rùn)最大等。
冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)細(xì)胞分裂、生物繁殖等。
三角函數(shù)測(cè)量、交流量、力學(xué)問(wèn)題等。
3.4加強(qiáng)數(shù)學(xué)運(yùn)算能力。
數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計(jì)算。有的盡管思路正確、建模合理,但計(jì)算能力欠缺,就會(huì)前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計(jì)算能力的培養(yǎng),只重視推理過(guò)程,不重視計(jì)算過(guò)程的做法是不可取的。
利用數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題對(duì)于多角度、多層次、多側(cè)面思考問(wèn)題,培養(yǎng)學(xué)生發(fā)散思維能力是很有益的,是提高學(xué)生素質(zhì),進(jìn)行素質(zhì)教育的一條有效途徑。同時(shí)數(shù)學(xué)建模的`應(yīng)用也是科學(xué)實(shí)踐,有利于實(shí)踐能力的培養(yǎng),是實(shí)施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。
初中數(shù)學(xué)建模論文篇七
2.1、建立引導(dǎo)機(jī)制,激發(fā)學(xué)習(xí)動(dòng)力。
2.2、建立轉(zhuǎn)化機(jī)制,促進(jìn)知識(shí)向能力的轉(zhuǎn)化。
2.3、建立協(xié)作機(jī)制,增強(qiáng)團(tuán)隊(duì)意識(shí)。
高校學(xué)生在平時(shí)的學(xué)習(xí)過(guò)程中,絕大多數(shù)情況下,基本上都是獨(dú)自學(xué)習(xí),與他人合作研究和解決問(wèn)題機(jī)會(huì)很少.而在各種層次級(jí)別的數(shù)學(xué)建模競(jìng)賽中,參賽學(xué)生要3人一組,以團(tuán)隊(duì)而不是個(gè)人身份參賽.在正式比賽之前,要按照學(xué)科、特長(zhǎng)等因素尋找隊(duì)友,組成隊(duì)伍.在比賽期間,由于隊(duì)友經(jīng)常是來(lái)自不同專業(yè),知識(shí)能力水平各有所長(zhǎng),脾氣秉性各有特點(diǎn),需要在比賽時(shí)認(rèn)真溝通,相互協(xié)調(diào),合理分工,團(tuán)結(jié)協(xié)作共同完成整個(gè)比賽.為了比賽,在發(fā)生矛盾時(shí),要學(xué)會(huì)忍耐和妥協(xié),而不能意氣用事.在整個(gè)比賽期間,求同存異,取長(zhǎng)補(bǔ)短,優(yōu)勢(shì)互補(bǔ),最終合作完成任務(wù).這個(gè)過(guò)程,無(wú)形中就培養(yǎng)了學(xué)生的合作意識(shí)和團(tuán)隊(duì)精神,使學(xué)生親身感受到現(xiàn)代社會(huì)與人合作是大多數(shù)人成功的必要選擇.依托數(shù)學(xué)建模競(jìng)賽,培養(yǎng)創(chuàng)新型人才的團(tuán)隊(duì)協(xié)作意識(shí),建立培養(yǎng)人才的.合作交流機(jī)制,這是適應(yīng)社會(huì)和時(shí)代需要的人才培養(yǎng)過(guò)程中的重要環(huán)節(jié)之一。
2.4、建立溝通表達(dá)機(jī)制,提高學(xué)生的語(yǔ)言及文字表達(dá)能力。
2.5、建立問(wèn)題導(dǎo)向機(jī)制,培養(yǎng)學(xué)生主動(dòng)式學(xué)習(xí)的自主學(xué)習(xí)能力。
3.1、促進(jìn)了學(xué)生全面發(fā)展。
3.2、提高了學(xué)生的就業(yè)質(zhì)量。
初中數(shù)學(xué)建模論文篇八
走美杯”是“走進(jìn)美妙的數(shù)學(xué)花園”的簡(jiǎn)稱。
“走進(jìn)美妙的數(shù)學(xué)花園”中國(guó)青少年數(shù)學(xué)論壇是中國(guó)少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動(dòng)。20xx年,由國(guó)際數(shù)學(xué)家大會(huì)組委會(huì)、中國(guó)數(shù)學(xué)會(huì)、中國(guó)教育學(xué)會(huì)、中國(guó)少年科學(xué)院成功舉辦了首屆“走進(jìn)美妙的數(shù)學(xué)花園”中國(guó)少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國(guó)三十多個(gè)城市近三十萬(wàn)人參與了此項(xiàng)活動(dòng),在全國(guó)青少年中產(chǎn)生了巨大的影響?!白哌M(jìn)美妙的數(shù)學(xué)花園”中國(guó)青少年數(shù)學(xué)論壇活動(dòng)是一項(xiàng)面對(duì)小學(xué)三年級(jí)至初中二年級(jí)學(xué)生的綜合性數(shù)學(xué)活動(dòng)。通過(guò)“趣味數(shù)學(xué)解題技能展示”、“數(shù)學(xué)建模小論文答辯”、“數(shù)學(xué)益智游戲”、“團(tuán)體對(duì)抗賽”等一系列內(nèi)容豐富的活動(dòng)提高廣大中小學(xué)生的數(shù)學(xué)建模意識(shí)和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞“數(shù)學(xué)好玩”和“走進(jìn)美妙的數(shù)學(xué)花園”,大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺(jué)地成為學(xué)習(xí)的主人,實(shí)現(xiàn)從“學(xué)數(shù)學(xué)”到“用數(shù)學(xué)”過(guò)程的轉(zhuǎn)變,從而進(jìn)一步推動(dòng)我國(guó)數(shù)學(xué)文化的傳播與普及。
“走美”活動(dòng)已連續(xù)舉辦七屆,近30萬(wàn)青少年踴躍參與,已取得良好社會(huì)效果,并被寫(xiě)入全國(guó)少工委《少先隊(duì)輔導(dǎo)員工作綱要(試行)》,向全國(guó)少年兒童推廣。
“走美”作為數(shù)學(xué)競(jìng)賽中的后起之秀,憑借其新穎的考試形式以及較高的競(jìng)賽難度取得了非常迅速的發(fā)展,近年來(lái)在重點(diǎn)中學(xué)選拔中引起了廣泛的關(guān)注??陀^地說(shuō)“走美”一、二等獎(jiǎng)對(duì)小升初作用非常大,三等獎(jiǎng)作用不大。
1、活動(dòng)對(duì)象。
全國(guó)各地小學(xué)三年級(jí)至初中二年級(jí)學(xué)生。
2、總成績(jī)計(jì)算。
筆試獲獎(jiǎng)率:
一等獎(jiǎng)5%,二等獎(jiǎng)10%,三等獎(jiǎng)15%。
3、筆試時(shí)間。
每年3月上、中旬。
報(bào)名截止時(shí)間:每年12月底。
走美杯比賽流程。
1、全國(guó)組委會(huì)下發(fā)通知,各地組委會(huì)開(kāi)始組織工作。
2、學(xué)生到當(dāng)?shù)亟M委會(huì)報(bào)名,填寫(xiě)《報(bào)名表》。
3、各地組委會(huì)將報(bào)名學(xué)生名單全部匯總至全國(guó)組委會(huì)。
4、全國(guó)“走進(jìn)美妙的數(shù)學(xué)花園”趣味數(shù)學(xué)解題技能展示初賽(全國(guó)統(tǒng)一筆試)。
6、全國(guó)組委會(huì)公布初賽獲獎(jiǎng)名單并頒發(fā)獲獎(jiǎng)證書(shū)。
7、獲得初賽一、二、三等獎(jiǎng)選手有資格報(bào)名參加暑期赴英國(guó)劍橋大學(xué)數(shù)學(xué)交流活動(dòng)。
8、各地按照組委會(huì)要求提交數(shù)學(xué)建模小論文。
9、前各地組委會(huì)上報(bào)參加全國(guó)總論壇學(xué)生名單。
10、全國(guó)總論壇和表彰活動(dòng)。
初中數(shù)學(xué)建模論文篇九
第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁(yè)邊距;從左側(cè)裝訂。
第二條,論文第一頁(yè)為承諾書(shū),第二頁(yè)為編號(hào)專用頁(yè),具體內(nèi)容見(jiàn)本規(guī)范第3、4頁(yè)。
第三條,論文第三頁(yè)為摘要專用頁(yè)(含標(biāo)題和關(guān)鍵詞,但不需要翻譯成英文),從此頁(yè)開(kāi)始編寫(xiě)頁(yè)碼;頁(yè)碼必須位于每頁(yè)頁(yè)腳中部,用阿拉伯?dāng)?shù)字從“1”開(kāi)始連續(xù)編號(hào)。摘要專用頁(yè)必須單獨(dú)一頁(yè),且篇幅不能超過(guò)一頁(yè)。
第四條,從第四頁(yè)開(kāi)始是論文正文(不要目錄,盡量控制在20頁(yè)以內(nèi));正文之后是論文附錄(頁(yè)數(shù)不限)。
第五條,論文附錄至少應(yīng)包括參賽論文的所有源程序代碼,如實(shí)際使用的軟件名稱、命令和編寫(xiě)的全部可運(yùn)行的源程序(含excel、spss等軟件的交互命令);通常還應(yīng)包括自主查閱使用的數(shù)據(jù)等資料。賽題中提供的數(shù)據(jù)不要放在附錄。如果缺少必要的源程序或程序不能運(yùn)行,可能會(huì)被取消評(píng)獎(jiǎng)資格。論文附錄必須打印裝訂在論文紙質(zhì)版中。如果確實(shí)沒(méi)有需要以附錄形式提供的信息,論文可以沒(méi)有附錄。
第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學(xué)校及賽區(qū)的信息。
第七條,引用別人的成果或其他公開(kāi)的資料(包括網(wǎng)上資料)必須按照科技論文寫(xiě)作的規(guī)范格式列出參考文獻(xiàn),并在正文引用處予以標(biāo)注。
第八條,本規(guī)范中未作規(guī)定的,如排版格式(字號(hào)、字體、行距、顏色等)不做統(tǒng)一要求,可由賽區(qū)自行決定。在不違反本規(guī)范的前提下,各賽區(qū)可以對(duì)論文增加其他要求。
第九條,參賽隊(duì)?wèi)?yīng)按照《全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽報(bào)名和參賽須知》的要求命名和提交以下兩個(gè)電子文件,分別對(duì)應(yīng)于參賽論文和相關(guān)的支撐材料。
第十條,參賽論文的電子版不能包含承諾書(shū)和編號(hào)專用頁(yè)(即電子版論文第一頁(yè)為摘要頁(yè))。除此之外,其內(nèi)容及格式必須與紙質(zhì)版完全一致(包括正文及附錄),且必須是一個(gè)單獨(dú)的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過(guò)20mb。
第十一條,支撐材料(不超過(guò)20mb)包括用于支撐論文模型、結(jié)果、結(jié)論的所有必要文件,至少應(yīng)包含參賽論文的所有源程序,通常還應(yīng)包含參賽論文使用的`數(shù)據(jù)(賽題中提供的原始數(shù)據(jù)除外)、較大篇幅的中間結(jié)果的圖形或表格、難以從公開(kāi)渠道找到的相關(guān)資料等。所有支撐材料使用winrar軟件壓縮在一個(gè)文件中(后綴為rar);如果支撐材料與論文內(nèi)容不相符,該論文可能會(huì)被取消評(píng)獎(jiǎng)資格。支撐材料中不能包含承諾書(shū)和編號(hào)專用頁(yè),不能有任何可能顯示答題人身份和所在學(xué)校及賽區(qū)的信息。如果確實(shí)沒(méi)有需要提供的支撐材料,可以不提供支撐材料。
第十二條,不符合本格式規(guī)范的論文將被視為違反競(jìng)賽規(guī)則,可能被取消評(píng)獎(jiǎng)資格。
第十三條,本規(guī)范的解釋權(quán)屬于全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽組委會(huì)。
說(shuō)明:
(1)本科組參賽隊(duì)從a、b題中任選一題,??平M參賽隊(duì)從c、d題中任選一題。
(2)賽區(qū)可自行決定是否在競(jìng)賽結(jié)束時(shí)收集參賽論文的紙質(zhì)版,但對(duì)于送全國(guó)評(píng)閱的論文,賽區(qū)必須提供符合本規(guī)范要求的紙質(zhì)版論文(承諾書(shū)由賽區(qū)組委會(huì)保存,不必提交給全國(guó)組委會(huì))。
(3)賽區(qū)評(píng)閱前將紙質(zhì)版論文第一頁(yè)(承諾書(shū))取下保存,同時(shí)在第一頁(yè)和第二頁(yè)建立“賽區(qū)評(píng)閱編號(hào)”(由各賽區(qū)規(guī)定編號(hào)方式),“賽區(qū)評(píng)閱紀(jì)錄”表格可供賽區(qū)評(píng)閱時(shí)使用(由各賽區(qū)自行決定是否使用)。評(píng)閱后,賽區(qū)對(duì)送全國(guó)評(píng)閱的論文在第二頁(yè)建立“送全國(guó)評(píng)閱統(tǒng)一編號(hào)”(編號(hào)方式由全國(guó)組委會(huì)規(guī)定),然后送全國(guó)評(píng)閱。
初中數(shù)學(xué)建模論文篇十
隨著社會(huì)的不斷發(fā)展和科學(xué)技術(shù)的進(jìn)步,數(shù)學(xué)在現(xiàn)實(shí)生活中的應(yīng)用越來(lái)越廣泛,尤其是計(jì)算機(jī)技術(shù)的發(fā)展及廣泛應(yīng)用,使數(shù)學(xué)建模思想在解決社會(huì)各個(gè)領(lǐng)域中的實(shí)際問(wèn)題的應(yīng)用越來(lái)越深入。本文筆者簡(jiǎn)要談?wù)剶?shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)類課程的意義和方法。
所謂數(shù)學(xué)建模就是指構(gòu)造數(shù)學(xué)模型的過(guò)程,也就是說(shuō)用公式、符號(hào)和圖表等數(shù)學(xué)語(yǔ)言來(lái)刻畫(huà)和描述一個(gè)實(shí)際問(wèn)題,再經(jīng)過(guò)計(jì)算、迭代等數(shù)學(xué)處理得到定量的結(jié)果,從而供人們分析、預(yù)報(bào)、決策與控制。那么數(shù)學(xué)模型就是利用數(shù)學(xué)術(shù)語(yǔ)對(duì)一部分現(xiàn)實(shí)世界的描述。數(shù)學(xué)建模思想是指理論聯(lián)系實(shí)際,將實(shí)際的事物抽象成數(shù)學(xué)模型,然后利用所學(xué)的理論來(lái)解決問(wèn)題的一種思想。
在新形勢(shì)下,傳統(tǒng)的數(shù)學(xué)教學(xué)方法已經(jīng)無(wú)法適應(yīng)現(xiàn)在大學(xué)數(shù)學(xué)教育改革的需求,數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程教育融合成為目前高等院校數(shù)學(xué)教學(xué)改革的突破口。
(1)數(shù)學(xué)知識(shí)在各個(gè)領(lǐng)域的應(yīng)用越來(lái)越廣泛。如今數(shù)學(xué)知識(shí)在各個(gè)領(lǐng)域的應(yīng)用越來(lái)越廣泛,尤其是在經(jīng)濟(jì)學(xué)中的應(yīng)用最為顯著。自從1969年創(chuàng)設(shè)諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)以來(lái),就有不少理論成果來(lái)自利用數(shù)學(xué)工具分析經(jīng)濟(jì)問(wèn)題。事實(shí)上,從1969年到20xx年這35年中,一共產(chǎn)生了53位獲獎(jiǎng)?wù)?,其中擁有?shù)學(xué)學(xué)位的共有19人,所占比例為35.8%;其中擁有理工學(xué)位的有9人,所占比例為17%;二者共計(jì)占52.8%;其中共有29位諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)的獲得者是以數(shù)學(xué)方法為主要的研究方法,約占總?cè)藬?shù)的63.1%。然而幾乎所有的諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)獲得者都運(yùn)用了數(shù)學(xué)方法來(lái)研究經(jīng)濟(jì)學(xué)理論。除了在經(jīng)濟(jì)領(lǐng)域,數(shù)學(xué)建模思想也廣泛應(yīng)用于生物醫(yī)學(xué),包括超聲波、電磁診斷等方面。同時(shí)數(shù)學(xué)建模還將數(shù)學(xué)與生物學(xué)融合進(jìn)了基因科學(xué),例如基因表達(dá)的定型、基因組測(cè)序、基因分類等等,在生物學(xué)領(lǐng)域需要建立大規(guī)模的模擬以及復(fù)雜的數(shù)學(xué)模型??梢?jiàn)數(shù)學(xué)建模思想的應(yīng)用是非常廣泛的,并對(duì)其他領(lǐng)域的發(fā)展起著重要的推動(dòng)作用。
(2)有利于激發(fā)學(xué)生的學(xué)習(xí)熱情,豐富大學(xué)數(shù)學(xué)課程。一般的數(shù)學(xué)課,通常只是重視理論知識(shí)的講解和傳授,對(duì)知識(shí)點(diǎn)的推理和思想方法的分析較少。而且多數(shù)學(xué)生為了應(yīng)付考試,也只是以“類型題”的方式去復(fù)習(xí)知識(shí)點(diǎn)。這樣的方式雖然能夠讓學(xué)生掌握一部分?jǐn)?shù)學(xué)知識(shí),可是卻不能提高學(xué)生的數(shù)學(xué)素質(zhì),不能提高學(xué)生對(duì)大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣。而數(shù)學(xué)建模思想運(yùn)用數(shù)學(xué)知識(shí)來(lái)解決生活中的實(shí)際問(wèn)題,這樣就使數(shù)學(xué)活了起來(lái),而不是死的理論知識(shí)。運(yùn)用數(shù)學(xué)建模思想能夠讓學(xué)生在數(shù)學(xué)中感悟生活,在生活中體會(huì)數(shù)學(xué)的價(jià)值,更容易吸引學(xué)生的學(xué)習(xí)興趣。而興趣是學(xué)習(xí)最有效的動(dòng)力,讓學(xué)生主動(dòng)參與學(xué)習(xí)而非被動(dòng)學(xué)習(xí),取得的教學(xué)效果會(huì)更好。
(3)是加強(qiáng)數(shù)學(xué)教學(xué)改革,適應(yīng)時(shí)代發(fā)展的需要。在大學(xué)數(shù)學(xué)教學(xué)活動(dòng)中,許多學(xué)生常常陷入這樣的困惑之中:花費(fèi)了大量的精力,做了很多習(xí)題,但是卻感受不到數(shù)學(xué)的作用和價(jià)值。而教師在教學(xué)中也總是告訴學(xué)生數(shù)學(xué)是一門(mén)很有用的課程,但是卻舉不出現(xiàn)實(shí)的例子。并且傳統(tǒng)的教學(xué)方式也只是教會(huì)學(xué)生掌握簡(jiǎn)單的理論知識(shí),并不能提高學(xué)生的數(shù)學(xué)素養(yǎng)和數(shù)學(xué)意識(shí)。而將數(shù)學(xué)建模思想融入到大學(xué)的數(shù)學(xué)類課程之中就能很好地解決這些問(wèn)題。因?yàn)閷?shù)學(xué)建模思想運(yùn)用到數(shù)學(xué)類課程中,就能夠讓學(xué)生在獨(dú)立思考和探索中感受到數(shù)學(xué)在現(xiàn)實(shí)生活中的實(shí)用價(jià)值,提高學(xué)生運(yùn)用數(shù)學(xué)的眼光去觀察、分析以及表示各種事物的空間關(guān)系、數(shù)量關(guān)系和數(shù)學(xué)信息的能力,提高學(xué)生的創(chuàng)造能力和創(chuàng)新意識(shí)。
(1)教師在教學(xué)過(guò)程中較少滲入數(shù)學(xué)建模思想。目前在高校數(shù)學(xué)教學(xué)中數(shù)學(xué)建模的思想應(yīng)用得仍然較少,重視程度不夠。不少高校的教師在開(kāi)展大學(xué)數(shù)學(xué)類課程時(shí),仍然只是停留在數(shù)學(xué)知識(shí)的教學(xué)方面,并沒(méi)有對(duì)學(xué)生進(jìn)行研究性學(xué)習(xí)探索。據(jù)調(diào)查,大多數(shù)高校教師對(duì)日常的教學(xué)工作能夠認(rèn)真完成規(guī)定的教學(xué)任務(wù),但能夠真正創(chuàng)造性地把數(shù)學(xué)建模思想融入到數(shù)學(xué)教學(xué)任務(wù)中的教師較少。大多數(shù)高校數(shù)學(xué)老師都意識(shí)到探索式的數(shù)學(xué)建模教學(xué)很重要,但真正將數(shù)學(xué)建模思想與數(shù)學(xué)教學(xué)融合的嘗試和探索卻很少??梢?jiàn)多數(shù)高校教師雖然明白數(shù)學(xué)建模思想的重要性,但是由于缺乏足夠的數(shù)學(xué)建模教學(xué)的相關(guān)知識(shí)及經(jīng)驗(yàn),在實(shí)際教學(xué)中數(shù)學(xué)建模思想仍未得到充分的運(yùn)用。
(2)開(kāi)設(shè)的有關(guān)數(shù)學(xué)建模的課程和活動(dòng)較少。雖然數(shù)學(xué)建模思想得到了越來(lái)越廣泛的應(yīng)用,但是在高校中實(shí)際開(kāi)設(shè)的有關(guān)數(shù)學(xué)建模的課程并不多,尤其是應(yīng)用數(shù)學(xué)、數(shù)學(xué)實(shí)驗(yàn)以及計(jì)算機(jī)應(yīng)用等一些需要滲入數(shù)學(xué)建模思想的課程在實(shí)際的教學(xué)過(guò)程中并沒(méi)有創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。另一方面,校內(nèi)自主開(kāi)展的有關(guān)數(shù)學(xué)建模競(jìng)賽和活動(dòng)并不多,宣傳力度也不夠,無(wú)法讓更多的學(xué)生了解數(shù)學(xué)建模的意義和價(jià)值,更無(wú)法參與到數(shù)學(xué)建?;顒?dòng)中去。
(3)學(xué)生對(duì)數(shù)學(xué)的態(tài)度和觀念還未改變,對(duì)數(shù)學(xué)建模缺乏深入的了解。大學(xué)數(shù)學(xué)是一門(mén)較為抽象的學(xué)科,其概念、定理和性質(zhì)都不容易掌握,由于其具有一定的難度,所以不少學(xué)生對(duì)大學(xué)數(shù)學(xué)類課程以及數(shù)學(xué)建模沒(méi)有興趣。并且這些學(xué)生在初中和高中階段也學(xué)習(xí)數(shù)學(xué),但是不少學(xué)生是為了應(yīng)付考試,并沒(méi)有見(jiàn)識(shí)到數(shù)學(xué)的應(yīng)用性,覺(jué)得數(shù)學(xué)是一門(mén)純理論的課程,沒(méi)有實(shí)用價(jià)值。同時(shí)很多學(xué)生對(duì)數(shù)學(xué)建模思想的運(yùn)用并不夠了解,不知道如何將數(shù)學(xué)知識(shí)和數(shù)學(xué)方法應(yīng)用到實(shí)際的生活中去,覺(jué)得數(shù)學(xué)沒(méi)有用,也沒(méi)有深入學(xué)習(xí)的意義。
(1)提高課堂教學(xué)質(zhì)量,創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。大學(xué)的數(shù)學(xué)類課程主要有“線性代數(shù)”、“高等數(shù)學(xué)”、“運(yùn)籌學(xué)”、“數(shù)學(xué)建?!?、“概率論與數(shù)理統(tǒng)計(jì)”等,這些課程的核心部分都跟高等數(shù)學(xué)有關(guān),所以要注重提高數(shù)學(xué)類課程的教學(xué)質(zhì)量關(guān)鍵就在于高等數(shù)學(xué),而要提高高等數(shù)學(xué)的教學(xué)質(zhì)量就必須在教學(xué)過(guò)程中創(chuàng)造性地應(yīng)用數(shù)學(xué)建模思想。對(duì)于主修數(shù)學(xué)的學(xué)生,要加強(qiáng)對(duì)計(jì)算機(jī)軟件和語(yǔ)言的學(xué)習(xí),系統(tǒng)性地對(duì)數(shù)學(xué)原理進(jìn)行剖解和分析,合理運(yùn)用數(shù)學(xué)知識(shí)和數(shù)學(xué)方法解決社會(huì)實(shí)際問(wèn)題。在教學(xué)中多引導(dǎo)、啟發(fā)學(xué)生利用對(duì)生活問(wèn)題和科學(xué)問(wèn)題的深入研究,主動(dòng)結(jié)合自己的課程理論知識(shí)和數(shù)學(xué)建模,使數(shù)學(xué)建模思想融入到學(xué)生的整個(gè)學(xué)習(xí)過(guò)程中去。對(duì)于非數(shù)學(xué)領(lǐng)域的問(wèn)題,要啟發(fā)學(xué)生運(yùn)用計(jì)算機(jī)軟件建模,從而解決不同領(lǐng)域中的數(shù)學(xué)建模問(wèn)題。
(2)多開(kāi)設(shè)跟數(shù)學(xué)建模有關(guān)的數(shù)學(xué)類課程。例如除了開(kāi)設(shè)跟數(shù)學(xué)建模有關(guān)的必修課,還可以開(kāi)設(shè)一些跟數(shù)學(xué)建模有關(guān)的選修課,為其他專業(yè)的學(xué)生提供接觸和了解數(shù)學(xué)建模思想的機(jī)會(huì),為學(xué)生拓展知識(shí)領(lǐng)域,為其解決該領(lǐng)域的問(wèn)題提供有效的方法。例如,經(jīng)濟(jì)學(xué)有關(guān)專業(yè)的學(xué)生就可以通過(guò)選修跟數(shù)學(xué)建模有關(guān)的課程,解決其在經(jīng)濟(jì)學(xué)中遇到的問(wèn)題,因?yàn)楹芏喔?jīng)濟(jì)學(xué)有關(guān)的問(wèn)題僅僅靠經(jīng)濟(jì)學(xué)的知識(shí)是無(wú)法解決的,像貸款計(jì)算這樣的問(wèn)題就要將數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系起來(lái)才能解決實(shí)際問(wèn)題。
(3)廣泛宣傳,讓學(xué)生了解數(shù)學(xué)建模的意義和價(jià)值。學(xué)生是教學(xué)過(guò)程中的主體,目前,大學(xué)數(shù)學(xué)建模課程開(kāi)設(shè)效果不佳,學(xué)生參與度低的主要原因就是學(xué)生缺乏對(duì)數(shù)學(xué)建模的深入了解。那么,要提高學(xué)生的參與性,促進(jìn)數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程的融合就必須加強(qiáng)宣傳,讓學(xué)生深入了解什么是數(shù)學(xué)建模。同時(shí),在課堂上就是也要轉(zhuǎn)變傳統(tǒng)枯燥的教學(xué)方式,多使用啟發(fā)式教學(xué)和探索式教學(xué),吸引學(xué)生的學(xué)習(xí)興趣,讓他們發(fā)現(xiàn)數(shù)學(xué)對(duì)社會(huì)實(shí)際生活的重要作用,轉(zhuǎn)變他們對(duì)數(shù)學(xué)的態(tài)度,并引導(dǎo)學(xué)生對(duì)數(shù)學(xué)建模和數(shù)學(xué)課程感興趣。
(4)轉(zhuǎn)變數(shù)學(xué)教育理念及教育方式。要轉(zhuǎn)變傳統(tǒng)的教育方式,將教學(xué)的重點(diǎn)放在數(shù)學(xué)知識(shí)在生活中的應(yīng)用問(wèn)題上,而不是將知識(shí)與實(shí)際生活割裂開(kāi)來(lái)。同時(shí)在教學(xué)中要注重證明和推理,加強(qiáng)學(xué)生對(duì)數(shù)學(xué)方法的掌握注重培養(yǎng)學(xué)生對(duì)實(shí)際問(wèn)題的邏輯分析、簡(jiǎn)化、抽象并運(yùn)用數(shù)學(xué)語(yǔ)言表達(dá)的能力。也就是說(shuō)教學(xué)的重點(diǎn)在于提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力和加強(qiáng)數(shù)學(xué)意識(shí)和數(shù)學(xué)方法的應(yīng)用,這樣才能夠培養(yǎng)出具有創(chuàng)新能力和創(chuàng)新意識(shí)的人才。
(5)多開(kāi)展數(shù)學(xué)建?;顒?dòng)和競(jìng)賽,提高學(xué)生參與性。在高校內(nèi)部要多開(kāi)展跟數(shù)學(xué)有關(guān)的活動(dòng)和競(jìng)賽以及專家講座等,一方面加強(qiáng)學(xué)生對(duì)數(shù)學(xué)建模的認(rèn)識(shí),另一方面也提高了學(xué)生的參與性。通過(guò)專家講座,不僅可以讓學(xué)生更深入地了解數(shù)學(xué)建模的價(jià)值,也加強(qiáng)了學(xué)術(shù)交流,提高學(xué)生的數(shù)學(xué)建模應(yīng)用能力。通過(guò)數(shù)學(xué)建模競(jìng)賽,為學(xué)生提供展示自己智慧、充分發(fā)揮其能力的平臺(tái)。同時(shí),競(jìng)賽也可以讓學(xué)生在競(jìng)賽中發(fā)現(xiàn)自己的不足,在交流中不斷完善自己的缺陷,拓展學(xué)生的思維。而且,在數(shù)學(xué)建模比賽中,通過(guò)讓學(xué)生探究跟生活實(shí)際有關(guān)的例子,提高學(xué)生對(duì)數(shù)學(xué)建模的興趣,加強(qiáng)學(xué)生對(duì)模型應(yīng)用的直觀性認(rèn)識(shí),促進(jìn)學(xué)校應(yīng)用型人才的培養(yǎng)。
總之,數(shù)學(xué)建模思想和高校數(shù)學(xué)類課程的融合,對(duì)于高等數(shù)學(xué)教學(xué)改革具有非常重要的意義。把數(shù)學(xué)建模思想融入到高等數(shù)學(xué)教學(xué)中,可以更好地提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,提高他們運(yùn)用數(shù)學(xué)思想和數(shù)學(xué)方法分析問(wèn)題、解決問(wèn)題和抽象思維的能力。高校教師要加強(qiáng)數(shù)學(xué)建模思想的應(yīng)用,讓學(xué)生初步掌握從實(shí)際問(wèn)題中總結(jié)數(shù)學(xué)內(nèi)涵的方法,提高學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,為高校學(xué)生專業(yè)課的學(xué)習(xí)奠定堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。
初中數(shù)學(xué)建模論文篇十一
運(yùn)籌學(xué)與數(shù)學(xué)建模2門(mén)課程聯(lián)系密切,在運(yùn)籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力.從運(yùn)籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面進(jìn)行了探索與實(shí)踐.教學(xué)實(shí)踐表明,將數(shù)學(xué)建模思想融入到運(yùn)籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動(dòng)手實(shí)踐能力.
初中數(shù)學(xué)建模論文篇十二
在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時(shí)期對(duì)大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識(shí)的同時(shí),要注重學(xué)生學(xué)習(xí)能力和解決問(wèn)題能力的培養(yǎng)。
數(shù)學(xué)知識(shí)來(lái)源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識(shí)中的典型代表,在各個(gè)行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力十分重要,在傳授知識(shí)的過(guò)程中幫助學(xué)生利用所學(xué)知識(shí)來(lái)解決實(shí)際問(wèn)題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會(huì)公式的應(yīng)用過(guò)程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識(shí)的同時(shí),促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識(shí)應(yīng)用到實(shí)踐中來(lái)解決數(shù)學(xué)問(wèn)題是一個(gè)首要問(wèn)題。從大量教學(xué)實(shí)踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實(shí)提升學(xué)生的數(shù)學(xué)專業(yè)水平。
在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實(shí)際情況,深入挖掘數(shù)學(xué)知識(shí)。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識(shí)實(shí)際學(xué)習(xí)情況,有針對(duì)性地整合數(shù)學(xué)知識(shí),了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
(一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)。
閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識(shí)理論性較強(qiáng),知識(shí)較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識(shí)后,可以引入椅子的穩(wěn)定問(wèn)題,創(chuàng)建數(shù)學(xué)模型,提問(wèn)學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問(wèn)題同所學(xué)知識(shí)相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問(wèn)題。學(xué)生整合所學(xué)知識(shí),通過(guò)對(duì)問(wèn)題的分析,可以了解到利用介值定理來(lái)解決問(wèn)題。通過(guò)建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識(shí)學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。
(二)定積分。
定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問(wèn)題時(shí)均有所應(yīng)用,并且被廣泛應(yīng)用在實(shí)際生活中。如,在一道全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目中,計(jì)算煤矸石的堆積,煤礦采煤時(shí)所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來(lái)堆放煤矸石,根據(jù)上級(jí)主管部門(mén)的年產(chǎn)量計(jì)劃和經(jīng)費(fèi)如何堆放煤矸石?題目中的關(guān)鍵點(diǎn)在于堆放煤矸石的征地費(fèi)用和電費(fèi)的計(jì)算。征地費(fèi)計(jì)算難度較小,但是煤矸石堆積的電費(fèi)計(jì)算難度較高,但此項(xiàng)內(nèi)容涉及定積分中的變力做功知識(shí)點(diǎn)。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開(kāi)采量來(lái)堆放煤矸石。通過(guò)數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實(shí)際生活之間的聯(lián)系,學(xué)習(xí)積極性就會(huì)大大提升。
(三)最值問(wèn)題。
在高等數(shù)學(xué)中,最值問(wèn)題占比比較大,同時(shí)在實(shí)際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識(shí)可以解決實(shí)際生活中的最值問(wèn)題,這就需要提高對(duì)導(dǎo)數(shù)知識(shí)實(shí)際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識(shí)后,通過(guò)建立關(guān)于天空的采空模型,提問(wèn)學(xué)生為什么雨后太陽(yáng)出來(lái)了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問(wèn)彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對(duì)此,學(xué)生的興趣較為濃厚,可以分為若干個(gè)小組進(jìn)行討論。通過(guò)分析可以得出,雨滴可以反射太陽(yáng)光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識(shí)來(lái)計(jì)算得出太陽(yáng)光偏轉(zhuǎn)角度的最值,有效解決實(shí)際學(xué)習(xí)的問(wèn)題,加深對(duì)知識(shí)的理解和記憶,提升數(shù)學(xué)知識(shí)學(xué)習(xí)成效。
(四)微分方程。
微分方程知識(shí)同實(shí)際生活之間息息相關(guān),建立微分方程可以有效解決實(shí)際生活中的問(wèn)題。這就需要學(xué)生在了解微分方程知識(shí)的基礎(chǔ)上,進(jìn)一步建立數(shù)學(xué)模型來(lái)解決問(wèn)題。如,在當(dāng)前社會(huì)進(jìn)步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問(wèn)題之一,受到社會(huì)各界廣泛的關(guān)注和重視。通過(guò)問(wèn)題精簡(jiǎn)化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運(yùn)動(dòng)鍛煉兩個(gè)關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹(shù)立正確的減肥理念。
(五)矩陣。
在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問(wèn)題之前,應(yīng)該根據(jù)知識(shí)點(diǎn)來(lái)創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動(dòng)。通過(guò)引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動(dòng)力,并且詳細(xì)記錄管理費(fèi)用。這有助于加深人們對(duì)矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時(shí)幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識(shí)。
綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過(guò)數(shù)學(xué)建模思想來(lái)引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動(dòng)性和創(chuàng)新能力,提升學(xué)生解決問(wèn)題的能力,將所學(xué)知識(shí)靈活運(yùn)用到實(shí)際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
初中數(shù)學(xué)建模論文篇十三
就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對(duì)學(xué)生的計(jì)算能力、思考能力以及邏輯思維能力過(guò)于重視,一切以課本為基礎(chǔ)開(kāi)展教學(xué)活動(dòng)。作為一門(mén)充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒(méi)有穿插應(yīng)用實(shí)例,在工作的時(shí)候?qū)W生不知道怎樣把問(wèn)題解決,工作效率無(wú)法進(jìn)一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動(dòng)力。
(二)教學(xué)方法傳統(tǒng)化。
教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過(guò)程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績(jī)。一般高數(shù)老師在授課的時(shí)候都是以課本的順次進(jìn)行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無(wú)法為學(xué)生營(yíng)造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨(dú)自學(xué)習(xí)、思考的能力進(jìn)一步下降。這就要求教師致力于和諧課堂氛圍營(yíng)造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動(dòng)參與學(xué)習(xí)。
二、建模在高等數(shù)學(xué)教學(xué)中的作用。
對(duì)學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問(wèn)題的能力進(jìn)行培養(yǎng)的過(guò)程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國(guó)內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動(dòng)以及教研活動(dòng),其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實(shí)的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識(shí)、實(shí)際應(yīng)用能力等上有突出的作用。雖然國(guó)內(nèi)高等院校大都開(kāi)設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認(rèn)知水平差異較大,所以課程無(wú)法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對(duì)學(xué)生的整體素質(zhì)進(jìn)行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會(huì)對(duì)復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。
高等數(shù)學(xué)作為工科類學(xué)生的一門(mén)基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識(shí)的本來(lái)面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識(shí)的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡(jiǎn)化、抽象、翻譯部分現(xiàn)實(shí)世界信息的過(guò)程中使用數(shù)學(xué)的語(yǔ)言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來(lái),以便于提升學(xué)生的表達(dá)能力。在實(shí)際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗(yàn)現(xiàn)實(shí)的信息,確定最后的結(jié)果是否正確,通過(guò)這一過(guò)程中的鍛煉,學(xué)生在分析問(wèn)題的過(guò)程中可以主動(dòng)地、客觀的辯證的運(yùn)用數(shù)學(xué)方法,最終得出解決問(wèn)題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。
三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施。
(一)在公式中使用建模思想。
在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的'教學(xué)效果進(jìn)一步提升,在課堂上老師不僅要讓學(xué)生對(duì)計(jì)算的技巧進(jìn)一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對(duì)公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實(shí)例開(kāi)展教學(xué)。
(二)講解習(xí)題的時(shí)候使用數(shù)學(xué)模型的方式。
課本例題使用建模思想進(jìn)行解決,老師通過(guò)對(duì)例題的講解,很好的講述使用數(shù)學(xué)建模解決問(wèn)題的方式,讓學(xué)生清醒的認(rèn)識(shí)在解決問(wèn)題的過(guò)程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時(shí)間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問(wèn)題的全部過(guò)程,提升學(xué)生解決問(wèn)題的效率。
(三)組織學(xué)生積極參加數(shù)學(xué)建模競(jìng)賽。
一般而言,在競(jìng)賽中可以很好地鍛煉學(xué)生競(jìng)爭(zhēng)意識(shí)以及獨(dú)立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競(jìng)賽,在實(shí)踐中鍛煉學(xué)生的實(shí)際能力。在日常生活中使用數(shù)學(xué)建模解決問(wèn)題,讓學(xué)生獨(dú)自思考,然后在競(jìng)爭(zhēng)的過(guò)程中意識(shí)到自己的不足,今后也會(huì)努力學(xué)習(xí),改正錯(cuò)誤,提升自身的能力。
四、結(jié)束語(yǔ)。
高等數(shù)學(xué)主要對(duì)學(xué)生從理論學(xué)習(xí)走向解決實(shí)際問(wèn)題的能力進(jìn)行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對(duì)高數(shù)知識(shí)更充分的理解,學(xué)習(xí)的難度進(jìn)一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過(guò)程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進(jìn)行深入的研究和探索的同時(shí)也需要學(xué)生很好的配合,以便于今后的教學(xué)中進(jìn)一步提升教學(xué)的質(zhì)量。
參考文獻(xiàn)。
[1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。齊齊哈爾師范高等??茖W(xué)校學(xué)報(bào),20xx(02):119—120。
[2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實(shí)踐[j]。教育實(shí)踐與改革,20xx(04):177—178,189。
[3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[j]。長(zhǎng)春教育學(xué)院學(xué)報(bào),20xx(30):89,95。
[4]劉合財(cái)。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。貴陽(yáng)學(xué)院學(xué)報(bào),20xx(03):63—65。