亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        等比數(shù)列的概念說課稿(匯總20篇)

        字號(hào):

            經(jīng)濟(jì)全球化是當(dāng)前世界經(jīng)濟(jì)發(fā)展的趨勢(shì),我們需要適應(yīng)并抓住機(jī)遇。寫一篇較為完美的總結(jié),可以嘗試運(yùn)用一些技巧,如對(duì)比、歸納、分析等。以下是小編為大家收集的總結(jié)范文,僅供參考,大家一起來看看吧。
            等比數(shù)列的概念說課稿篇一
            2、從學(xué)生認(rèn)知角度看。
            3、學(xué)情分析。
            4、重點(diǎn)、難點(diǎn)。
            教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用、
            教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用、
            知識(shí)與技能目標(biāo):
            過程與方法目標(biāo):
            情感與態(tài)度價(jià)值觀:
            學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過程:
            1、創(chuàng)設(shè)情境,提出問題。
            2、師生互動(dòng),探究問題。
            探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)。
            3、類比聯(lián)想,解決問題。
            這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,
            這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo)、
            對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ)、)。
            再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)。
            4、討論交流,延伸拓展。
            等比數(shù)列的概念說課稿篇二
            教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。本章節(jié)9個(gè)課時(shí),函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡(jiǎn)單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對(duì)應(yīng)說”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。
            二、教學(xué)目標(biāo)。
            理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。
            通過對(duì)實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。
            通過對(duì)函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
            三、重難點(diǎn)分析確定。
            一、教學(xué)基本思路及過程。
            本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
            二、學(xué)情分析。
            一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
            函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。
            三、教法、學(xué)法。
            1、本節(jié)課采用的方法有:
            直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
            2、采用這些方法的理論依據(jù):
            我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
            等比數(shù)列的概念說課稿篇三
            教材的地位和作用:
            集合是學(xué)習(xí)高中數(shù)學(xué)的重要工具之一,起著承前啟后的作用。本小節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例人手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明.然后,介紹了集合的常用表示方法,包括列舉法、描述法等,還給出了畫圖表示集合的例子.從教材我歸納出本節(jié)內(nèi)容的教學(xué)重點(diǎn)和難點(diǎn)。
            (一)教學(xué)重點(diǎn):集合的基本概念和表示方法,集合元素的特征。
            (一)知識(shí)目標(biāo):
            (1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法;
            (2)使學(xué)生初步了解“屬于”關(guān)系的意義;
            (3)使學(xué)生初步了解有限集、無限集、空集的意義。
            (二)能力目標(biāo):
            (1)重視基礎(chǔ)知識(shí)的教學(xué)、基本技能的訓(xùn)練和能力的培養(yǎng);
            (3)通過教師指導(dǎo),發(fā)現(xiàn)知識(shí)結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力;
            (三)德育目標(biāo):激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情。
            操,培養(yǎng)學(xué)生堅(jiān)忍不拔的意志,實(shí)事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。
            針對(duì)現(xiàn)在的學(xué)生知識(shí)遷移能力差、計(jì)算能力差的`特點(diǎn),第一節(jié)課的內(nèi)容不要求學(xué)生太多的計(jì)算,通過大量的舉例讓學(xué)生充分掌握集合的基礎(chǔ)知識(shí)。
            為了突出重點(diǎn)、突破難點(diǎn),本節(jié)課主要采用觀察、分析、類比、歸納的方法讓學(xué)生參與學(xué)習(xí),將學(xué)生置于主體位置,發(fā)揮學(xué)生的主觀能動(dòng)性,將知識(shí)的形成過程轉(zhuǎn)化為學(xué)生親自探索類比的過程,使學(xué)生獲得發(fā)現(xiàn)的成就感。在這個(gè)過程中力求把握好以下幾點(diǎn):。
            (1)通過實(shí)例,讓學(xué)生去發(fā)現(xiàn)規(guī)律。讓學(xué)生在問題情景中,經(jīng)歷知識(shí)的形成和發(fā)展,力求使學(xué)生學(xué)會(huì)用類比的思想去看待問題。
            (2)營(yíng)造民主的教學(xué)氛圍,使學(xué)生參與教學(xué)全過程。
            (3)力求反饋的全面性、及時(shí)性,通過精心設(shè)計(jì)的提問,讓學(xué)生的思維動(dòng)起來,針對(duì)學(xué)生回答的問題,老師進(jìn)行適當(dāng)?shù)狞c(diǎn)評(píng)。
            (4)給學(xué)生思考的時(shí)間和空間,不急于把結(jié)果拋給學(xué)生,讓學(xué)生自己去觀察,分析,類比得出結(jié)果,提高學(xué)生的推理能力。
            (一)復(fù)習(xí)導(dǎo)入。
            (1)簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
            (2)教材中的章頭引言;
            (3)教材中例子(p4)。
            (二)講解新課。
            (1)集合的有關(guān)概念。
            (2)常用集合及表示方法。
            (3)元素對(duì)于集合的隸屬關(guān)系。
            (4)集合中元素的特性。
            (三)課堂練習(xí)。
            1下列各組對(duì)象能確定一個(gè)集合嗎?
            (1)所有很大的實(shí)數(shù)的集合(不確定)。
            (2)好心的人的集合(不確定)。
            (3){1,2,2,3,4,5}(有重復(fù))。
            (4)所有直角三角形的集合(是的)。
            (5)高一(12)班全體同學(xué)的集合(是的)。
            (6)參加2008年奧運(yùn)會(huì)的中國(guó)代表團(tuán)成員的集合(是的)。
            2、教材p5練習(xí)1、2。
            1.本節(jié)主要學(xué)習(xí)了集合的基本概念、表示符號(hào);一些常用數(shù)集及其記法;集合的元素與集合之間的關(guān)系;以及集合元素具有的特征.
            2.我們?cè)谶M(jìn)一步復(fù)習(xí)鞏固集合有關(guān)概念的基礎(chǔ)上,又學(xué)習(xí)了集合的表示方法和有限集、無限集、空集的概念,同學(xué)們要熟練掌握.
            等比數(shù)列的概念說課稿篇四
            理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進(jìn)行弧度與角度的互化.
            理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會(huì)利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.
            終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.
            一、問題.
            1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?
            2、在平面直角坐標(biāo)系內(nèi)角分為哪幾類?與終邊相同的角怎么表示?
            3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實(shí)數(shù)有什么樣的關(guān)系?
            4、弧度制下圓的弧長(zhǎng)公式和扇形的面積公式是什么?
            5、任意角的三角函數(shù)的定義是什么?在各象限的符號(hào)怎么確定?
            6、你能在單位圓中畫出正弦、余弦和正切線嗎?
            7、同角三角函數(shù)有哪些基本關(guān)系式?
            二、練習(xí).
            1.給出下列命題:
            (1)小于的角是銳角;
            (2)若是第一象限的角,則必為第一象限的角;
            (3)第三象限的角必大于第二象限的角;
            (4)第二象限的角是鈍角;
            (5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
            (6)角2與角的終邊不可能相同;
            2.設(shè)p點(diǎn)是角終邊上一點(diǎn),且滿足則的值是。
            4.若則角的終邊在象限。
            5.在直角坐標(biāo)系中,若角與角的終邊互為反向延長(zhǎng)線,則角與角之間的關(guān)系是。
            6.若是第三象限的角,則-,的終邊落在何處?
            例1.如圖,分別是角的終邊.
            (1)求終邊落在陰影部分(含邊界)的所有角的集合;
            (2)求終邊落在陰影部分、且在上所有角的集合;
            (3)求始邊在om位置,終邊在on位置的所有角的集合.
            例2.
            (1)已知角的終邊在直線上,求的值;
            (2)已知角的終邊上有一點(diǎn)a,求的值。
            例3.若,則在第象限.
            1、若銳角的終邊上一點(diǎn)的坐標(biāo)為,則角的弧度數(shù)為.
            2、若,又是第二,第三象限角,則的取值范圍是.
            3、一個(gè)半徑為的扇形,如果它的周長(zhǎng)等于弧所在半圓的弧長(zhǎng),那么該扇形的圓心角度數(shù)是弧度或角度,該扇形的面積是.
            4、已知點(diǎn)p在第三象限,則角終邊在第象限.
            5、設(shè)角的終邊過點(diǎn)p,則的值為.
            6、已知角的終邊上一點(diǎn)p且,求和的值.
            1、經(jīng)過3小時(shí)35分鐘,分針轉(zhuǎn)過的角的弧度是.時(shí)針轉(zhuǎn)過的角的弧度數(shù)是.
            2、若點(diǎn)p在第一象限,則在內(nèi)的取值范圍是.
            3、若點(diǎn)p從(1,0)出發(fā),沿單位圓逆時(shí)針方向運(yùn)動(dòng)弧長(zhǎng)到達(dá)q點(diǎn),則q點(diǎn)坐標(biāo)為.
            4、如果為小于360的正角,且角的7倍數(shù)的角的終邊與這個(gè)角的終邊重合,求角的值.
            等比數(shù)列的概念說課稿篇五
            (2)過程與方法:在定積分概念形成的過程中,培養(yǎng)學(xué)生的抽象概括能力和探索提升能力。
            【教學(xué)重點(diǎn)】:
            理解定積分的概念及其幾何意義,定積分的性質(zhì)【教學(xué)難點(diǎn)】:
            3.教學(xué)用具。
            多媒體。
            4.標(biāo)簽。
            教學(xué)過程。
            課堂小結(jié)。
            定積分的定義,計(jì)算定積分的“四步曲”,定積分的幾何意義,定積分的性質(zhì)。
            等比數(shù)列的概念說課稿篇六
            《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
            2、從學(xué)生認(rèn)知角度看。
            從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯(cuò)。
            3、學(xué)情分析。
            教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn)。
            4、重點(diǎn)、難點(diǎn)。
            教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用。
            教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用。
            公式推導(dǎo)所使用的"錯(cuò)位相減法"是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。
            二、目標(biāo)分析。
            知識(shí)與技能目標(biāo):
            理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。
            過程與方法目標(biāo):
            通過對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)。
            化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
            情感與態(tài)度價(jià)值觀:
            通過對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn)。
            三、過程分析。
            學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過程:
            1、創(chuàng)設(shè)情境,提出問題。
            設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn)。
            此時(shí)我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥粒總數(shù)。帶著這樣的問題,學(xué)生會(huì)動(dòng)手算了起來,他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和。這時(shí)我對(duì)他們的這種思路給予肯定。
            探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)。
            設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變"加"為"減",在教師看來這是"天經(jīng)地義"的,但在學(xué)生看來卻是"不可思議"的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī)。
            設(shè)計(jì)意圖:經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
            3、類比聯(lián)想,解決問題。
            這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo)。
            設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。
            對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ)。)。
            再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)。
            設(shè)計(jì)意圖:通過反問精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用。
            4、討論交流,延伸拓展。
            首先,學(xué)生獨(dú)立思考,自主解題,再請(qǐng)學(xué)生上臺(tái)來幻燈演示他們的解答,其它同學(xué)進(jìn)行評(píng)價(jià),然后師生共同進(jìn)行總結(jié)。
            設(shè)計(jì)意圖:采用變式教學(xué)設(shè)計(jì)題組,深化學(xué)生對(duì)公式的認(rèn)識(shí)和理解,通過直接套用公式、變式運(yùn)用公式、研究公式特點(diǎn)這三個(gè)層次的問題解決,促進(jìn)學(xué)生新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的形成。通過以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生的參與意識(shí)和競(jìng)爭(zhēng)意識(shí)。
            6、例題講解,形成技能。
            設(shè)計(jì)意圖:解題時(shí),以學(xué)生分析為主,教師適時(shí)給予點(diǎn)撥,該題有意培養(yǎng)學(xué)生對(duì)含有參數(shù)的問題進(jìn)行分類討論的數(shù)學(xué)思想。
            7、總結(jié)歸納,加深理解。
            以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵(lì)學(xué)生積極回答,然后老師再?gòu)闹R(shí)點(diǎn)及數(shù)學(xué)思想方法兩方面總結(jié)。
            設(shè)計(jì)意圖:以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。
            8、故事結(jié)束,首尾呼應(yīng)。
            最后我們回到故事中的問題,我們可以計(jì)算出國(guó)王獎(jiǎng)賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國(guó)王兌現(xiàn)不了他的承諾。
            設(shè)計(jì)意圖:把引入課題時(shí)的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。
            9、課后作業(yè),分層練習(xí)。
            必做:p129練習(xí)1、2、3、4。
            選作:
            設(shè)計(jì)意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。
            四、教法分析。
            對(duì)公式的教學(xué),要使學(xué)生掌握與理解公式的來龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學(xué)中,我采用"問題――探究"的教學(xué)模式,把整個(gè)課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個(gè)階段。
            利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率。
            五、評(píng)價(jià)分析。
            本節(jié)課通過三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項(xiàng)和公式。錯(cuò)位相減:變加為減,等價(jià)轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實(shí)。學(xué)生從中深刻地領(lǐng)會(huì)到推導(dǎo)過程中所蘊(yùn)含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時(shí)通過精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識(shí),又形成了技能。在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì)。
            等比數(shù)列的概念說課稿篇七
            等比數(shù)列前n項(xiàng)和一節(jié)是人教社高中數(shù)學(xué)必修教材試驗(yàn)修訂本第一冊(cè)第三章第五節(jié)的內(nèi)容,教學(xué)對(duì)象為高一學(xué)生,教學(xué)時(shí)數(shù)2課時(shí)。
            第三章《數(shù)列》是高中數(shù)學(xué)的重要內(nèi)容之一,之所以在新大綱里保留下來,這是由其在整個(gè)高中數(shù)學(xué)領(lǐng)域里的重要地位和作用決定的。
            1、數(shù)列有著廣泛的實(shí)際應(yīng)用。例如產(chǎn)品的規(guī)格設(shè)計(jì)、儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等。
            2、數(shù)列有著承前啟后的作用。數(shù)列是函數(shù)的延續(xù),它實(shí)質(zhì)上是一種特殊的函數(shù);學(xué)習(xí)數(shù)列又為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容打下基礎(chǔ)。
            3、數(shù)列是培養(yǎng)提高學(xué)生思維能力的好題材。學(xué)習(xí)數(shù)列要經(jīng)常觀察、分析、猜想,還要綜合運(yùn)用前面的知識(shí)解決數(shù)列中的一些問題,這些都有利于學(xué)生數(shù)學(xué)能力的提高。
            本節(jié)課既是本章的重點(diǎn),同時(shí)也是教材的重點(diǎn)。等比數(shù)列前n項(xiàng)和前面承接了數(shù)列的定義、等差數(shù)列的知識(shí)內(nèi)容,又是后面學(xué)習(xí)數(shù)列求和、數(shù)列極限的基礎(chǔ)。
            本節(jié)的重點(diǎn)是等比數(shù)列前n項(xiàng)和公式及應(yīng)用,難點(diǎn)是公式的推導(dǎo)。
            二、教學(xué)目標(biāo)。
            1、知識(shí)目標(biāo):理解等比數(shù)列前n項(xiàng)和公式的推導(dǎo)方法,掌握等比數(shù)列前n項(xiàng)和公式及應(yīng)用。
            2、能力目標(biāo):培養(yǎng)學(xué)生觀察問題、思考問題的能力,并能靈活運(yùn)用基本概念分析問題解決問題的能力,鍛煉數(shù)學(xué)思維能力。
            3、思想目標(biāo):培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,鍛煉學(xué)生遇到困難不氣餒的堅(jiān)強(qiáng)意志和勇于創(chuàng)新的精神。
            三、教學(xué)程序設(shè)計(jì)。
            1、導(dǎo)言:
            這樣引入課題有以下三點(diǎn)好處:
            (1)利用學(xué)生求知好奇心理,以一個(gè)小故事為切入點(diǎn),便于調(diào)動(dòng)學(xué)生學(xué)習(xí)本節(jié)課的趣味性和積極性。
            (2)故事內(nèi)容緊扣本節(jié)課教學(xué)內(nèi)容的主題與重點(diǎn)。
            (3)有利于知識(shí)的遷移,使學(xué)生明確知識(shí)的現(xiàn)實(shí)應(yīng)用性。
            2、講授新課:
            本節(jié)課有兩項(xiàng)主要內(nèi)容,等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)和等比數(shù)列的前n項(xiàng)和公式及應(yīng)用。
            依據(jù)如下:
            (1)從認(rèn)知領(lǐng)域上講,它在陳述性知識(shí)、程序性知識(shí)與策略性知識(shí)的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識(shí)。
            (2)從學(xué)科知識(shí)上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
            (3)從心理學(xué)上講,學(xué)生對(duì)這項(xiàng)學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識(shí)薄弱,不易理解。
            突破難點(diǎn)方法:
            (1)明確難點(diǎn)、分解難點(diǎn),采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識(shí)切入,淺化知識(shí)內(nèi)容。比如可以先求麥粒的總數(shù),通過設(shè)問使學(xué)生得到麥粒的總數(shù)為,然后引導(dǎo)學(xué)生觀察上式的特點(diǎn),發(fā)現(xiàn)上式中,每一項(xiàng)乘以2后都得它的后一項(xiàng),即有,發(fā)現(xiàn)兩式右邊有62項(xiàng)相同,啟發(fā)同學(xué)們找到解決問題的關(guān)鍵是等式左右同時(shí)乘以2,相減得和。從而得知求等比數(shù)列前n項(xiàng)和……+的關(guān)鍵也應(yīng)是等式左右各項(xiàng)乘以公比q,兩式相減去掉相同項(xiàng),得求和公式,也掌握了這種常用的數(shù)列求和方法——錯(cuò)位相減法,說明這種方法的用途。
            (2)值得一提的是公式的證明還有兩種方法:
            方法二:由等比數(shù)列的定義得:運(yùn)用連比定理,
            后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。
            等比數(shù)列前n項(xiàng)和公式及應(yīng)用是本節(jié)課的重點(diǎn)內(nèi)容。
            依據(jù)如下:
            (1)新大綱中有較高層次的要求。
            (2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。
            (3)這項(xiàng)知識(shí)內(nèi)容有廣泛的實(shí)際應(yīng)用,很多問題都要轉(zhuǎn)化為等比數(shù)列的求和上來。
            突出重點(diǎn)方法:
            (1)明確重點(diǎn)。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運(yùn)用比較法來突出公式的內(nèi)容(彩色粉筆板書):,強(qiáng)調(diào)公式的應(yīng)用范圍:中可知三求二。
            (2)運(yùn)用糾錯(cuò)法對(duì)公式中學(xué)生容易出錯(cuò)的地方,即公式的條件,以精練的語言給予強(qiáng)調(diào),并指出q=1時(shí),。再有就是有些數(shù)列求和的項(xiàng)數(shù)易錯(cuò),例如的項(xiàng)數(shù)是n+1而不是n。
            (3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個(gè)層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實(shí)際應(yīng)用來突出這一重點(diǎn)。對(duì)應(yīng)用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。
            四、習(xí)題訓(xùn)練。
            本節(jié)課設(shè)置如下兩種類型的習(xí)題:
            1.中知三求二的解答題;。
            2.實(shí)際應(yīng)用題.
            這樣設(shè)置主要依據(jù):
            (1)練習(xí)題與大綱中規(guī)定的教學(xué)目標(biāo)與任務(wù)及本節(jié)課的重點(diǎn)、難點(diǎn)有相對(duì)應(yīng)的匹配關(guān)系。
            (2)遵循鞏固性原則和傳授——反饋——再傳授的教學(xué)系統(tǒng)的思想確立這樣的習(xí)題。
            (3)應(yīng)用題比較切合對(duì)智力技能進(jìn)行檢測(cè),有利于數(shù)學(xué)能力的提高。同時(shí),它可以使學(xué)生在后半程學(xué)習(xí)中保持興趣的持續(xù)性和學(xué)習(xí)的主動(dòng)性。
            五、策略、方法與手段。
            根據(jù)高一學(xué)生心理特點(diǎn)、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問題解決策略,即“案例—公式—應(yīng)用”,簡(jiǎn)稱“例—規(guī)”法。
            案例為淺層次要求,使學(xué)生有概括印象。
            公式為中層次要求,由淺入深,重難點(diǎn)集中推導(dǎo)講解,便于突破。
            應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗(yàn)證本節(jié)教學(xué)目標(biāo)的落實(shí)。
            其中,案例是基礎(chǔ),是學(xué)生感知教材;公式為關(guān)鍵,是學(xué)生理解教材;練習(xí)為應(yīng)用,是學(xué)生鞏固知識(shí),舉一反三。
            在這三步教學(xué)中,以啟發(fā)性強(qiáng)的小設(shè)問層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運(yùn)用直觀完整的板書、棋盤教具和計(jì)算機(jī)課件等教輔用具、手段,改變教師講、學(xué)生聽的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀到抽象,加深了學(xué)生理解鞏固與應(yīng)用,有利于培養(yǎng)學(xué)生思維能力,落實(shí)好教學(xué)任務(wù)。
            六、個(gè)人見解。
            在提倡教育改革的今天,對(duì)學(xué)生進(jìn)行思維技能培養(yǎng)已成了我們非常重要的一項(xiàng)教學(xué)任務(wù)。研究性學(xué)習(xí)已在全國(guó)范圍內(nèi)展開,等比數(shù)列就是一個(gè)進(jìn)行研究性學(xué)習(xí)的好題材。在我們學(xué)??梢园凑読ntel未來教育計(jì)劃培訓(xùn)的模式,學(xué)完本節(jié)課后,教師可以給學(xué)生布置一個(gè)研究分期付款的課題,讓學(xué)生利用網(wǎng)絡(luò)資源,多方查找資料,并通過完成多媒體演示文稿和網(wǎng)頁制作來共同解決這一問題。這樣不僅培養(yǎng)了學(xué)生主動(dòng)探究問題、解決問題的能力,而且還提高了他們的創(chuàng)新意識(shí)和團(tuán)結(jié)協(xié)作的精神。
            等比數(shù)列的概念說課稿篇八
            大家好,今天我說課的題目是函數(shù)的概念,將從以下七個(gè)方面來進(jìn)行說課。
            函數(shù)的概念是人教a版實(shí)驗(yàn)教科書必修一第三章第一節(jié)的內(nèi)容,我們?cè)诔踔须A段學(xué)過的一次函數(shù)反比例函數(shù)二次函數(shù)為我們?cè)诟咧袑W(xué)習(xí)函數(shù)的概念,這一內(nèi)容進(jìn)行了鋪墊,而函數(shù)的概念又為后續(xù)學(xué)習(xí)函數(shù)的性質(zhì)做了鋪墊,因此,本節(jié)課的內(nèi)容在整個(gè)教科書中起著承上啟下的作用。
            在學(xué)琴方面,從知識(shí)和能力兩方面入手,目前學(xué)生處于高一階段,在中學(xué)已經(jīng)初步探討了函數(shù)的相關(guān)問題,為重新定義函數(shù)提供了理論基礎(chǔ),并且通過以前的學(xué)習(xí),同學(xué)們已經(jīng)具備了分析,推理和概括的能力,并具備了學(xué)習(xí)函數(shù)概念的基本能力。
            根據(jù)課程標(biāo)準(zhǔn),
            教學(xué)。
            內(nèi)容,及學(xué)生學(xué)情,我制定了如下三維教學(xué)目標(biāo),知識(shí)與技能方面,理解函數(shù)的概念能對(duì)具體函數(shù)指出定義域值域?qū)?yīng)法則能夠正確,使用區(qū)間符號(hào)表示,某些函數(shù)的定義域和值域,過程與方法方面,通過實(shí)例進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上,用集合與對(duì)應(yīng)語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的進(jìn)步作用,加深數(shù)學(xué)思想方法,情感態(tài)度,價(jià)值觀方面,在自主探究中感受到成功的喜悅,激發(fā)數(shù)學(xué)學(xué)習(xí)興趣。
            根據(jù)課程標(biāo)準(zhǔn),教學(xué)內(nèi)容教學(xué)重點(diǎn)為,函數(shù)的模型化思想函數(shù)的三要素,根據(jù)教學(xué)內(nèi)容,學(xué)生學(xué)情,教學(xué)難點(diǎn)為函數(shù)符號(hào)fx的含義,函數(shù)的定義,域值域和區(qū)間表示,從具體實(shí)例中抽象出函數(shù)概念。
            多樣化的教學(xué)方法是突破重難點(diǎn)的關(guān)鍵,我們因此本節(jié)課我將采用,領(lǐng)導(dǎo)發(fā)現(xiàn)練習(xí)鞏固分組討論的教學(xué)方法,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,主動(dòng)性,使課堂氣氛更加活躍,培養(yǎng)學(xué)生自主學(xué)習(xí),動(dòng)手探究的能力,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)知識(shí)的應(yīng)用能力和意識(shí),提高學(xué)生分析問題和解決問題的能力,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)知識(shí)的探索精神和團(tuán)隊(duì)協(xié)作精神,更能讓學(xué)生體驗(yàn)成功的樂趣。
            根據(jù)上面的教學(xué)方法以及新課程倡導(dǎo)的自主合作探究的學(xué)習(xí)方式,在本節(jié)課的教學(xué)中,教會(huì)學(xué)生動(dòng)手嘗試,仔細(xì)觀察開動(dòng)腦筋分析問題,這樣有利于學(xué)生發(fā)揮學(xué)習(xí)的主動(dòng)性,使學(xué)生的學(xué)習(xí)過程成為教師引導(dǎo)下再創(chuàng)造過程,并使學(xué)生從中體會(huì)到學(xué)習(xí)的樂趣,下面我將著重談一談我對(duì)教學(xué)過程的設(shè)計(jì),首先,創(chuàng)設(shè)情境引入課題,例如,正方形的周長(zhǎng)也要與邊長(zhǎng)x的對(duì)應(yīng)關(guān)系是l=4x,而且對(duì)于每一個(gè)x都有唯一的l與之對(duì)應(yīng),所以l是x的函數(shù),這個(gè)函數(shù)與y=4x相同嗎?又如你能用已有的知識(shí)判斷y=x與y=x/x^2是否相同嗎?要解決這些問題,就需要進(jìn)一步學(xué)習(xí)函數(shù)的概念,此部分我設(shè)計(jì)的意圖是利用初中所學(xué)知識(shí)引入課題,由熟悉到陌生,便于學(xué)生理解與接受,符合學(xué)生邏輯思維,接下來,引導(dǎo)探求以書上的四個(gè)實(shí)例高速列車時(shí)間與路程關(guān)系,電器維修工人工作天數(shù)與工資的關(guān)系,時(shí)間與空氣質(zhì)量指數(shù)之間的關(guān)系,以及八五計(jì)劃以來,我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系,這四個(gè)實(shí)力為例,讓同學(xué)們探究其對(duì)應(yīng)變量之間的關(guān)系,以及變量的變化范圍,目的是讓學(xué)生體會(huì)函數(shù),是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想,第三部分,歸納。
            總結(jié)。
            形成知識(shí),讓學(xué)生總結(jié)第一到第四中的函數(shù)有哪些共同特征,由此概括出函數(shù)概念的本質(zhì)特征,設(shè)計(jì)意圖為使學(xué)生進(jìn)行分組討論,學(xué)會(huì)分析歸納共同點(diǎn),在分組討論的過程中,體會(huì)到團(tuán)隊(duì)協(xié)作的精神,第四部分變式訓(xùn)練鞏固知識(shí),思考反比例,函數(shù)y=k/x的定義域值域和對(duì)應(yīng)關(guān)系各是什么?請(qǐng)用函數(shù)定義描述這個(gè)函數(shù),這是為了通過變式使同學(xué)們靈活運(yùn)用所學(xué)知識(shí),有舉一反三的,能更加使學(xué)生鞏固所學(xué)知識(shí),第五部分,深化知識(shí)習(xí)題訓(xùn)練,為了鞏固所學(xué)知識(shí),激發(fā)學(xué)生的求知欲,我將布置三道不同類型,不同難度的做作業(yè),以滿足不同層次的學(xué)生需求,第一題,第二題為基礎(chǔ)題,第三題為選做題,習(xí)題訓(xùn)練復(fù)習(xí)鞏固很重要,樹立夯實(shí)基礎(chǔ)目標(biāo),堅(jiān)持事求是,腳踏實(shí)地。
            基于以上教學(xué)過程,我設(shè)計(jì)了如下板書,我的說課到此完畢,謝謝大家,敬請(qǐng)各位老師批評(píng)指正。
            等比數(shù)列的概念說課稿篇九
            《等比數(shù)列前n項(xiàng)和》選自北師大版高中數(shù)學(xué)必修5第一章第3節(jié)的內(nèi)容。等比數(shù)列的前n項(xiàng)和是“等差數(shù)列及其前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù),也是函數(shù)的延續(xù),它實(shí)質(zhì)上是一種特殊的函數(shù);公式推導(dǎo)中蘊(yùn)涵的數(shù)學(xué)思想方法如分類討論等在各種數(shù)學(xué)問題中有著廣泛的應(yīng)用,如在“分期付款”等實(shí)際問題中也經(jīng)常涉及到.具有一定的探究性。
            二、學(xué)情分析。
            在認(rèn)知結(jié)構(gòu)上已經(jīng)掌握等差數(shù)列和等比數(shù)列的有關(guān)知識(shí)。在能力方面已經(jīng)初步具備運(yùn)。
            用等差數(shù)列和等比數(shù)列解決問題的能力;但學(xué)生從特殊到一般、分類討論的數(shù)學(xué)思想還需要進(jìn)一步培養(yǎng)和提高。在情感態(tài)度上學(xué)習(xí)興趣比較濃,表現(xiàn)欲較強(qiáng),但合作交流的意識(shí)等方面尚有待加強(qiáng)。并且讓學(xué)生在探究等比數(shù)列前n項(xiàng)和的過程中體會(huì)合作交流的重要性。
            三、教學(xué)目標(biāo)分析:
            知識(shí)與技能目標(biāo):
            (1)能夠推導(dǎo)出等比數(shù)列的前n項(xiàng)和公式;
            (2)能夠運(yùn)用等比數(shù)列的前n項(xiàng)和公式解決一些簡(jiǎn)單問題。
            過程與方法目標(biāo):提高學(xué)生的建模意識(shí)及探究問題、分析與解決問題的能力。體會(huì)公式探求。
            過程中從特殊到一般的思維方法、錯(cuò)位相減法和分類討論思想。
            情感與態(tài)度目標(biāo):培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的精神,磨練思維品質(zhì),從中獲得成功的體驗(yàn)。
            四、重難點(diǎn)的確立。
            《等比數(shù)列的前n項(xiàng)和》是這一章的重點(diǎn),其中公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了多種重要的數(shù)學(xué)思想,因此,本節(jié)課的教學(xué)重點(diǎn)為等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)及其簡(jiǎn)單應(yīng)用.而等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)過程中用到的方法學(xué)生難以想到,因此本節(jié)課的難點(diǎn)為等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)。
            五、教學(xué)方法。
            為突出重點(diǎn)和突破難點(diǎn),我將采用的教學(xué)策略為啟發(fā)式和探究式相結(jié)合的教學(xué)方法,教學(xué)手段采用計(jì)算機(jī)進(jìn)行輔助教學(xué)。
            六、教學(xué)過程。
            為達(dá)到本節(jié)課的教學(xué)目標(biāo),我把教學(xué)過程分為如下6個(gè)階段:
            1、創(chuàng)設(shè)情境:
            2、探究問題,講授新課:
            根據(jù)創(chuàng)設(shè)的情景,在教師的誘導(dǎo)下,學(xué)生根據(jù)自己掌握的知識(shí)和經(jīng)驗(yàn),很快建立起兩個(gè)等比數(shù)列的數(shù)學(xué)模型。提出如何求等比數(shù)列前n項(xiàng)和的問題,從而引出課題。通過回顧等差數(shù)列前n項(xiàng)和公式的推導(dǎo)過程,類比觀察等比數(shù)列的特點(diǎn),引導(dǎo)學(xué)生思考,如果我們把每一項(xiàng)都乘以2,則每一項(xiàng)就變成了它的后一項(xiàng),引導(dǎo)學(xué)生比較這兩個(gè)式子有許多相同的項(xiàng)的特點(diǎn),學(xué)生自然就會(huì)想到把兩式相減,進(jìn)而突破了用錯(cuò)位相減法推到公式的難點(diǎn)。教師再由特殊到一般、具體到抽象的啟示,正式引入本節(jié)課的重點(diǎn)等比數(shù)列的前n項(xiàng)和,請(qǐng)學(xué)生用錯(cuò)位相減法推導(dǎo)出等比數(shù)列前n項(xiàng)和公式。得出公式后,學(xué)生一起探討兩個(gè)問題,一是當(dāng)q=1時(shí)sn又等于什么,引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出完整的等比數(shù)列前n項(xiàng)和公式,二是結(jié)合等比數(shù)列的通項(xiàng)公式,引導(dǎo)學(xué)生得出公式的另一形式。
            3、例題講解:
            我們?cè)谥v解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。本節(jié)課設(shè)置如下兩種類型的例題:
            1)例1是公式的直接應(yīng)用,目的是讓學(xué)生熟悉公式會(huì)合理的選用公式。
            2)等比數(shù)列中知三求二的填空題,通過公式的正用和逆用進(jìn)一步提高學(xué)生運(yùn)用等比數(shù)列前n項(xiàng)和的能力.4.形成性練習(xí):
            練習(xí)基本上是直接運(yùn)用公式求和,三個(gè)練習(xí)是按由易到難、由簡(jiǎn)單到復(fù)雜的認(rèn)識(shí)規(guī)律和心理特征設(shè)計(jì)的,有利于提高學(xué)生的積極性。學(xué)生練習(xí)時(shí),教師巡查,觀察學(xué)情,及時(shí)從中獲取反饋信息。對(duì)學(xué)生練習(xí)中出現(xiàn)的獨(dú)到解法提出表揚(yáng)和鼓勵(lì),對(duì)其中偶發(fā)性錯(cuò)誤進(jìn)行辨析、指正。通過形成性練習(xí),培養(yǎng)學(xué)生的應(yīng)變和舉一反三的能力,逐步形成技能。
            5.課堂小結(jié)。
            本節(jié)課的小結(jié)從以下幾個(gè)方面進(jìn)行:(1)等比數(shù)列的前n項(xiàng)和公式。
            (2)推導(dǎo)公式的所用方法——從特殊到一般的思維方法、錯(cuò)位相減法和分類討論思想。通過師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識(shí),也能培養(yǎng)學(xué)生的歸納和概括能力。進(jìn)一步完成認(rèn)知目標(biāo)和素質(zhì)目標(biāo)。
            6.作業(yè)布置。
            針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的`目的。并可布置相應(yīng)的研究作業(yè),思考如何用其他方法來推導(dǎo)等比數(shù)列的前n項(xiàng)和公式,來加深學(xué)生對(duì)這一知識(shí)點(diǎn)的理解程度。
            等比數(shù)列的概念說課稿篇十
            導(dǎo)數(shù)是研究現(xiàn)代科學(xué)技術(shù)必不可少的工具,是進(jìn)一步學(xué)習(xí)數(shù)學(xué)和其他自然科學(xué)的基礎(chǔ),在物理學(xué)、經(jīng)濟(jì)學(xué)等領(lǐng)域都有廣泛的應(yīng)用。對(duì)于中學(xué)階段而言,導(dǎo)數(shù)是研究函數(shù)的有力工具,在求函數(shù)的單調(diào)性、極值、曲線的切線以及一些優(yōu)化問題時(shí)有著廣泛的應(yīng)用,同時(shí)對(duì)研究幾何、不等式起著重要作用.導(dǎo)數(shù)的概念毫無疑問是教學(xué)的關(guān)鍵,考慮到學(xué)生的可接受性,教材中并沒有引進(jìn)極限概念,而是通過實(shí)例引導(dǎo)學(xué)生經(jīng)歷由平均變化率到瞬時(shí)變化率的過程,直至建立起導(dǎo)數(shù)的數(shù)學(xué)模型。而從平均變化率到瞬時(shí)變化率,教材中所選取的實(shí)例是曲線上一點(diǎn)處的切線和瞬時(shí)速度、瞬時(shí)加速度,筆者以為從學(xué)生的知識(shí)背景出發(fā),與其用切線來引入導(dǎo)數(shù),還不如將之視為導(dǎo)數(shù)知識(shí)的.幾何解釋,因此教學(xué)處理時(shí)采用數(shù)值逼近、幾何直觀感受、解析式抽象三種方式實(shí)現(xiàn)由平均變化率到瞬時(shí)變化率的過渡。
            教學(xué)時(shí)需關(guān)注:一是邏輯主線是以問題為背景,按照“問題情境—建立模型—解釋應(yīng)用與拓展”的程序展開;二是學(xué)生極限思想的形成,需設(shè)計(jì)活動(dòng)讓學(xué)生經(jīng)歷從平均變化率到瞬時(shí)變化率的過程,先通過求物體在某一時(shí)刻的平均速度的極限去得出瞬時(shí)速度,再由此抽象出函數(shù)在某點(diǎn)的平均變化率的極限就是瞬時(shí)變化率的的模型,并將瞬時(shí)變化率定義為導(dǎo)數(shù);三是從特殊到一般,通過若干個(gè)特殊時(shí)刻的瞬時(shí)速度過渡到任意時(shí)刻的瞬時(shí)速度;從物體運(yùn)動(dòng)的平均速度的極限是瞬時(shí)速度過渡到函數(shù)的平均變化率的極限是瞬時(shí)變化率。
            1、知識(shí)與技能目標(biāo):
            理解并能復(fù)述導(dǎo)數(shù)的概念,掌握利用求函數(shù)在某點(diǎn)的平均變化率的極限實(shí)現(xiàn)求導(dǎo)數(shù)的基本步驟,初步學(xué)會(huì)求解簡(jiǎn)單函數(shù)在一點(diǎn)處的切線方程。
            2、過程與方法目標(biāo):
            通過數(shù)值逼近計(jì)算的方法經(jīng)歷從平均變化率到瞬時(shí)變化率的過程,并在歸納抽象的過程中建構(gòu)導(dǎo)數(shù)的概念,嘗試幾何解釋的過程中領(lǐng)悟數(shù)學(xué)發(fā)現(xiàn)的全過程。
            3、情感、態(tài)度、價(jià)值觀目標(biāo):
            通過數(shù)學(xué)建模的過程感受數(shù)學(xué)研究方法,并在使用手持技術(shù)過程中改善學(xué)習(xí)方法,即初步形成向技術(shù)學(xué)數(shù)學(xué)的基本理念。
            教學(xué)重點(diǎn)。
            數(shù)值逼近法生成建構(gòu)導(dǎo)數(shù)概念及導(dǎo)數(shù)的計(jì)算。
            教學(xué)難點(diǎn)。
            本節(jié)課需要用到的知識(shí)儲(chǔ)備包括平均變化率、直線的斜率、物理中物體運(yùn)動(dòng)的瞬時(shí)速度、解析幾何中的切線等,而所要用到的歸納、概括、類比、抽象思維能力等也已具備,特別地實(shí)驗(yàn)班的學(xué)生均能熟練操作圖形計(jì)算器,也多次經(jīng)歷過數(shù)學(xué)再創(chuàng)造的過程,對(duì)“問題情境—建立模型—解釋應(yīng)用與拓展”這樣的學(xué)習(xí)程序并不陌生,這些都是開展本節(jié)課學(xué)習(xí)的基礎(chǔ)。
            等比數(shù)列的概念說課稿篇十一
            本節(jié)課設(shè)置如下兩種類型的習(xí)題:
            1.中知三求二的解答題;
            2.實(shí)際應(yīng)用題。
            這樣設(shè)置主要依據(jù):
            (1)練習(xí)題與大綱中規(guī)定的教學(xué)目標(biāo)與任務(wù)及本節(jié)課的重點(diǎn)、難點(diǎn)有相對(duì)應(yīng)的匹配關(guān)系。
            (2)遵循鞏固性原則和傳授——反饋——再傳授的教學(xué)系統(tǒng)的思想確立這樣的習(xí)題。
            (3)應(yīng)用題比較切合對(duì)智力技能進(jìn)行檢測(cè),有利于數(shù)學(xué)能力的提高。同時(shí),它可以使學(xué)生在后半程學(xué)習(xí)中保持興趣的持續(xù)性和學(xué)習(xí)的主動(dòng)性,。
            等比數(shù)列的概念說課稿篇十二
            背景分析:在學(xué)過了等差數(shù)列后,怎樣引入等比數(shù)列的定義?經(jīng)過教學(xué)實(shí)踐,認(rèn)為采用創(chuàng)設(shè)如下的類比性問題情境,引導(dǎo)學(xué)生再發(fā)現(xiàn)等比數(shù)列定義,效果較好。
            教學(xué)反思:
            在課堂中,把等比數(shù)列定義及通項(xiàng)公式的探索、發(fā)現(xiàn)、創(chuàng)新等思維過程的暴露,知識(shí)形成過程的揭示,作為教學(xué)重點(diǎn)。同時(shí)采用啟發(fā)式、談話式的教學(xué)方法,引導(dǎo)學(xué)生進(jìn)行類比推理,促使學(xué)生不知不覺地參與教學(xué)的全過程,為學(xué)生自己探索發(fā)現(xiàn)等比數(shù)列的有關(guān)知識(shí)營(yíng)造了良好的氛圍,體現(xiàn)了數(shù)學(xué)發(fā)現(xiàn)的本質(zhì),培養(yǎng)了學(xué)生合情推理能力、邏輯推理能力、科學(xué)的思維方式及勇于探索的創(chuàng)新意識(shí)等個(gè)性品質(zhì)。
            需要注意的是:教師如果忽視學(xué)生內(nèi)在的知識(shí)結(jié)構(gòu)和新舊知識(shí)之間的潛在聯(lián)系,簡(jiǎn)單地從外部給學(xué)生“灌入”新知識(shí),僅僅以課本為本,以教學(xué)大綱為綱進(jìn)行備課和上課,教學(xué)效果定會(huì)不盡人意。只有充分考察了學(xué)生的知識(shí)結(jié)構(gòu),才能通過引導(dǎo)學(xué)生進(jìn)行知識(shí)的遷移、類比,引導(dǎo)他們發(fā)現(xiàn)知識(shí)之間的聯(lián)系,從而使新知識(shí)有效地納入學(xué)生的認(rèn)知結(jié)構(gòu)中,并逐步培養(yǎng)了學(xué)生的創(chuàng)新能力。
            華羅庚先生說:“難處不在于有了公式去證明,而在于沒有公式之前,怎樣去找出公式來?!彼哉f,定理、法則、公式的歸納、猜想、發(fā)現(xiàn)的過程比證明過程更重要。歸納是人類探索真理和發(fā)現(xiàn)真理的主要工具之一,歸納法在發(fā)現(xiàn)新的數(shù)學(xué)問題,在探索和發(fā)現(xiàn)解題途徑的過程中起著重要作用。在研究數(shù)學(xué)問題時(shí),常常將一些一般問題通過特殊化來考察,從中發(fā)現(xiàn)一般問題的結(jié)論或解題途徑,這種由特殊到一般的思考,能否有所發(fā)現(xiàn),關(guān)鍵在于恰當(dāng)?shù)剡\(yùn)用歸納法。
            等比數(shù)列的概念說課稿篇十三
            “棱錐”這節(jié)教材是《立體幾何》的第2.2節(jié)它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識(shí),掌握若干基本圖形以及棱柱的概念和性質(zhì)的基礎(chǔ)上進(jìn)一步研究多面體的又一常見幾何體。它既是線面關(guān)系的具體化,又為以后進(jìn)一步學(xué)習(xí)棱臺(tái)的概念和性質(zhì)奠定了基礎(chǔ)。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時(shí),這節(jié)課也是進(jìn)一步培養(yǎng)高一學(xué)生的空間想象能力和邏輯思維能力的重要內(nèi)容。
            本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運(yùn)用正棱錐的性質(zhì)解決有關(guān)計(jì)算和證明問題。通過觀察具體幾何體模型引出棱錐的概念;通過棱柱與棱錐類比引入正棱錐的概念;通過對(duì)具體問題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會(huì)感到自然,好接受。對(duì)教材的內(nèi)容則有所增減,處理方式也有適當(dāng)改變。
            根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點(diǎn)和高一學(xué)生對(duì)空間圖形的認(rèn)知特點(diǎn),我把本節(jié)課的教學(xué)目的確定為:
            (1)通過棱錐,正棱錐概念的教學(xué),培養(yǎng)學(xué)生知識(shí)遷移的'能力及數(shù)學(xué)表達(dá)能力;
            (2)領(lǐng)會(huì)應(yīng)用正棱錐的性質(zhì)解題的一般方法,初步學(xué)會(huì)應(yīng)用性質(zhì)解決相關(guān)問題;
            (4)進(jìn)行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
            對(duì)于高一學(xué)生來說,空間觀念正逐步形成。而實(shí)際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點(diǎn)是通過對(duì)具體問題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實(shí)質(zhì);而如何將空間問題轉(zhuǎn)化為平面問題來解決?本節(jié)課則通過抓住正棱錐中的基本圖形這一難點(diǎn)實(shí)現(xiàn)突破,教學(xué)的關(guān)鍵是正確認(rèn)識(shí)正棱錐的線線,線面垂直關(guān)系。
            類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型、學(xué)會(huì)應(yīng)用、發(fā)展?jié)撃?、形成能力、提高素質(zhì)。
            由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進(jìn)一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時(shí)機(jī),因此,在教學(xué)中,一方面通過電教手段,把某些概念,性質(zhì)或知識(shí)關(guān)鍵點(diǎn)制成了投影片,既節(jié)省時(shí)間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學(xué)中并沒有采取把正棱錐性質(zhì)同時(shí)全部講授給學(xué)生的做法,而是通過具體問題的分析與處理,將正棱錐最重要的性質(zhì)這一知識(shí)點(diǎn)發(fā)現(xiàn)的全過程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會(huì)知識(shí)發(fā)生、發(fā)展的過程及其規(guī)律,從而提高學(xué)生分析和解決實(shí)際問題的能力。
            教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點(diǎn),這節(jié)課主要是教給學(xué)生“動(dòng)手做,動(dòng)腦想;嚴(yán)格證,多訓(xùn)練,勤鉆研?!钡难杏懯綄W(xué)習(xí)方法。這樣做,增加了學(xué)生主動(dòng)參與的機(jī)會(huì),增強(qiáng)了參與意識(shí),教給學(xué)生獲取知識(shí)的途徑;思考問題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,“練”有所“獲”。學(xué)生才會(huì)逐步感到數(shù)學(xué)美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
            (可將金字塔,帳篷的圖片以及不同棱錐的模型依次出示給學(xué)生)。
            將現(xiàn)實(shí)生活的實(shí)例抽象成數(shù)學(xué)模型,獲得新的幾何體――棱錐。(板書課題)。
            請(qǐng)同學(xué)們描述一下棱錐的本質(zhì)特征?(學(xué)生觀察模型,提示學(xué)生可以從底面,側(cè)面的形狀特點(diǎn)加以描述)。
            結(jié)論:(1)有一個(gè)面是多邊形;
            (2)其余各面是三角形且有一個(gè)公共頂點(diǎn)。
            由滿足(1)、(2)的面所圍成的幾何體叫做棱錐。
            (設(shè)計(jì)意圖:由觀察具體事物,經(jīng)過積極思維,歸納、抽象出事的本質(zhì)屬性,形成概念,培養(yǎng)學(xué)生抽象思維能力,提高學(xué)習(xí)效果。)。
            ――棱錐的頂點(diǎn)。
            ――棱錐的側(cè)棱。
            ――棱錐的底面。
            棱錐的高――――。
            觀察圖1:依次逐個(gè)介紹棱錐各個(gè)部分。
            名稱及表示法。表示法:棱錐s-abcde。
            或棱錐s-ac。與棱柱相似,棱錐可以按。
            底面多邊形的邊數(shù)分為三棱錐,四棱錐、
            五棱錐,···,n棱錐。
            (設(shè)計(jì)意圖:從簡(jiǎn)處理棱錐的表示法,
            分類等,為后面重點(diǎn)解決正棱錐的性質(zhì)問。
            題節(jié)省時(shí)間。)。
            由于實(shí)際生活中,遇到的往往是一種。
            特殊的棱錐――正棱錐,它的性質(zhì)用處較多。
            通過對(duì)比正棱柱的定義,讓學(xué)生描述正棱錐。
            (拿出各式各樣的棱錐模型讓學(xué)生辨認(rèn))。
            討論:底面是正多邊形的棱錐對(duì)嗎?聯(lián)想正棱柱的定義,棱柱補(bǔ)充幾點(diǎn)后才是正棱柱?
            結(jié)論:底面是正多邊形,并且頂點(diǎn)在底面射影是底面中心。為什么?
            (設(shè)計(jì)意圖:采用觀察、聯(lián)想、類比、猜想、發(fā)現(xiàn)的方法引出正棱錐的定義比課本直接給出顯得自然,學(xué)生好接受)。
            正棱錐的頂點(diǎn)在底面的射影是底面下多邊形中心,這是正棱錐的本質(zhì)特征。它決定了正棱錐的其他性質(zhì)。下面以正五棱錐為例,請(qǐng)同學(xué)們說出其側(cè)棱,各側(cè)面有何性質(zhì)?(將圖2出示給學(xué)生)。
            結(jié)論:各棱相等,各側(cè)面是全等的等腰三角形。
            為什么?
            (學(xué)生口答證明)(略)。
            如果我們把等腰三角形底邊上的高叫做正棱錐。
            的斜高,請(qǐng)?jiān)趫D2中作出兩條斜高。(學(xué)生作出。)(略)。
            結(jié)論:兩條斜高相等。為什么?(學(xué)生回答)。
            想一想:正棱錐的斜高與高有什么關(guān)系?
            結(jié)論:斜高大于高,為什么?(可啟發(fā)學(xué)生聯(lián)系。
            垂線段,斜線段的有關(guān)知識(shí),然后回答)。
            小結(jié):對(duì)于一般棱錐其側(cè)面不一定是等腰三角形。棱錐的高是指頂點(diǎn)到底面的距離,垂足可以在底面多邊形內(nèi),也可以在底面多邊形外,我們剛才所得到的性質(zhì)都是對(duì)正棱錐而言的。
            (設(shè)計(jì)意圖:再次讓學(xué)生領(lǐng)會(huì)類比、觀察、猜想等合情合理得到正棱錐的性質(zhì)之一并加以證明,培養(yǎng)學(xué)生的直覺思維能力的同時(shí),訓(xùn)練學(xué)生數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。)。
            等比數(shù)列的概念說課稿篇十四
            1、導(dǎo)言:
            這樣引入課題有以下三點(diǎn)好處:
            (1)利用學(xué)生求知好奇心理,以一個(gè)小故事為切入點(diǎn),便于調(diào)動(dòng)學(xué)生學(xué)習(xí)本節(jié)課的趣味性和積極性。
            (2)故事內(nèi)容緊扣本節(jié)課教學(xué)內(nèi)容的主題與重點(diǎn)。
            (3)有利于知識(shí)的遷移,使學(xué)生明確知識(shí)的現(xiàn)實(shí)應(yīng)用性。
            2、講授新課:
            本節(jié)課有兩項(xiàng)主要內(nèi)容,等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)和等比數(shù)列的前n項(xiàng)和公式及應(yīng)用。
            依據(jù)如下:
            (1)從認(rèn)知領(lǐng)域上講,它在陳述性知識(shí)、程序性知識(shí)與策略性知識(shí)的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識(shí)。
            (2)從學(xué)科知識(shí)上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
            (3)從心理學(xué)上講,學(xué)生對(duì)這項(xiàng)學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識(shí)薄弱,不易理解。
            突破難點(diǎn)方法:
            (1)明確難點(diǎn)、分解難點(diǎn),采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識(shí)切入,淺化知識(shí)內(nèi)容。比如可以先求麥粒的總數(shù),通過設(shè)問使學(xué)生得到麥粒的總數(shù)為,然后引導(dǎo)學(xué)生觀察上式的特點(diǎn),發(fā)現(xiàn)上式中,每一項(xiàng)乘以2后都得它的后一項(xiàng),即有,發(fā)現(xiàn)兩式右邊有62項(xiàng)相同,啟發(fā)同學(xué)們找到解決問題的關(guān)鍵是等式左右同時(shí)乘以2,相減得和。從而得知求等比數(shù)列前n項(xiàng)和……+的關(guān)鍵也應(yīng)是等式左右各項(xiàng)乘以公比q,兩式相減去掉相同項(xiàng),得求和公式,也掌握了這種常用的數(shù)列求和方法——錯(cuò)位相減法,說明這種方法的用途。
            (2)值得一提的是公式的證明還有兩種方法:
            方法二:由等比數(shù)列的定義得:運(yùn)用連比定理,
            后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。
            依據(jù)如下:
            (1)新大綱中有較高層次的要求。
            (2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。
            (3)這項(xiàng)知識(shí)內(nèi)容有廣泛的實(shí)際應(yīng)用,很多問題都要轉(zhuǎn)化為等比數(shù)列的求和上來。
            突出重點(diǎn)方法:
            (1)明確重點(diǎn)。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運(yùn)用比較法來突出公式的內(nèi)容(彩色粉筆板書):,強(qiáng)調(diào)公式的應(yīng)用范圍:中可知三求二。
            (2)運(yùn)用糾錯(cuò)法對(duì)公式中學(xué)生容易出錯(cuò)的地方,即公式的條件,以精練的語言給予強(qiáng)調(diào),并指出q=1時(shí),。再有就是有些數(shù)列求和的項(xiàng)數(shù)易錯(cuò),例如的項(xiàng)數(shù)是n+1而不是n。
            (3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個(gè)層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實(shí)際應(yīng)用來突出這一重點(diǎn)。對(duì)應(yīng)用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。
            等比數(shù)列的概念說課稿篇十五
            例題:0,3,9,21,45,()。
            相鄰的.數(shù)的差為3,6,12,24,48,答案為93。
            例題:-2,-1,1,5,(),29---99年考題。
            后一個(gè)數(shù)減前一個(gè)數(shù)的差值為:1,2,4,8,16,所以答案是13。
            2、相減的差為完全平方或開方或其他規(guī)律。
            例題:1,5,14,30,55,(。
            )
            相鄰的數(shù)的差為4,9,16,25,則答案為55+36=91。
            3、相隔數(shù)相減呈上述規(guī)律:
            例題:53,48,50,45,47。
            a.38b.42c.46d.51。
            注意:“相隔”可以在任何題型中出現(xiàn)。
            將本文的word文檔下載到電腦,方便收藏和打印。
            等比數(shù)列的概念說課稿篇十六
            等比數(shù)列前n項(xiàng)和一節(jié)是人教社高中數(shù)學(xué)必修教材試驗(yàn)修訂本第一冊(cè)第三章第五節(jié)的內(nèi)容,教學(xué)對(duì)象為高一學(xué)生,教學(xué)時(shí)數(shù)2課時(shí)。
            第三章《數(shù)列》是高中數(shù)學(xué)的重要內(nèi)容之一,之所以在新大綱里保留下來,這是由其在整個(gè)高中數(shù)學(xué)領(lǐng)域里的重要地位和作用決定的。
            1、數(shù)列有著廣泛的實(shí)際應(yīng)用。例如產(chǎn)品的規(guī)格設(shè)計(jì)、儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等。
            2、數(shù)列有著承前啟后的作用。數(shù)列是函數(shù)的延續(xù),它實(shí)質(zhì)上是一種特殊的函數(shù);學(xué)習(xí)數(shù)列又為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容打下基礎(chǔ)。
            3、數(shù)列是培養(yǎng)提高學(xué)生思維能力的好題材。學(xué)習(xí)數(shù)列要經(jīng)常觀察、分析、猜想,還要綜合運(yùn)用前面的知識(shí)解決數(shù)列中的一些問題,這些都有利于學(xué)生數(shù)學(xué)能力的提高。
            本節(jié)課既是本章的重點(diǎn),同時(shí)也是教材的重點(diǎn)。等比數(shù)列前n項(xiàng)和前面承接了數(shù)列的定義、等差數(shù)列的'知識(shí)內(nèi)容,又是后面學(xué)習(xí)數(shù)列求和、數(shù)列極限的基礎(chǔ)。
            本節(jié)的重點(diǎn)是等比數(shù)列前n項(xiàng)和公式及應(yīng)用,難點(diǎn)是公式的推導(dǎo)。
            二、教學(xué)目標(biāo)。
            1、知識(shí)目標(biāo):理解等比數(shù)列前n項(xiàng)和公式的推導(dǎo)方法,掌握等比數(shù)列前n項(xiàng)和公式及應(yīng)用。
            2、能力目標(biāo):培養(yǎng)學(xué)生觀察問題、思考問題的能力,并能靈活運(yùn)用基本概念分析問題解決問題的能力,鍛煉數(shù)學(xué)思維能力。
            3、思想目標(biāo):培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,鍛煉學(xué)生遇到困難不氣餒的堅(jiān)強(qiáng)意志和勇于創(chuàng)新的精神。
            三、教學(xué)程序設(shè)計(jì)。
            1、導(dǎo)言:
            這樣引入課題有以下三點(diǎn)好處:
            (1)利用學(xué)生求知好奇心理,以一個(gè)小故事為切入點(diǎn),便于調(diào)動(dòng)學(xué)生學(xué)習(xí)本節(jié)課的趣味性和積極性。
            (2)故事內(nèi)容緊扣本節(jié)課教學(xué)內(nèi)容的主題與重點(diǎn)。
            (3)有利于知識(shí)的遷移,使學(xué)生明確知識(shí)的現(xiàn)實(shí)應(yīng)用性。
            2、講授新課:
            本節(jié)課有兩項(xiàng)主要內(nèi)容,等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)和等比數(shù)列的前n項(xiàng)和公式及應(yīng)用。
            等比數(shù)列的概念說課稿篇十七
            依據(jù)如下:
            (1)從認(rèn)知領(lǐng)域上講,它在陳述性知識(shí)、程序性知識(shí)與策略性知識(shí)的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識(shí)。
            (2)從學(xué)科知識(shí)上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
            (3)從心理學(xué)上講,學(xué)生對(duì)這項(xiàng)學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識(shí)薄弱,不易理解。
            突破難點(diǎn)方法:
            (1)明確難點(diǎn)、分解難點(diǎn),采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識(shí)切入,淺化知識(shí)內(nèi)容。比如可以先求麥粒的總數(shù),通過設(shè)問使學(xué)生得到麥粒的總數(shù)為,然后引導(dǎo)學(xué)生觀察上式的特點(diǎn),發(fā)現(xiàn)上式中,每一項(xiàng)乘以2后都得它的后一項(xiàng),即有,發(fā)現(xiàn)兩式右邊有62項(xiàng)相同,啟發(fā)同學(xué)們找到解決問題的關(guān)鍵是等式左右同時(shí)乘以2,相減得和。從而得知求等比數(shù)列前n項(xiàng)和……+的關(guān)鍵也應(yīng)是等式左右各項(xiàng)乘以公比q,兩式相減去掉相同項(xiàng),得求和公式,也掌握了這種常用的數(shù)列求和方法——錯(cuò)位相減法,說明這種方法的用途。
            (2)值得一提的是公式的證明還有兩種方法:
            方法二:由等比數(shù)列的定義得:運(yùn)用連比定理,
            后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。
            等比數(shù)列前n項(xiàng)和公式及應(yīng)用是本節(jié)課的重點(diǎn)內(nèi)容。
            依據(jù)如下:
            (1)新大綱中有較高層次的要求。
            (2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。
            (3)這項(xiàng)知識(shí)內(nèi)容有廣泛的實(shí)際應(yīng)用,很多問題都要轉(zhuǎn)化為等比數(shù)列的求和上來。
            突出重點(diǎn)方法:
            (1)明確重點(diǎn)。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運(yùn)用比較法來突出公式的內(nèi)容(彩色粉筆板書):,強(qiáng)調(diào)公式的應(yīng)用范圍:中可知三求二。
            (2)運(yùn)用糾錯(cuò)法對(duì)公式中學(xué)生容易出錯(cuò)的地方,即公式的條件,以精練的語言給予強(qiáng)調(diào),并指出q=1時(shí),。再有就是有些數(shù)列求和的項(xiàng)數(shù)易錯(cuò),例如的項(xiàng)數(shù)是n+1而不是n。
            (3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個(gè)層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實(shí)際應(yīng)用來突出這一重點(diǎn)。對(duì)應(yīng)用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。
            四、習(xí)題訓(xùn)練。
            本節(jié)課設(shè)置如下兩種類型的習(xí)題:
            1.中知三求二的解答題;。
            2.實(shí)際應(yīng)用題.
            這樣設(shè)置主要依據(jù):
            (1)練習(xí)題與大綱中規(guī)定的教學(xué)目標(biāo)與任務(wù)及本節(jié)課的重點(diǎn)、難點(diǎn)有相對(duì)應(yīng)的匹配關(guān)系。
            (2)遵循鞏固性原則和傳授——反饋——再傳授的教學(xué)系統(tǒng)的思想確立這樣的習(xí)題。
            (3)應(yīng)用題比較切合對(duì)智力技能進(jìn)行檢測(cè),有利于數(shù)學(xué)能力的提高。同時(shí),它可以使學(xué)生在后半程學(xué)習(xí)中保持興趣的持續(xù)性和學(xué)習(xí)的主動(dòng)性,。
            五、策略、方法與手段。
            根據(jù)高一學(xué)生心理特點(diǎn)、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問題解決策略,即“案例—公式—應(yīng)用”,簡(jiǎn)稱“例—規(guī)”法。
            案例為淺層次要求,使學(xué)生有概括印象。
            公式為中層次要求,由淺入深,重難點(diǎn)集中推導(dǎo)講解,便于突破。
            應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗(yàn)證本節(jié)教學(xué)目標(biāo)的落實(shí)。
            其中,案例是基礎(chǔ),是學(xué)生感知教材;公式為關(guān)鍵,是學(xué)生理解教材;練習(xí)為應(yīng)用,是學(xué)生鞏固知識(shí),舉一反三。
            在這三步教學(xué)中,以啟發(fā)性強(qiáng)的小設(shè)問層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運(yùn)用直觀完整的板書、棋盤教具和計(jì)算機(jī)課件等教輔用具、手段,改變教師講、學(xué)生聽的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀到抽象,加深了學(xué)生理解鞏固與應(yīng)用,有利于培養(yǎng)學(xué)生思維能力,落實(shí)好教學(xué)任務(wù)。
            六、個(gè)人見解。
            在提倡教育改革的今天,對(duì)學(xué)生進(jìn)行思維技能培養(yǎng)已成了我們非常重要的一項(xiàng)教學(xué)任務(wù)。研究性學(xué)習(xí)已在全國(guó)范圍內(nèi)展開,等比數(shù)列就是一個(gè)進(jìn)行研究性學(xué)習(xí)的好題材。在我們學(xué)??梢园凑読ntel未來教育計(jì)劃培訓(xùn)的模式,學(xué)完本節(jié)課后,教師可以給學(xué)生布置一個(gè)研究分期付款的課題,讓學(xué)生利用網(wǎng)絡(luò)資源,多方查找資料,并通過完成多媒體演示文稿和網(wǎng)頁制作來共同解決這一問題。這樣不僅培養(yǎng)了學(xué)生主動(dòng)探究問題、解決問題的能力,而且還提高了他們的創(chuàng)新意識(shí)和團(tuán)結(jié)協(xié)作的精神。
            等比數(shù)列的概念說課稿篇十八
            函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡(jiǎn)單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對(duì)應(yīng)說”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。
            本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
            二、重難點(diǎn)分析。
            根據(jù)對(duì)上述對(duì)教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。
            三、學(xué)情分析。
            1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
            2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
            四、目標(biāo)分析。
            1、理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。
            2、通過對(duì)實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。
            3、通過對(duì)函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
            五、教法學(xué)法。
            本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動(dòng)的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程。
            學(xué)法方面,學(xué)生通過對(duì)新舊兩種函數(shù)定義的對(duì)比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
            六、教學(xué)過程。
            (一)創(chuàng)設(shè)情景,引入新課。
            情景1:提供一張表格,把上次運(yùn)動(dòng)會(huì)得分前10的情況填入表格,我報(bào)名次,學(xué)生提供分?jǐn)?shù)。
            名次(得分)。
            情景3:某市一天24小時(shí)內(nèi)的氣溫變化圖:(圖略)。
            提問(1):這三個(gè)例子中都涉及到了幾個(gè)變化的量?(兩個(gè))。
            提問(2):當(dāng)其中一個(gè)變量取值確定后,另一個(gè)變量將如何?(它的值也隨之唯一確定)。
            提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題。
            [設(shè)計(jì)意圖]在創(chuàng)設(shè)本課開頭情境1、2的時(shí)候,我并沒有運(yùn)用書中的前兩個(gè)例子。第一個(gè)例子我改成提供給學(xué)生一張運(yùn)動(dòng)會(huì)成績(jī)統(tǒng)計(jì)單。是為了創(chuàng)設(shè)和學(xué)生或者生活相近的情境,從而引起學(xué)生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個(gè)例子我改成一道簡(jiǎn)單的速度與時(shí)間問題,是因?yàn)閷W(xué)生對(duì)重力加速度的問題還不是很熟悉。同時(shí)這兩個(gè)例子并沒有改變課本用三個(gè)實(shí)例分別代表三種表示函數(shù)方法的意圖。這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認(rèn)知特點(diǎn)。
            (二)探索新知,形成概念。
            1、引導(dǎo)分析,探求特征。
            思考:如何用集合的語言來闡述上述三個(gè)問題的共同特征?
            [設(shè)計(jì)意圖]并不急著讓學(xué)生回答此問,為引導(dǎo)學(xué)生改變思路,換個(gè)角度思考問題,進(jìn)入本節(jié)課的重點(diǎn)。這里也是教師作為教學(xué)的引導(dǎo)者的體現(xiàn),及時(shí)對(duì)學(xué)生進(jìn)行指引。
            提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個(gè)問題都涉及到了兩個(gè)集合,具體略)。
            [設(shè)計(jì)意圖]引導(dǎo)學(xué)生觀察,培養(yǎng)觀察問題,分析問題的能力。
            提問(5):兩個(gè)集合的元素之間具有怎樣的關(guān)系?(對(duì)應(yīng))。
            及時(shí)給出單值對(duì)應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達(dá)這種對(duì)應(yīng)。
            提問(6):現(xiàn)在你能從集合角度說說這三個(gè)問題的共同點(diǎn)嗎?
            [設(shè)計(jì)意圖]學(xué)生相互討論,并回答,引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。
            上述一系列問題,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng),生生互動(dòng)中,在學(xué)生心情愉悅的氛圍中,突破本節(jié)課的重點(diǎn)。
            3、探求定義,提出注意。
            提問(7):你覺得這個(gè)定義中應(yīng)注意哪些問題?
            [設(shè)計(jì)意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。
            4、例題剖析,強(qiáng)化概念。
            例1、判斷下列對(duì)應(yīng)是否為函數(shù):
            [設(shè)計(jì)意圖]通過例1的教學(xué),使學(xué)生體會(huì)單值對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。
            例2、(1);(2)y=x-1;(3);[設(shè)計(jì)意圖]首先對(duì)求函數(shù)的定義域進(jìn)行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強(qiáng)調(diào)只有對(duì)應(yīng)法則與定義域相同的兩個(gè)函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進(jìn)一步理解函數(shù)符號(hào)的本質(zhì)內(nèi)涵。
            例3、試求下列函數(shù)的定義域與值域:
            [設(shè)計(jì)意圖]讓學(xué)體會(huì)理解函數(shù)的三要素。
            5、鞏固練習(xí),運(yùn)用概念。
            書本練習(xí)p24:1,2,3,4。
            6、課堂小結(jié),提升思想。
            引導(dǎo)學(xué)生進(jìn)行回顧,使學(xué)生對(duì)本節(jié)課有一個(gè)整體把握,將對(duì)學(xué)生形成的知識(shí)系統(tǒng)產(chǎn)生積極的影響。
            七、教學(xué)評(píng)價(jià)。
            1、我通過對(duì)一系列問題情景的設(shè)計(jì),讓學(xué)生在問題解決的過程中體驗(yàn)成功的樂趣,實(shí)現(xiàn)對(duì)本課重難點(diǎn)的突破。
            2、為使課堂形式更加豐富,也可將某些問題改成判斷題。
            4。本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景。
            等比數(shù)列的概念說課稿篇十九
            在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等比關(guān)系,能用有關(guān)知識(shí)解決相應(yīng)問題。
            等比數(shù)列的前n項(xiàng)和的公式及應(yīng)用。
            一、復(fù)習(xí)準(zhǔn)備:
            提問:等比數(shù)列的通項(xiàng)公式;
            等差數(shù)列的前n項(xiàng)和公式;
            二、講授新課:
            1、教學(xué):
            思考:一個(gè)細(xì)胞每分鐘就變成兩個(gè),那么經(jīng)過一個(gè)小時(shí),它會(huì)分裂成多少個(gè)細(xì)胞呢?
            分析:公比,因?yàn)?,一個(gè)小時(shí)有60分鐘。
            思考:那么經(jīng)過一個(gè)小時(shí),一共有多少個(gè)細(xì)胞呢?
            又因?yàn)椤?BR>    所以,則=1152921504。
            則一個(gè)小時(shí)一共有1152921504個(gè)細(xì)胞。
            2、練習(xí):
            列1(解略)。
            列2(解略)。
            四、作業(yè):p66,1題。
            等比數(shù)列的概念說課稿篇二十
            教學(xué)目標(biāo):
            1、進(jìn)一步理解的概念,能從簡(jiǎn)單的實(shí)際事例中,抽象出關(guān)系,列出解析式;
            2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
            3、會(huì)求值,并體會(huì)自變量與值間的對(duì)應(yīng)關(guān)系.
            4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的的自變量的取值范圍的求法.
            5、通過的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動(dòng)變化著的.
            教學(xué)重點(diǎn):了解的意義,會(huì)求自變量的取值范圍及求值.
            教學(xué)難點(diǎn):概念的抽象性.
            教學(xué)過程:
            (一)引入新課:
            上一節(jié)課我們講了的概念:一般地,設(shè)在一個(gè)變化過程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說x是自變量,y是x的.
            生活中有很多實(shí)例反映了關(guān)系,你能舉出一個(gè),并指出式中的自變量與嗎?
            1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系.
            2、為迎接新年,班委會(huì)計(jì)劃購(gòu)買100元的小禮物送給同學(xué),求所能購(gòu)買的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系.
            解:1、y=30n。
            y是,n是自變量。
            2、,n是,a是自變量.
            (二)講授新課。
            剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時(shí),要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
            例1、求下列中自變量x的取值范圍.。
            (1)(2)。
            (3)(4)。
            (5)(6)。
            分析:在(1)、(2)中,x取任意實(shí)數(shù),與都有意義.
            (3)小題的是一個(gè)分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
            同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
            同理,第(6)小題也是二次根式,是被開方數(shù),。
            解:(1)全體實(shí)數(shù)。
            (2)全體實(shí)數(shù)。
            (3)。
            (4)且。
            (5)。
            (6)。
            小結(jié):從上面的例題中可以看出的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)大于、等于零.
            注意:有些同學(xué)沒有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.
            但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫成或.在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里與是并且的關(guān)系.即2與-1這兩個(gè)值x都不能取.