教案是教師教學(xué)過(guò)程中必不可少的工具,它可以幫助教師合理安排教學(xué)內(nèi)容和教學(xué)步驟。教案應(yīng)該符合學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)需要。以下是小編為大家整理的教案范例,僅供參考,希望對(duì)大家編寫教案有所幫助。
函數(shù)的圖象教案篇一
-6。
-5。
-4。
-3。
1
2
3
4
5
6
-1。
-1.2。
-1.5。
-2。
6
3
2
1.5。
1.2。
1
1
1.2。
1.5。
2
-6。
-3。
-2。
-1.5。
-1.2。
1
一般地反比例函數(shù)(k是常數(shù),)的圖象由兩條曲線組成,叫做雙曲線.
3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)。
前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí).
顯示這兩個(gè)函數(shù)的圖象,提出問(wèn)題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)。
(1)的圖象在第一、三象限.可以擴(kuò)展到k0時(shí)的情形,即k0時(shí),雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限.
的討論與此類似.
抓住機(jī)會(huì),說(shuō)明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過(guò)程.
(2)函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減??;
從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì).從列表中也可以看出這樣的變化趨勢(shì).有理數(shù)除法說(shuō)明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越??;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k0時(shí),函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小.
同樣可以推出的圖象的性質(zhì).
(3)函數(shù)的圖象不經(jīng)過(guò)原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來(lái)越大時(shí),y的值越來(lái)越小,趨近于零;如果x取負(fù)值且越來(lái)越小時(shí),y的值也越來(lái)越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出圖象的性質(zhì).
4、小結(jié):
本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問(wèn)題,并能運(yùn)用已有的`數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中.
5、布置作業(yè)習(xí)題13.81-4。
教學(xué)設(shè)計(jì)示例2。
函數(shù)的圖象教案篇二
難點(diǎn):其一般的性質(zhì)分析,再由性質(zhì)得到一般圖像。
三.教學(xué)方法和用具。
方法:歸納總結(jié),數(shù)形結(jié)合,分析驗(yàn)證。
用具:幻燈片,幾何畫板,黑板。
四.教學(xué)過(guò)程。
(幻燈片見附件)。
1.設(shè)置問(wèn)題情境,找出所得函數(shù)的共同形式,由形式給出冪函數(shù)的定義(幻燈片1?幻燈片2)(板書)。
2.從形式上比較指數(shù)函數(shù)和冪函數(shù)的異同(幻燈片3)。
3.利用定義的形式,判斷所給函數(shù)是否是冪函數(shù),并得出判斷依據(jù)(幻燈片4)。
4.畫常見的三種冪函數(shù)的圖像,再讓學(xué)生用描點(diǎn)法畫另兩種,并用幾何畫板驗(yàn)證(幻燈片5)(幾何畫板)。
5.用幾何畫板畫出這五個(gè)冪函數(shù)的圖像,觀察圖像完成書中冪函數(shù)的函數(shù)性質(zhì)的表格,并分析得出更一般的結(jié)論(板書)(幾何畫板)。
函數(shù)的圖象教案篇三
目標(biāo):
1、培養(yǎng)學(xué)生看圖識(shí)圖的能力.
2、在識(shí)圖過(guò)程中,滲透數(shù)形結(jié)合的數(shù)學(xué)思想.
3、從不同知識(shí)的背景提取的對(duì)象,可以使學(xué)生認(rèn)識(shí)到數(shù)學(xué)的廣泛應(yīng)用性.
4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的探索精神。
重點(diǎn):培養(yǎng)學(xué)生看圖識(shí)圖的能力。
難點(diǎn):滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
用具:計(jì)算機(jī)、投影機(jī)。
方法:談話法、分組討論。
過(guò)程:
1、閱讀習(xí)題13.3的第四題。
學(xué)生閱讀后,老師可以提問(wèn)學(xué)生,分別回答:
下圖是北京春季某一天的。
2、提出看圖說(shuō)圖的重要性。
隨著計(jì)算機(jī)的普及,很多軟件都可以做到輸入解析式后,立刻顯示出函數(shù)圖象來(lái),這樣看圖、識(shí)圖就變得相當(dāng)重要了.從上題就可以看出,圖形的表示更直觀,一目了然.也便于分析結(jié)論.數(shù)學(xué)不僅有數(shù)的一面,也有“形”的一面.美國(guó)著名數(shù)學(xué)家m克萊茵曾指出:“只要代數(shù)同幾何分道揚(yáng)鑣,它們的進(jìn)展就緩慢,它們的應(yīng)用就狹窄.但是當(dāng)這兩門科學(xué)結(jié)合成伴侶時(shí),它們就相互吸取新鮮的活力,從那以后,就以快速的步伐走向完善.”數(shù)學(xué)具有廣泛的應(yīng)用性,其它學(xué)科和日常生活都可以找到應(yīng)用數(shù)學(xué)解決問(wèn)題的例子.
3、為學(xué)生提供相對(duì)豐富的素材,體會(huì)以圖識(shí)性.
(讀題后,可組織學(xué)生分組討論.若學(xué)生還沒(méi)有學(xué)習(xí)相應(yīng)的化學(xué)知識(shí),老師可以解釋一下.一般學(xué)生都能理解.關(guān)鍵是學(xué)生都從圖中看出了什么.既有定量的分析,又能得出定性的規(guī)律).
從a、b的溶解度曲線分析,隨著溫度升高,a物質(zhì)的溶解度增大很快,而物質(zhì)b的溶解度變化不大,針對(duì)這兩種不同的特征,可以采用不同的方法.
如對(duì)未飽和的a溶液,可以采用降低溫度的使它飽和因?yàn)楦鶕?jù)a物質(zhì)的曲線,可以看出,降低溫度,物質(zhì)a的溶解度會(huì)迅速減小.
而對(duì)b物質(zhì)來(lái)講,它的溶解度受溫度的影響變化不大,要把不飽和溶液變?yōu)轱柡?,就需要用減少溶劑的辦法.把溶液加熱,使溶劑蒸發(fā)掉一些.溶劑逐漸減少到一定程度,不飽和的溶液就會(huì)變成飽和的了.
第12頁(yè)?。
函數(shù)的圖象教案篇四
(1)其圖象叫拋物線;(2)拋物線y=x2的對(duì)稱軸是y軸,開口向上,頂點(diǎn)是原點(diǎn)。
補(bǔ)充例題。
下列函數(shù)中,哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a,b,c?
(1)y=2-3x2;(2)y=x(x-4);
(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。
作業(yè):p122中a組1,2,3。
四、教學(xué)注意問(wèn)題。
1.注意滲透局部和全體、有限和無(wú)限、近似和精確等矛盾對(duì)立統(tǒng)一的觀點(diǎn)。
2.注意培養(yǎng)學(xué)生觀察分析問(wèn)題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:
(1)y=x2的圖象的圖象有什么特點(diǎn)。(答:具有對(duì)稱性。)。
(2)如何判斷y=x2的圖象有上面所說(shuō)的特點(diǎn)?(答:由觀察圖象看出來(lái);或由列表求值得出來(lái);或由解析式y(tǒng)=x2看出來(lái)。)。
函數(shù)的圖象教案篇五
教學(xué)目標(biāo):
1、理解反比例函數(shù),并能從實(shí)際問(wèn)題中抽象出反比例關(guān)系的函數(shù)解析式;
2、會(huì)畫出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;
4、體會(huì)數(shù)學(xué)從實(shí)踐中來(lái)又到實(shí)際中去的研究、應(yīng)用過(guò)程;
5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的能力.
教學(xué)重點(diǎn):
結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
教學(xué)難點(diǎn):描點(diǎn)畫出反比例函數(shù)的圖象。
教學(xué)用具:直尺。
教學(xué)方法:小組合作、探究式。
教學(xué)過(guò)程:
1、從實(shí)際引出反比例函數(shù)的概念。
我們?cè)谛W(xué)學(xué)過(guò)反比例關(guān)系.例如:當(dāng)路程s一定時(shí),時(shí)間t與速度v成反比例。
即vt=s(s是常數(shù));
當(dāng)矩形面積s一定時(shí),長(zhǎng)a與寬b成反比例,即ab=s(s是常數(shù))。
從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過(guò)程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫成:
(s是常數(shù))。
(s是常數(shù))。
一般地,函數(shù)(k是常數(shù),)叫做反比例函數(shù).。
在現(xiàn)實(shí)生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進(jìn)行討論.下面的例子僅供。
2、列表、描點(diǎn)畫出反比例函數(shù)的圖象。
函數(shù)的圖象教案篇六
二、教學(xué)重點(diǎn)、難點(diǎn)。
三、教學(xué)過(guò)程?。
復(fù)習(xí)提問(wèn)。
1.一種豆子每千克售2元,寫出買豆子的總金額y(元)與所買豆子的數(shù)量x(千克)之間的函數(shù)關(guān)系.(答:y=2x.)。
2.在第一題的函數(shù)式中,誰(shuí)是自變量?誰(shuí)是函數(shù)?說(shuō)出自變量的取值范圍.(答:x是自變量,y是x的函數(shù),x可取所有非負(fù)實(shí)數(shù).)。
3.由函數(shù)y=2x,填出下表:
(答:下一行:0,1,2,3,4,5,6.)。
4.平面直角坐標(biāo)系是怎樣組成的?(答:在平面內(nèi)畫兩條互相垂直的數(shù)軸,組成平面直角坐標(biāo)系.)。
5.什么是點(diǎn)的橫坐標(biāo)、縱坐標(biāo)、坐標(biāo)?(答:平面直角坐標(biāo)系中一個(gè)點(diǎn)a在x軸上的坐標(biāo)叫橫坐標(biāo)a,點(diǎn)a在y軸上的坐標(biāo)叫縱坐標(biāo)b,把a(bǔ),b合起來(lái),且a在前、b在后:(a,b)就是點(diǎn)a的坐標(biāo).)。
6.點(diǎn)a的坐標(biāo)如(5,4),又可以稱作什么?(答:一對(duì)有序?qū)崝?shù).)。
7.坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的關(guān)系是什么?(答:一一對(duì)應(yīng)關(guān)系.)。
新課。
通過(guò)上述1~3個(gè)問(wèn)題的提問(wèn)及學(xué)生的回答,由y=2x及表格,按照函數(shù)定義,對(duì)于x的每一個(gè)值,y都有唯一的值和它對(duì)應(yīng).這就告訴我們,上面的表格本身也表示了y與x之間的函數(shù)關(guān)系.于是我們把這種通過(guò)列表表示函數(shù)的方法叫列表法.列表法的優(yōu)點(diǎn):容易由自變量的值求出對(duì)應(yīng)的函數(shù)的值.列表法的缺點(diǎn):不能把一個(gè)函數(shù)在自變量取值范圍內(nèi)的所有值都列出來(lái),所以有局部性;或所求的函數(shù)值是近似值.
2.通過(guò)上述復(fù)習(xí)提問(wèn)第3~7題及學(xué)生的回答,我們把第3題的表中的x,y值對(duì)應(yīng)地寫出來(lái),就得出了一列有序?qū)崝?shù)對(duì):(0,0),(0.5,1),(1,2),(1.5,3),….這里強(qiáng)調(diào)學(xué)生要進(jìn)一步明確“有序”的意義,(1.5,3),(3,1.5)是不相同的有序?qū)崝?shù)對(duì).再聯(lián)系到平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的一一對(duì)應(yīng)關(guān)系,于是我們借助平面直角坐標(biāo)系,就可以把這些有序?qū)崝?shù)對(duì)轉(zhuǎn)化為坐標(biāo)平面內(nèi)的點(diǎn).這樣就可以用平面內(nèi)的圖形來(lái)表示函數(shù)關(guān)系.
3.從最簡(jiǎn)單的函數(shù)y=x入手來(lái)分析及畫出其圖象.
(1)讓學(xué)生完成x與y的對(duì)應(yīng)值表.
(2)在有坐標(biāo)格的小黑板上,把表中給出的7個(gè)有序?qū)崝?shù)對(duì)作為點(diǎn)的坐標(biāo),師生一道描出這7個(gè)點(diǎn).
(3)分析函數(shù)y=x的特點(diǎn):自變量與函數(shù)的值相等.它的任意一對(duì)對(duì)應(yīng)值都可以表示成(m,m)的形式(m可取全體實(shí)數(shù)).借助坐標(biāo)平面可知,表示(m,m)的點(diǎn)就是到x軸的距離與到y(tǒng)軸的距離相等的點(diǎn).我們把x軸與y軸所劃分的坐標(biāo)平面的四個(gè)角叫象限角,依次有第一象限角,第二象限角,第三象限角,第四象限角.由平面幾何知識(shí)可知,到一個(gè)角的兩邊的距離相等的點(diǎn),它的軌跡是這個(gè)角的平分線.換一句話說(shuō),到這個(gè)角兩邊距離相等的點(diǎn),都在這個(gè)角的平分線上;反之,在這個(gè)角的平分線上的所有的點(diǎn),到這個(gè)角的兩邊距離都相等.于是函數(shù)y=x的整個(gè)圖象就可以畫出了.它是第一象限角和第三象限角的兩個(gè)角的平分線,是一條直線.
4.對(duì)于函數(shù)圖象要辯證地雙向分析:圖象上每一個(gè)點(diǎn)的坐標(biāo),都是這個(gè)函數(shù)的一對(duì)對(duì)應(yīng)值;反之,每個(gè)坐標(biāo)是這個(gè)函數(shù)的一對(duì)有序的對(duì)應(yīng)值的點(diǎn),都在這個(gè)函數(shù)的圖象上.
5.函數(shù)的表示法——圖象法.我們用圖象來(lái)表示一個(gè)函數(shù)的方法,叫圖象法.函數(shù)的圖象法優(yōu)點(diǎn):形象、直觀.缺點(diǎn):求得的函數(shù)值是近似的.
小結(jié)。
(1)根據(jù)函數(shù)的解析式列出函數(shù)對(duì)應(yīng)值表.
(2)用這些對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在坐標(biāo)平面內(nèi)描點(diǎn).
(3)把這些點(diǎn)用平滑曲線連結(jié)起來(lái),可得函數(shù)圖象.
2.函數(shù)的三種表示法:(1)解析法,(2)列表法,(3)圖象法.
練習(xí);選用課本練習(xí)(只要求列表、描點(diǎn).)。
補(bǔ)充例題。
1.解答課本本章題圖中的兩個(gè)問(wèn)題.
2.畫出函數(shù)y=3x的圖象.(只要求列表、描點(diǎn).)。
作業(yè)?:選用課本習(xí)題(只填表、描點(diǎn),不要求連線.)。
四、教學(xué)注意問(wèn)題。
1.注意雙向思維的滲透與訓(xùn)練.比如,由函數(shù)的關(guān)系式可得函數(shù)圖象;反之,由函數(shù)的圖象也可表示函數(shù)關(guān)系,等等.
2.注意滲透轉(zhuǎn)化思想方法.比如,把有序?qū)崝?shù)對(duì)轉(zhuǎn)化為坐標(biāo)平面內(nèi)的點(diǎn)等等.
3.注意精微,要善于區(qū)分鄰近概念,比如“實(shí)數(shù)對(duì)”與“有序?qū)崝?shù)對(duì)”雖兩字之差,但意義不同.
函數(shù)的圖象教案篇七
一、教學(xué)目的。
2.使學(xué)生了解函數(shù)的列表表示法.。
4.使學(xué)生會(huì)用描點(diǎn)法畫出簡(jiǎn)單函數(shù)的圖象.。
二、教學(xué)重點(diǎn)、難點(diǎn)。
重點(diǎn):介紹函數(shù)圖象的初步知識(shí).。
難點(diǎn):對(duì)于函數(shù)圖象的認(rèn)識(shí).。
三、教學(xué)過(guò)程。
復(fù)習(xí)提問(wèn)。
1.一種豆子每千克售2元,寫出買豆子的總金額y(元)與所買豆子的數(shù)量x(千克)之間的函數(shù)關(guān)系.(答:y=2x.)。
2.在第一題的函數(shù)式中,誰(shuí)是自變量?誰(shuí)是函數(shù)?說(shuō)出自變量的取值范圍.(答:x是自變量,y是x的函數(shù),x可取所有非負(fù)實(shí)數(shù).)。
3.由函數(shù)y=2x,填出下表:
(答:下一行:0,1,2,3,4,5,6.)。
4.平面直角坐標(biāo)系是怎樣組成的?(答:在平面內(nèi)畫兩條互相垂直的數(shù)軸,組成平面直角坐標(biāo)系.)。
5.什么是點(diǎn)的橫坐標(biāo)、縱坐標(biāo)、坐標(biāo)?(答:平面直角坐標(biāo)系中一個(gè)點(diǎn)a在x軸上的坐標(biāo)叫橫坐標(biāo)a,點(diǎn)a在y軸上的坐標(biāo)叫縱坐標(biāo)b,把a(bǔ),b合起來(lái),且a在前、b在后:(a,b)就是點(diǎn)a的坐標(biāo).)。
6.點(diǎn)a的坐標(biāo)如(5,4),又可以稱作什么?(答:一對(duì)有序?qū)崝?shù).)。
7.坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的關(guān)系是什么?(答:一一對(duì)應(yīng)關(guān)系.)。
新課。
3.從最簡(jiǎn)單的函數(shù)y=x入手來(lái)分析及畫出其圖象.。
(1)讓學(xué)生完成x與y的對(duì)應(yīng)值表.。
小結(jié)。
(1)根據(jù)函數(shù)的解析式列出函數(shù)對(duì)應(yīng)值表.。
(2)用這些對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在坐標(biāo)平面內(nèi)描點(diǎn).。
(3)把這些點(diǎn)用平滑曲線連結(jié)起來(lái),可得函數(shù)圖象.。
2.函數(shù)的三種表示法:(1)解析法,(2)列表法,(3)圖象法.。
練習(xí);選用課本練習(xí)(只要求列表、描點(diǎn).)。
補(bǔ)充例題。
1.解答課本本章題圖中的兩個(gè)問(wèn)題.。
2.畫出函數(shù)y=3x的圖象.(只要求列表、描點(diǎn).)。
作業(yè):選用課本習(xí)題(只填表、描點(diǎn),不要求連線.)。
四、教學(xué)注意問(wèn)題。
2.注意滲透轉(zhuǎn)化思想方法.比如,把有序?qū)崝?shù)對(duì)轉(zhuǎn)化為坐標(biāo)平面內(nèi)的點(diǎn)等等.。
函數(shù)的圖象教案篇八
按照描點(diǎn)法分三步畫圖:
(2)描點(diǎn)按照表中所列出的函數(shù)對(duì)應(yīng)值,在平面直角坐標(biāo)系中描出相應(yīng)的7個(gè)點(diǎn);
(3)邊線用平滑曲線順次連接各點(diǎn),即得所求y=x2的圖象。
注意兩點(diǎn):
(1)由于我們只描出了7個(gè)點(diǎn),但自礦業(yè)量取值范圍是實(shí)數(shù),故我們只畫出了實(shí)際圖象的一部分,即畫出了在原點(diǎn)附近、自變量在-3到3這個(gè)區(qū)間的一部分。而圖象在x3或x-3的`區(qū)間是無(wú)限延伸的。
(2)所畫的圖象是近似的。
3.在原點(diǎn)附近較精確地研究二次函數(shù)y=x2的圖象形狀到底如何?――我們c1與1之間每隔0.2的間距取x值表和圖13-14。按課本p118內(nèi)容講解。
4.引入拋物線的概念。
關(guān)于拋物線的頂點(diǎn)應(yīng)從兩方面分析:一是從圖象上看,y=x2的圖象的頂點(diǎn)是最低點(diǎn);一是從解析式y(tǒng)=x2看,當(dāng)x=0時(shí),y=x2取得最小值0,故拋物線y=x2的頂點(diǎn)是(0,0)。
小結(jié)。
(1)函數(shù)解析式關(guān)于自變量是整式;(2)函數(shù)自變量的最高次數(shù)是2。
函數(shù)的圖象教案篇九
1、本節(jié)課講述內(nèi)容為北師大版教材九年級(jí)下冊(cè)第五章《反比例函數(shù)》的第二節(jié),也這一章的重點(diǎn)。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎(chǔ)上,進(jìn)一步熟悉其圖象和性質(zhì)的過(guò)程。
2、對(duì)教材的分析。
(1)教學(xué)目標(biāo):進(jìn)一步熟悉作函數(shù)圖象的主要步驟,會(huì)作反比例函數(shù)的圖象;體會(huì)函數(shù)三種方式的相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整和;逐步提高從函數(shù)圖象中獲取知識(shí)的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
(2)重點(diǎn):會(huì)作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
(3)難點(diǎn):探索并掌握反比例函數(shù)的主要性質(zhì)。
1、提問(wèn):
(1)=4/x是什么函數(shù)?你會(huì)作反比例函數(shù)的圖象嗎?
(2)作圖的步驟是怎樣的。
(3)填寫電腦上的表格,開始在坐標(biāo)紙上描點(diǎn)連線。
2、按照上述方法作=—4/x的圖象。
3、對(duì)照你所作的兩個(gè)函數(shù)圖象,找一下它們的相同點(diǎn)和不同點(diǎn)。
1、讓學(xué)生觀察函數(shù)=/x的圖象,按下動(dòng)畫按鈕,在運(yùn)動(dòng)中觀察值的變化與函數(shù)圖象變化之間的關(guān)系,并與同學(xué)充分討論有何規(guī)律。
2、演示反比例函數(shù)中心對(duì)稱的性質(zhì)以及軸對(duì)稱性質(zhì),顯示反比例函數(shù)的兩條對(duì)稱軸。
3、讓學(xué)生觀察函數(shù)=/x的圖象,觀察過(guò)反比例函數(shù)上任意一點(diǎn)作x軸和軸的垂線,觀察其圍成矩形的面積變化情況。
(1)拖動(dòng),使變化,觀察不斷變化過(guò)程中,矩形面積的變化情況,討論得出結(jié)論。
(2)拖動(dòng)函數(shù)上的點(diǎn),觀察矩形面積的變化情況,討論得出結(jié)論。
1、給出兩個(gè)反比例函數(shù)的`圖象,判斷哪一個(gè)是=2/x和=—2/x的圖象。
課本137頁(yè)第1題、141頁(yè)第2題。
函數(shù)的圖象教案篇十
-6。
-5。
-4。
-3。
1
2
3
4
5
6
-1。
-1.2。
-1.5。
-2。
6
3
2
1.5。
1.2。
1
1
1.2。
1.5。
2
-6。
-3。
-2。
-1.5。
-1.2。
1
一般地反比例函數(shù)(k是常數(shù),)的圖象由兩條曲線組成,叫做雙曲線.
3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)。
前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí).
顯示這兩個(gè)函數(shù)的圖象,提出問(wèn)題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)。
(1)的圖象在第一、三象限.可以擴(kuò)展到k0時(shí)的情形,即k0時(shí),雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限.
的討論與此類似.
抓住機(jī)會(huì),說(shuō)明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過(guò)程.
(2)函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減?。?BR> 從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì).從列表中也可以看出這樣的變化趨勢(shì).有理數(shù)除法說(shuō)明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k0時(shí),函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小.
同樣可以推出的圖象的性質(zhì).
(3)函數(shù)的圖象不經(jīng)過(guò)原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來(lái)越大時(shí),y的值越來(lái)越小,趨近于零;如果x取負(fù)值且越來(lái)越小時(shí),y的值也越來(lái)越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出圖象的性質(zhì).
4、小結(jié):
本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問(wèn)題,并能運(yùn)用已有的`數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中.
5、布置作業(yè)??????習(xí)題13.8??1-4。
函數(shù)的圖象教案篇十一
教學(xué)目標(biāo):。
1.能夠利用描點(diǎn)法作出函數(shù)y=x2的圖象,能根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù)y=x2的性質(zhì).
2.猜想并能作出y=-x2的圖象,能比較它與y=x2的圖象的異同.
3.經(jīng)歷探索二次函數(shù)y=x2的圖象的作法和性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).
4.在利用圖象討論二次函數(shù)的性質(zhì)時(shí),讓學(xué)生盡可能多地合作交流,以便使學(xué)生能夠從多個(gè)角度看問(wèn)題,進(jìn)而比較準(zhǔn)確地理解二次函數(shù)的性質(zhì).
教學(xué)重點(diǎn):
1.利用描點(diǎn)法作出函數(shù)y=x2的圖象,根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù)y=x2的性質(zhì).
2.能夠作出二次函數(shù)y=-x2的圖象,并能比較它與y=x2的圖象的異同.
教學(xué)難點(diǎn):
經(jīng)歷探索二次函數(shù)y=x2的圖象的作法和性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).并把這種經(jīng)驗(yàn)運(yùn)用于研究二次函數(shù)y=-x2的圖象與性質(zhì)方面,實(shí)現(xiàn)探索經(jīng)驗(yàn)運(yùn)用的思維過(guò)程.
教學(xué)過(guò)程:
一、學(xué)前準(zhǔn)備。
我們?cè)趯W(xué)習(xí)了正比例函數(shù),一次函數(shù)與反比例函數(shù)的定義后,研究了它們各自的圖象特征.知道正比例函數(shù)的圖象是_______________,一般的一次函數(shù)的圖象是____________,反比例函數(shù)的圖象是_________________.上節(jié)課我們學(xué)習(xí)了二次函數(shù)的一般形式為_________________________,那么它的圖象是否也為直線或雙曲線呢?本節(jié)課我們將一起來(lái)研究有關(guān)問(wèn)題.
二、探究活動(dòng)。
(一)、作函數(shù)y=x2的圖象.
回憶畫函數(shù)圖象的一般步驟嗎?(列表,描點(diǎn),連線.)。
下面就請(qǐng)大家按上面的步驟作出y=x2的圖象.
(1)列表:
x-3-2-10123。
y9410149。
(2)在直角坐標(biāo)系中描點(diǎn).
(3)用光滑的,曲線連接各點(diǎn),便得到函數(shù)y=x2的圖象.
(二)、議一議。
對(duì)于二次函數(shù)y=x2的.圖象,(1)你能描述圖象的形狀嗎?與同伴進(jìn)行交流.
(2)圖象與x軸有交點(diǎn)嗎?如果有,交點(diǎn)坐標(biāo)是什么?
(3)當(dāng)x0時(shí),隨著x值的增大,y的值如何變化?當(dāng)x0時(shí)呢?
(4)當(dāng)x取什么值時(shí),y的值最小?最小值是什么?你是如何知道的?
(5)圖象是軸對(duì)稱圖形嗎?如果是,它的對(duì)稱軸是什么?請(qǐng)你找出幾對(duì)對(duì)稱點(diǎn),并交流.
下面我們系統(tǒng)地總結(jié):
二次函數(shù)y=-x2的圖象是什么形狀?先想一想,然后作出它的圖象.它與二次函數(shù)y=x2的圖象有什么關(guān)系?與同伴進(jìn)行交流.
大家討論之后系統(tǒng)地總結(jié)出y=x2的圖象的所有性質(zhì).
當(dāng)堂練習(xí):按照畫圖象的步驟作出函數(shù)y=-x2的圖象.
y=-x2的圖象如右圖,并讓學(xué)生總結(jié):
形狀是___________,只是它的開口方向____________,它。
與y=x2的圖象形狀________,方向________,這兩個(gè)圖形可。
以看成是__________對(duì)稱.
并嘗試比較y=x2與y=-x2的圖象,比較異同點(diǎn).
不同點(diǎn):
相同點(diǎn):
聯(lián)系:
(四)課堂練習(xí):隨堂練習(xí)(p47)。
三.學(xué)習(xí)體會(huì)。
1.本節(jié)課你有哪些收獲?你還有哪些疑問(wèn)?
2.你認(rèn)為老師上課過(guò)程中還有哪些須改進(jìn)的地方?
3.預(yù)習(xí)時(shí)的疑問(wèn)解決了嗎?
四.自我測(cè)試。
1.在同一直角坐標(biāo)系中畫出函數(shù)y=x2與y=-x2的圖象.
2.下列函數(shù)中是二次函數(shù)的是()。
a.y=2+5x2b.y=c.y=3x(x+5)2d.y=。
3.分別說(shuō)出拋物線y=4x2與y=-x2的開口方向,對(duì)稱軸與頂點(diǎn)坐標(biāo)。
4、已知函數(shù)y=mxm2+m.
(1)m取何值時(shí),它的圖象開口向上.
(2)當(dāng)x取何值時(shí),y隨x的增大而增大.
(3)當(dāng)x取何值時(shí),y隨x的增大而減小.
(4)x取何值時(shí),函數(shù)有最小值.
函數(shù)的圖象教案篇十二
1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象。
(2)能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題。
2.通過(guò)對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過(guò)對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。
3.通過(guò)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
(1)對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解。對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ)。
(2)本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)。由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。
(3)本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線展開。而通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。
(1)對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問(wèn)題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
(2)在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。
函數(shù)的圖象教案篇十三
1.能從二倍角的正弦、余弦、正切公式導(dǎo)出半角公式,了解它們的內(nèi)在聯(lián)系;揭示知識(shí)背景,引發(fā)學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識(shí).并培養(yǎng)學(xué)生綜合分析能力.
2.掌握公式及其推導(dǎo)過(guò)程,會(huì)用公式進(jìn)行化簡(jiǎn)、求值和證明。
3.通過(guò)公式推導(dǎo),掌握半角與倍角之間及半角公式與倍角公式之間的聯(lián)系,培養(yǎng)邏輯推理能力。
二、過(guò)程與方法。
2.通過(guò)例題講解,總結(jié)方法.通過(guò)做練習(xí),鞏固所學(xué)知識(shí).
三、情感、態(tài)度與價(jià)值觀。
1.通過(guò)公式的推導(dǎo),了解半角公式和倍角公式之間的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能力和辯證唯物主義觀點(diǎn)。
2.培養(yǎng)用聯(lián)系的觀點(diǎn)看問(wèn)題的觀點(diǎn)。
【教學(xué)重點(diǎn)與難點(diǎn)】:
重點(diǎn):半角公式的推導(dǎo)與應(yīng)用(求值、化簡(jiǎn)、證明)。
難點(diǎn):半角公式與倍角公式之間的內(nèi)在聯(lián)系,以及運(yùn)用公式時(shí)正負(fù)號(hào)的選取。
【學(xué)法與教學(xué)用具】:
1.學(xué)法:
(1)自主+探究性學(xué)習(xí):讓學(xué)生自己由和角公式導(dǎo)出倍角公式,領(lǐng)會(huì)從一般化歸為特殊的數(shù)學(xué)思想,體會(huì)公式所蘊(yùn)涵的和諧美,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣。
(2)反饋練習(xí)法:以練習(xí)來(lái)檢驗(yàn)知識(shí)的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距.
2.教學(xué)方法:觀察、歸納、啟發(fā)、探究相結(jié)合的教學(xué)方法。
引導(dǎo)學(xué)生復(fù)習(xí)二倍角公式,按課本知識(shí)結(jié)構(gòu)設(shè)置提問(wèn)引導(dǎo)學(xué)生動(dòng)手推導(dǎo)出半角公式,課堂上在老師引導(dǎo)下,以學(xué)生為主體,分析公式的結(jié)構(gòu)特征,會(huì)根據(jù)公式特點(diǎn)得出公式的應(yīng)用,用公式來(lái)進(jìn)行化簡(jiǎn)證明和求值,老師為學(xué)生創(chuàng)設(shè)問(wèn)題情景,鼓勵(lì)學(xué)生積極探究。
3.教學(xué)用具:多媒體、實(shí)物投影儀.
【授課類型】:新授課。
【課時(shí)安排】:1課時(shí)。
【教學(xué)思路】:
一、創(chuàng)設(shè)情景,揭示課題。
二、研探新知。
四、鞏固深化,反饋矯正。
五、歸納整理,整體認(rèn)識(shí)。
1.鞏固倍角公式,會(huì)推導(dǎo)半角公式、和差化積及積化和差公式。
2.熟悉"倍角"與"二次"的關(guān)系(升角--降次,降角--升次).
3.特別注意公式的三角表達(dá)形式,且要善于變形:
4.半角公式左邊是平方形式,只要知道角終邊所在象限,就可以開平方;公式的"本質(zhì)"是用?角的余弦表示角的正弦、余弦、正切.
5.注意公式的結(jié)構(gòu),尤其是符號(hào).
六、承上啟下,留下懸念。
七、板書設(shè)計(jì)(略)。
八、課后記:略。
函數(shù)的圖象教案篇十四
反比例函數(shù)圖像的性質(zhì)是反比例函數(shù)的教學(xué)重點(diǎn),學(xué)生需要在理解的基礎(chǔ)上熟練運(yùn)用。為此應(yīng)加強(qiáng)反比例函數(shù)圖像的直觀效應(yīng),讓學(xué)生在圖像上凸出反比例函數(shù)所具有的性質(zhì),這一個(gè)過(guò)程是在學(xué)生積極探索與討論交流達(dá)成的共識(shí)。我認(rèn)為這個(gè)經(jīng)驗(yàn)比較重要,雖然在這個(gè)過(guò)程耽誤了很多時(shí)間,但畢竟是學(xué)生收獲的結(jié)果。在引導(dǎo)例題的同時(shí),試著讓學(xué)生利用圖象解決問(wèn)題,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,并提示學(xué)生注意自變量在實(shí)際情境中的取值范圍問(wèn)題。而后,給學(xué)生幾分鐘的'思考時(shí)間,讓他們通過(guò)平時(shí)對(duì)生活的細(xì)心觀察,生活中有關(guān)反比例函數(shù)的有價(jià)值的問(wèn)題,說(shuō)出來(lái)與全班共同分享。這一環(huán)節(jié)的設(shè)置,不僅體現(xiàn)新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學(xué)生的主體性,讓他們也做了一回小老師,展示他們的個(gè)性,這樣有益于他們健康的人格的成長(zhǎng)。最后在總結(jié)中讓學(xué)生體會(huì)到利用反比例函數(shù)解決實(shí)際問(wèn)題,關(guān)鍵在于建立數(shù)學(xué)函數(shù)模型,并布置了作業(yè)。
不足與改進(jìn):在整個(gè)課堂教學(xué)過(guò)程中,教師圍繞主題、圍繞學(xué)生提問(wèn)的多,給學(xué)生提問(wèn)的時(shí)間和機(jī)會(huì)很少.我的改進(jìn)設(shè)想是:留給時(shí)間讓學(xué)生提出問(wèn)題,師生共同討論、交流,讓學(xué)生的學(xué)習(xí)更富有主動(dòng)性;在活動(dòng)一畫出反比例函數(shù)的圖象后,沒(méi)有讓學(xué)生趁熱打鐵“看圖說(shuō)話”,()說(shuō)出具體的圖象的特征,為活動(dòng)二猜想作很好的鋪墊.我的改進(jìn)設(shè)想是:在活動(dòng)一畫出反比例函數(shù)的圖象后,追加這樣一個(gè)問(wèn)題:“請(qǐng)同學(xué)們仔細(xì)觀察圖象并進(jìn)行討論,這個(gè)反比例函數(shù)的圖象區(qū)別于一次函數(shù)的圖象有那些不同的特征呢?”留給時(shí)間讓學(xué)生討論、交流,這樣改進(jìn)之后,必將能更大的激發(fā)學(xué)生的探索熱情,更能體現(xiàn)學(xué)生的創(chuàng)新能力,同時(shí)也為進(jìn)一步學(xué)習(xí)反比例函數(shù)的圖象的特征埋下伏筆,能增強(qiáng)學(xué)生學(xué)習(xí)的信心。
函數(shù)的圖象教案篇十五
1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。
3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問(wèn)題。
過(guò)程與方法。
1、通過(guò)函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
2、經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
情感與價(jià)值觀。
1、經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。
2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。
1、掌握函數(shù)概念。
2、判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。
3、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。
1、理解函數(shù)的概念。
2、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。
一、創(chuàng)設(shè)問(wèn)題情境,導(dǎo)入新課。
『師』:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?
函數(shù)的圖象教案篇十六
即:一角的正弦大于另一個(gè)角的余弦。
2、若,則,。
3、的圖象的對(duì)稱中心為(),對(duì)稱軸方程為。
4、的圖象的對(duì)稱中心為(),對(duì)稱軸方程為。
5、及的圖象的對(duì)稱中心為()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
萬(wàn)能公式:,,(其中)。
7、輔助角公式:,其中。輔助角的位置由坐標(biāo)決定,即角的終邊過(guò)點(diǎn)。
8、時(shí),。
9、。
其中為內(nèi)切圓半徑,為外接圓半徑。
特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。
10、的圖象的圖象(時(shí),向左平移個(gè)單位,時(shí),向右平移個(gè)單位)。
11、解題時(shí),條件中若有出現(xiàn),則可設(shè),。
則。
12、等腰三角形中,若且,則。
13、若等邊三角形的邊長(zhǎng)為,則其中線長(zhǎng)為,面積為。
14、;。
函數(shù)的圖象教案篇十七
1、使學(xué)生掌握的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域。
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì)。
(3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫出形如x的圖象。
2、x通過(guò)對(duì)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。
3、通過(guò)對(duì)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問(wèn)題,解決問(wèn)題。
(1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。
(2)x本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對(duì)底數(shù)x在x和x時(shí),函數(shù)值變化情況的區(qū)分。
(3)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問(wèn)題,所以從的研究過(guò)程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。
(1)關(guān)于的定義按照課本上說(shuō)法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點(diǎn)差異,諸如x,x等都不是。
(2)對(duì)底數(shù)x的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說(shuō)明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來(lái)。
關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。
1。x理解的定義,初步掌握的圖象,性質(zhì)及其簡(jiǎn)單應(yīng)用。
2。x通過(guò)的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。
3。x通過(guò)對(duì)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
重點(diǎn)是理解的定義,把握?qǐng)D象和性質(zhì)。
難點(diǎn)是認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí)。
投影儀
啟發(fā)討論研究式
一、x引入新課
我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來(lái)研究一類新的常見函數(shù)。
1、6、(板書)
這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問(wèn)題:
由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。
問(wèn)題2:有一根1米長(zhǎng)的繩子,第一次剪去繩長(zhǎng)一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長(zhǎng)度為x米,試寫出x與x之間的函數(shù)關(guān)系。
由學(xué)生回答:x。
在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
x的概念(板書)
1、定義:形如x的函數(shù)稱為。(板書)
教師在給出定義之后再對(duì)定義作幾點(diǎn)說(shuō)明。
2、幾點(diǎn)說(shuō)明x(板書)
(1)x關(guān)于對(duì)x的規(guī)定:
教師首先提出問(wèn)題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問(wèn)題分解為若x會(huì)有什么問(wèn)題?如x,此時(shí)x,x等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
若x對(duì)于x都無(wú)意義,若x則x無(wú)論x取何值,它總是1,對(duì)它沒(méi)有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
(2)關(guān)于的定義域x(板書)
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無(wú)理數(shù)時(shí),x也是一個(gè)確定的實(shí)數(shù),對(duì)于無(wú)理指數(shù)冪,學(xué)過(guò)的有理指數(shù)冪的"性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)閤。擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值。
(3)關(guān)于是否是的判斷(板書)
剛才分別認(rèn)識(shí)了中底數(shù),指數(shù)的要求,下面我們從整體的角度來(lái)認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是,請(qǐng)看下面函數(shù)是否是。
(4)x,x
(5)x。
學(xué)生回答并說(shuō)明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問(wèn)題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。
3、歸納性質(zhì)
作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。
函數(shù)
1、定義域x:
2、值域:
3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)
4、截距:在x軸上沒(méi)有,在x軸上為1。
對(duì)于性質(zhì)1和2可以兩條合在一起說(shuō),并追問(wèn)起什么作用。(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明。對(duì)于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)
在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱性,故x的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少。
此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(shì)(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
二、圖象與性質(zhì)(板書)
1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。
2、草圖:
當(dāng)畫完第一個(gè)圖象之后,可問(wèn)學(xué)生是否需要再畫第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個(gè),不妨取x為例。
此時(shí)畫它的圖象的方法應(yīng)讓學(xué)生來(lái)選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡(jiǎn)單。即x=x與x圖象之間關(guān)于x軸對(duì)稱,而此時(shí)x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對(duì)稱,教師借助計(jì)算機(jī)畫圖,在同一坐標(biāo)系下得到x的圖象。
最后問(wèn)學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無(wú)需再畫,則追問(wèn)其原因并要求其說(shuō)出性質(zhì),若認(rèn)為還需畫,則教師可利用計(jì)算機(jī)再畫出如x的圖象一起比較,再找共性)
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個(gè)表,如下:
以上內(nèi)容學(xué)生說(shuō)不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
填好后,讓學(xué)生仿照此例再列一個(gè)x的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來(lái)分類,整理函數(shù)的性質(zhì)。
3、性質(zhì)。
(1)無(wú)論x為何值,x都有定義域?yàn)閤,值域?yàn)閤,都過(guò)點(diǎn)x。
(2)x時(shí),x在定義域內(nèi)為增函數(shù),x時(shí),x為減函數(shù)。
(3)x時(shí),x,x x時(shí),x。
總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
三、簡(jiǎn)單應(yīng)用x (板書)
1、利用單調(diào)性比大小。x(板書)
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡(jiǎn)單的問(wèn)題。首先我們來(lái)看下面的問(wèn)題。
例1、x比較下列各組數(shù)的大小
(1)x與x;x(2)x與x;
(3)x與1x。(板書)
首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問(wèn)根據(jù)這個(gè)特點(diǎn),用什么方法來(lái)比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過(guò)程。
解:x在x上是增函數(shù),且
教師最后再?gòu)?qiáng)調(diào)過(guò)程必須寫清三句話:
(1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
(2)x自變量的大小比較。
(3)x函數(shù)值的大小比較。
后兩個(gè)題的過(guò)程略。要求學(xué)生仿照第(1)題敘述過(guò)程。
例2。比較下列各組數(shù)的大小
(1)x與x;x(2)x與x ;
(3)x與x。(板書)
先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來(lái)說(shuō)x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問(wèn)題,再用例1的方法解決,對(duì)(2)來(lái)說(shuō)x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來(lái)起橋梁作用)
最后由學(xué)生說(shuō)出x1,1。
解決后由教師小結(jié)比較大小的方法
(1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)
(2)x搭橋比較法:x用特殊的數(shù)1或0。
四、鞏固練習(xí)
練習(xí):比較下列各組數(shù)的大小(板書)
(1)x與x x(2)x與x;
(3)x與x;x(4)x與x。解答過(guò)程略
五、小結(jié)
1、的概念
2、的圖象和性質(zhì)
3、簡(jiǎn)單應(yīng)用
六、板書設(shè)計(jì)
函數(shù)的圖象教案篇十八
教學(xué)目標(biāo):
1、培養(yǎng)學(xué)生看圖識(shí)圖的能力.
2、在識(shí)圖過(guò)程中,滲透數(shù)形結(jié)合的數(shù)學(xué)思想.
3、從不同知識(shí)的背景提取的對(duì)象,可以使學(xué)生認(rèn)識(shí)到數(shù)學(xué)的廣泛應(yīng)用性.
4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的探索精神。
教學(xué)重點(diǎn):培養(yǎng)學(xué)生看圖識(shí)圖的能力。
教學(xué)難點(diǎn):滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
教學(xué)用具:計(jì)算機(jī)、投影機(jī)。
教學(xué)方法:談話法、分組討論。
教學(xué)過(guò)程:
1、閱讀習(xí)題13.3的第四題。
學(xué)生閱讀后,老師可以提問(wèn)學(xué)生,分別回答:
下圖是北京春季某一天的。
2、提出看圖說(shuō)圖的重要性。
隨著計(jì)算機(jī)的普及,很多軟件都可以做到輸入解析式后,立刻顯示出函數(shù)圖象來(lái),這樣看圖、識(shí)圖就變得相當(dāng)重要了.從上題就可以看出,圖形的表示更直觀,一目了然.也便于分析結(jié)論.數(shù)學(xué)不僅有數(shù)的一面,也有“形”的一面.美國(guó)著名數(shù)學(xué)家m克萊茵曾指出:“只要代數(shù)同幾何分道揚(yáng)鑣,它們的進(jìn)展就緩慢,它們的應(yīng)用就狹窄.但是當(dāng)這兩門科學(xué)結(jié)合成伴侶時(shí),它們就相互吸取新鮮的活力,從那以后,就以快速的步伐走向完善.”數(shù)學(xué)具有廣泛的應(yīng)用性,其它學(xué)科和日常生活都可以找到應(yīng)用數(shù)學(xué)解決問(wèn)題的例子.
3、為學(xué)生提供相對(duì)豐富的素材,體會(huì)以圖識(shí)性.
(讀題后,可組織學(xué)生分組討論.若學(xué)生還沒(méi)有學(xué)習(xí)相應(yīng)的化學(xué)知識(shí),老師可以解釋一下.一般學(xué)生都能理解.關(guān)鍵是學(xué)生都從圖中看出了什么.既有定量的分析,又能得出定性的規(guī)律).
從a、b的溶解度曲線分析,隨著溫度升高,a物質(zhì)的溶解度增大很快,而物質(zhì)b的溶解度變化不大,針對(duì)這兩種不同的特征,可以采用不同的方法.
如對(duì)未飽和的a溶液,可以采用降低溫度的使它飽和因?yàn)楦鶕?jù)a物質(zhì)的曲線,可以看出,降低溫度,物質(zhì)a的溶解度會(huì)迅速減小.
而對(duì)b物質(zhì)來(lái)講,它的溶解度受溫度的影響變化不大,要把不飽和溶液變?yōu)轱柡?,就需要用減少溶劑的辦法.把溶液加熱,使溶劑蒸發(fā)掉一些.溶劑逐漸減少到一定程度,不飽和的溶液就會(huì)變成飽和的了.
第12頁(yè)。
函數(shù)的圖象教案篇十九
目標(biāo):
2、根據(jù)圖象觀察、分析出二次函數(shù)的性質(zhì);
4、滲透由特殊到一般的辯證唯物主義觀點(diǎn);
5、滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)觀察能力和分析問(wèn)題的能力;
6、培養(yǎng)學(xué)生勇于探索創(chuàng)創(chuàng)新及實(shí)事求是的科學(xué)精神.
難點(diǎn):滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法。
用具:直尺、微機(jī)。
方法:談話、探究式。
過(guò)程:
1、列表、描點(diǎn)畫出函數(shù)與的圖象,引入新課。
解:列兩個(gè)表。
x
-4。
-3。
-2。
-1。
1
2
3
4
8
4.5。
2
0.5。
0.5。
2
4.5。
8
x
-2。
-1.5。
-1。
-0.5。
0.5。
1
1.5。
2
8
4.5。
2
0.5。
0.5。
2
4.5。
8
分別描點(diǎn)畫圖。
2、根據(jù)圖象發(fā)現(xiàn)問(wèn)題,由學(xué)生探索出新知識(shí).
提問(wèn):你能從圖象中發(fā)現(xiàn)拋物線是哪些性質(zhì)?這兩個(gè)函數(shù)圖象有何異同?
(1)這兩個(gè)函數(shù)的圖象都關(guān)于y軸對(duì)稱.這一點(diǎn)可以從剛才的列表中可以看出,時(shí)所對(duì)應(yīng)的y值分別相等,如等.這樣的兩個(gè)點(diǎn)關(guān)于y軸對(duì)稱.由這些點(diǎn)構(gòu)成的拋物線也關(guān)于y軸對(duì)稱.從解析式中也可以得出這個(gè)結(jié)論:互為相反數(shù)的兩個(gè)數(shù)的平方數(shù)相等,因此,這兩個(gè)函數(shù)的圖象都是關(guān)于y軸對(duì)稱的.
任意實(shí)數(shù).圖象開口向上.這也說(shuō)明數(shù)與形是數(shù)學(xué)中的兩條線索,它們是互相對(duì)應(yīng)的,反映了數(shù)形結(jié)合的思想.
(3)從圖中也可以看出拋物線不同于我們以前學(xué)過(guò)的正比例函數(shù)和一次函數(shù),這兩個(gè)函數(shù)的圖象都是直線,而拋物線是曲線,有一個(gè)拐彎,函數(shù)的圖象都在最低點(diǎn)拐了一個(gè)彎.這樣它們的性質(zhì)幾發(fā)生了變化.在y軸的左側(cè),從左向右呈下坡趨勢(shì),即y隨x的增大而減小;在y軸的右側(cè),從左向右,呈上坡趨勢(shì),即y隨x的增大而增大.這一變化趨勢(shì)也可以從列表中看出.
(4)這兩個(gè)圖象除以上相同之處外,還有不同的地方.如:離y軸近,離y軸遠(yuǎn).從列表中可以看出:如過(guò)點(diǎn)(2,2),而過(guò)點(diǎn)(2,8)也就是說(shuō),當(dāng)x=2時(shí),的圖象所對(duì)應(yīng)的點(diǎn)高于所對(duì)應(yīng)的點(diǎn).因此會(huì)有上述的結(jié)論.
與中的a都是正數(shù),當(dāng)a0時(shí),的圖象會(huì)是什么樣子呢?
我們看例2。
解:列表:
x
-3。
-2。
-1。
1
2
3
y
-9。
-4。
-1。
-1。
-4。
-9。
描點(diǎn)畫圖:
4、從函數(shù)圖象入手,再次總結(jié)二次函數(shù)的性質(zhì)。
(1)與剛才兩個(gè)圖象不同的是,的圖象開口向下.這是因?yàn)閤是任意實(shí)數(shù),,即,因此,開口會(huì)向下.圖象有最高點(diǎn)(0,0)。
(2)此圖象仍然是關(guān)于y軸對(duì)稱的。
(3)在y軸的左側(cè),y隨x的增大而增大;在y軸的右側(cè),y隨x的增大而減小。
5、得出一般的規(guī)律。
一般地,拋物線的對(duì)稱軸是y軸,頂點(diǎn)是原點(diǎn),當(dāng)a0時(shí),拋物線的開口向上,當(dāng)a0時(shí),拋物線的開口向下,a的絕對(duì)值越大,圖象越靠近y軸.
6、小結(jié):這一節(jié)課,從始至中都是結(jié)合圖象觀察、歸納總結(jié)出二次函數(shù)的性質(zhì),體現(xiàn)了數(shù)與形的結(jié)合.函數(shù)圖象是解決函數(shù)問(wèn)題的有利工具,希望大家能自覺(jué)地應(yīng)用.
7、作業(yè)?:習(xí)題13.6a組1、2b組1、2。
第12頁(yè)?。
函數(shù)的圖象教案篇二十
這一課主要的教學(xué)任務(wù)是探究反比例函數(shù)的比例系數(shù)k的幾何意義,研究與反比例函數(shù)有關(guān)的面積問(wèn)題。
課堂設(shè)計(jì)程序是:例題1研究從雙曲線上任意一點(diǎn)p作坐標(biāo)軸的垂線,圍成的長(zhǎng)方形pqor的面積與k的關(guān)系,進(jìn)而進(jìn)行題目的變化,得到從雙曲線上任意一點(diǎn)p作x、y軸的垂線三角形pqo的面積與k的關(guān)系,得到從雙曲線上任意一個(gè)動(dòng)點(diǎn)p作坐標(biāo)軸的垂線,圍成的長(zhǎng)方形s1、s2、s3的面積總有s1=s2=s3;例題2揭示了正比例函數(shù)的圖象與反比例函數(shù)的圖象兩個(gè)交點(diǎn)的關(guān)系(關(guān)于原點(diǎn)對(duì)稱),過(guò)兩個(gè)交點(diǎn)并且垂直于坐標(biāo)軸的直線圍成的矩形的面積(等于k的絕對(duì)值的4倍),進(jìn)而進(jìn)行題目的變化,得到幾種三角形的面積和平行四邊形的面積,由學(xué)生及時(shí)進(jìn)行相應(yīng)的練習(xí);例題3把一次函數(shù)與反比例函數(shù)相結(jié)合,進(jìn)行了比較簡(jiǎn)單的綜合應(yīng)用,讓學(xué)生進(jìn)行面積的和差組合,培養(yǎng)學(xué)生分析問(wèn)題解決問(wèn)題的能力。
在學(xué)生進(jìn)行到反比例函數(shù)的研究時(shí),數(shù)形結(jié)合的思想就能夠應(yīng)用自如了,學(xué)生的學(xué)習(xí)情況還是比較好的?;叵肫饋?lái),還是結(jié)合個(gè)方面的知識(shí)內(nèi)容,用待定系數(shù)法求函數(shù)的.解析式的題目類型學(xué)生的達(dá)成率不夠好,要加強(qiáng)這方面的訓(xùn)練。
函數(shù)的圖象教案篇一
-6。
-5。
-4。
-3。
1
2
3
4
5
6
-1。
-1.2。
-1.5。
-2。
6
3
2
1.5。
1.2。
1
1
1.2。
1.5。
2
-6。
-3。
-2。
-1.5。
-1.2。
1
一般地反比例函數(shù)(k是常數(shù),)的圖象由兩條曲線組成,叫做雙曲線.
3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)。
前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí).
顯示這兩個(gè)函數(shù)的圖象,提出問(wèn)題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)。
(1)的圖象在第一、三象限.可以擴(kuò)展到k0時(shí)的情形,即k0時(shí),雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限.
的討論與此類似.
抓住機(jī)會(huì),說(shuō)明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過(guò)程.
(2)函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減??;
從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì).從列表中也可以看出這樣的變化趨勢(shì).有理數(shù)除法說(shuō)明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越??;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k0時(shí),函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小.
同樣可以推出的圖象的性質(zhì).
(3)函數(shù)的圖象不經(jīng)過(guò)原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來(lái)越大時(shí),y的值越來(lái)越小,趨近于零;如果x取負(fù)值且越來(lái)越小時(shí),y的值也越來(lái)越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出圖象的性質(zhì).
4、小結(jié):
本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問(wèn)題,并能運(yùn)用已有的`數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中.
5、布置作業(yè)習(xí)題13.81-4。
教學(xué)設(shè)計(jì)示例2。
函數(shù)的圖象教案篇二
難點(diǎn):其一般的性質(zhì)分析,再由性質(zhì)得到一般圖像。
三.教學(xué)方法和用具。
方法:歸納總結(jié),數(shù)形結(jié)合,分析驗(yàn)證。
用具:幻燈片,幾何畫板,黑板。
四.教學(xué)過(guò)程。
(幻燈片見附件)。
1.設(shè)置問(wèn)題情境,找出所得函數(shù)的共同形式,由形式給出冪函數(shù)的定義(幻燈片1?幻燈片2)(板書)。
2.從形式上比較指數(shù)函數(shù)和冪函數(shù)的異同(幻燈片3)。
3.利用定義的形式,判斷所給函數(shù)是否是冪函數(shù),并得出判斷依據(jù)(幻燈片4)。
4.畫常見的三種冪函數(shù)的圖像,再讓學(xué)生用描點(diǎn)法畫另兩種,并用幾何畫板驗(yàn)證(幻燈片5)(幾何畫板)。
5.用幾何畫板畫出這五個(gè)冪函數(shù)的圖像,觀察圖像完成書中冪函數(shù)的函數(shù)性質(zhì)的表格,并分析得出更一般的結(jié)論(板書)(幾何畫板)。
函數(shù)的圖象教案篇三
目標(biāo):
1、培養(yǎng)學(xué)生看圖識(shí)圖的能力.
2、在識(shí)圖過(guò)程中,滲透數(shù)形結(jié)合的數(shù)學(xué)思想.
3、從不同知識(shí)的背景提取的對(duì)象,可以使學(xué)生認(rèn)識(shí)到數(shù)學(xué)的廣泛應(yīng)用性.
4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的探索精神。
重點(diǎn):培養(yǎng)學(xué)生看圖識(shí)圖的能力。
難點(diǎn):滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
用具:計(jì)算機(jī)、投影機(jī)。
方法:談話法、分組討論。
過(guò)程:
1、閱讀習(xí)題13.3的第四題。
學(xué)生閱讀后,老師可以提問(wèn)學(xué)生,分別回答:
下圖是北京春季某一天的。
2、提出看圖說(shuō)圖的重要性。
隨著計(jì)算機(jī)的普及,很多軟件都可以做到輸入解析式后,立刻顯示出函數(shù)圖象來(lái),這樣看圖、識(shí)圖就變得相當(dāng)重要了.從上題就可以看出,圖形的表示更直觀,一目了然.也便于分析結(jié)論.數(shù)學(xué)不僅有數(shù)的一面,也有“形”的一面.美國(guó)著名數(shù)學(xué)家m克萊茵曾指出:“只要代數(shù)同幾何分道揚(yáng)鑣,它們的進(jìn)展就緩慢,它們的應(yīng)用就狹窄.但是當(dāng)這兩門科學(xué)結(jié)合成伴侶時(shí),它們就相互吸取新鮮的活力,從那以后,就以快速的步伐走向完善.”數(shù)學(xué)具有廣泛的應(yīng)用性,其它學(xué)科和日常生活都可以找到應(yīng)用數(shù)學(xué)解決問(wèn)題的例子.
3、為學(xué)生提供相對(duì)豐富的素材,體會(huì)以圖識(shí)性.
(讀題后,可組織學(xué)生分組討論.若學(xué)生還沒(méi)有學(xué)習(xí)相應(yīng)的化學(xué)知識(shí),老師可以解釋一下.一般學(xué)生都能理解.關(guān)鍵是學(xué)生都從圖中看出了什么.既有定量的分析,又能得出定性的規(guī)律).
從a、b的溶解度曲線分析,隨著溫度升高,a物質(zhì)的溶解度增大很快,而物質(zhì)b的溶解度變化不大,針對(duì)這兩種不同的特征,可以采用不同的方法.
如對(duì)未飽和的a溶液,可以采用降低溫度的使它飽和因?yàn)楦鶕?jù)a物質(zhì)的曲線,可以看出,降低溫度,物質(zhì)a的溶解度會(huì)迅速減小.
而對(duì)b物質(zhì)來(lái)講,它的溶解度受溫度的影響變化不大,要把不飽和溶液變?yōu)轱柡?,就需要用減少溶劑的辦法.把溶液加熱,使溶劑蒸發(fā)掉一些.溶劑逐漸減少到一定程度,不飽和的溶液就會(huì)變成飽和的了.
第12頁(yè)?。
函數(shù)的圖象教案篇四
(1)其圖象叫拋物線;(2)拋物線y=x2的對(duì)稱軸是y軸,開口向上,頂點(diǎn)是原點(diǎn)。
補(bǔ)充例題。
下列函數(shù)中,哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a,b,c?
(1)y=2-3x2;(2)y=x(x-4);
(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。
作業(yè):p122中a組1,2,3。
四、教學(xué)注意問(wèn)題。
1.注意滲透局部和全體、有限和無(wú)限、近似和精確等矛盾對(duì)立統(tǒng)一的觀點(diǎn)。
2.注意培養(yǎng)學(xué)生觀察分析問(wèn)題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:
(1)y=x2的圖象的圖象有什么特點(diǎn)。(答:具有對(duì)稱性。)。
(2)如何判斷y=x2的圖象有上面所說(shuō)的特點(diǎn)?(答:由觀察圖象看出來(lái);或由列表求值得出來(lái);或由解析式y(tǒng)=x2看出來(lái)。)。
函數(shù)的圖象教案篇五
教學(xué)目標(biāo):
1、理解反比例函數(shù),并能從實(shí)際問(wèn)題中抽象出反比例關(guān)系的函數(shù)解析式;
2、會(huì)畫出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;
4、體會(huì)數(shù)學(xué)從實(shí)踐中來(lái)又到實(shí)際中去的研究、應(yīng)用過(guò)程;
5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的能力.
教學(xué)重點(diǎn):
結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
教學(xué)難點(diǎn):描點(diǎn)畫出反比例函數(shù)的圖象。
教學(xué)用具:直尺。
教學(xué)方法:小組合作、探究式。
教學(xué)過(guò)程:
1、從實(shí)際引出反比例函數(shù)的概念。
我們?cè)谛W(xué)學(xué)過(guò)反比例關(guān)系.例如:當(dāng)路程s一定時(shí),時(shí)間t與速度v成反比例。
即vt=s(s是常數(shù));
當(dāng)矩形面積s一定時(shí),長(zhǎng)a與寬b成反比例,即ab=s(s是常數(shù))。
從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過(guò)程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫成:
(s是常數(shù))。
(s是常數(shù))。
一般地,函數(shù)(k是常數(shù),)叫做反比例函數(shù).。
在現(xiàn)實(shí)生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進(jìn)行討論.下面的例子僅供。
2、列表、描點(diǎn)畫出反比例函數(shù)的圖象。
函數(shù)的圖象教案篇六
二、教學(xué)重點(diǎn)、難點(diǎn)。
三、教學(xué)過(guò)程?。
復(fù)習(xí)提問(wèn)。
1.一種豆子每千克售2元,寫出買豆子的總金額y(元)與所買豆子的數(shù)量x(千克)之間的函數(shù)關(guān)系.(答:y=2x.)。
2.在第一題的函數(shù)式中,誰(shuí)是自變量?誰(shuí)是函數(shù)?說(shuō)出自變量的取值范圍.(答:x是自變量,y是x的函數(shù),x可取所有非負(fù)實(shí)數(shù).)。
3.由函數(shù)y=2x,填出下表:
(答:下一行:0,1,2,3,4,5,6.)。
4.平面直角坐標(biāo)系是怎樣組成的?(答:在平面內(nèi)畫兩條互相垂直的數(shù)軸,組成平面直角坐標(biāo)系.)。
5.什么是點(diǎn)的橫坐標(biāo)、縱坐標(biāo)、坐標(biāo)?(答:平面直角坐標(biāo)系中一個(gè)點(diǎn)a在x軸上的坐標(biāo)叫橫坐標(biāo)a,點(diǎn)a在y軸上的坐標(biāo)叫縱坐標(biāo)b,把a(bǔ),b合起來(lái),且a在前、b在后:(a,b)就是點(diǎn)a的坐標(biāo).)。
6.點(diǎn)a的坐標(biāo)如(5,4),又可以稱作什么?(答:一對(duì)有序?qū)崝?shù).)。
7.坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的關(guān)系是什么?(答:一一對(duì)應(yīng)關(guān)系.)。
新課。
通過(guò)上述1~3個(gè)問(wèn)題的提問(wèn)及學(xué)生的回答,由y=2x及表格,按照函數(shù)定義,對(duì)于x的每一個(gè)值,y都有唯一的值和它對(duì)應(yīng).這就告訴我們,上面的表格本身也表示了y與x之間的函數(shù)關(guān)系.于是我們把這種通過(guò)列表表示函數(shù)的方法叫列表法.列表法的優(yōu)點(diǎn):容易由自變量的值求出對(duì)應(yīng)的函數(shù)的值.列表法的缺點(diǎn):不能把一個(gè)函數(shù)在自變量取值范圍內(nèi)的所有值都列出來(lái),所以有局部性;或所求的函數(shù)值是近似值.
2.通過(guò)上述復(fù)習(xí)提問(wèn)第3~7題及學(xué)生的回答,我們把第3題的表中的x,y值對(duì)應(yīng)地寫出來(lái),就得出了一列有序?qū)崝?shù)對(duì):(0,0),(0.5,1),(1,2),(1.5,3),….這里強(qiáng)調(diào)學(xué)生要進(jìn)一步明確“有序”的意義,(1.5,3),(3,1.5)是不相同的有序?qū)崝?shù)對(duì).再聯(lián)系到平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的一一對(duì)應(yīng)關(guān)系,于是我們借助平面直角坐標(biāo)系,就可以把這些有序?qū)崝?shù)對(duì)轉(zhuǎn)化為坐標(biāo)平面內(nèi)的點(diǎn).這樣就可以用平面內(nèi)的圖形來(lái)表示函數(shù)關(guān)系.
3.從最簡(jiǎn)單的函數(shù)y=x入手來(lái)分析及畫出其圖象.
(1)讓學(xué)生完成x與y的對(duì)應(yīng)值表.
(2)在有坐標(biāo)格的小黑板上,把表中給出的7個(gè)有序?qū)崝?shù)對(duì)作為點(diǎn)的坐標(biāo),師生一道描出這7個(gè)點(diǎn).
(3)分析函數(shù)y=x的特點(diǎn):自變量與函數(shù)的值相等.它的任意一對(duì)對(duì)應(yīng)值都可以表示成(m,m)的形式(m可取全體實(shí)數(shù)).借助坐標(biāo)平面可知,表示(m,m)的點(diǎn)就是到x軸的距離與到y(tǒng)軸的距離相等的點(diǎn).我們把x軸與y軸所劃分的坐標(biāo)平面的四個(gè)角叫象限角,依次有第一象限角,第二象限角,第三象限角,第四象限角.由平面幾何知識(shí)可知,到一個(gè)角的兩邊的距離相等的點(diǎn),它的軌跡是這個(gè)角的平分線.換一句話說(shuō),到這個(gè)角兩邊距離相等的點(diǎn),都在這個(gè)角的平分線上;反之,在這個(gè)角的平分線上的所有的點(diǎn),到這個(gè)角的兩邊距離都相等.于是函數(shù)y=x的整個(gè)圖象就可以畫出了.它是第一象限角和第三象限角的兩個(gè)角的平分線,是一條直線.
4.對(duì)于函數(shù)圖象要辯證地雙向分析:圖象上每一個(gè)點(diǎn)的坐標(biāo),都是這個(gè)函數(shù)的一對(duì)對(duì)應(yīng)值;反之,每個(gè)坐標(biāo)是這個(gè)函數(shù)的一對(duì)有序的對(duì)應(yīng)值的點(diǎn),都在這個(gè)函數(shù)的圖象上.
5.函數(shù)的表示法——圖象法.我們用圖象來(lái)表示一個(gè)函數(shù)的方法,叫圖象法.函數(shù)的圖象法優(yōu)點(diǎn):形象、直觀.缺點(diǎn):求得的函數(shù)值是近似的.
小結(jié)。
(1)根據(jù)函數(shù)的解析式列出函數(shù)對(duì)應(yīng)值表.
(2)用這些對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在坐標(biāo)平面內(nèi)描點(diǎn).
(3)把這些點(diǎn)用平滑曲線連結(jié)起來(lái),可得函數(shù)圖象.
2.函數(shù)的三種表示法:(1)解析法,(2)列表法,(3)圖象法.
練習(xí);選用課本練習(xí)(只要求列表、描點(diǎn).)。
補(bǔ)充例題。
1.解答課本本章題圖中的兩個(gè)問(wèn)題.
2.畫出函數(shù)y=3x的圖象.(只要求列表、描點(diǎn).)。
作業(yè)?:選用課本習(xí)題(只填表、描點(diǎn),不要求連線.)。
四、教學(xué)注意問(wèn)題。
1.注意雙向思維的滲透與訓(xùn)練.比如,由函數(shù)的關(guān)系式可得函數(shù)圖象;反之,由函數(shù)的圖象也可表示函數(shù)關(guān)系,等等.
2.注意滲透轉(zhuǎn)化思想方法.比如,把有序?qū)崝?shù)對(duì)轉(zhuǎn)化為坐標(biāo)平面內(nèi)的點(diǎn)等等.
3.注意精微,要善于區(qū)分鄰近概念,比如“實(shí)數(shù)對(duì)”與“有序?qū)崝?shù)對(duì)”雖兩字之差,但意義不同.
函數(shù)的圖象教案篇七
一、教學(xué)目的。
2.使學(xué)生了解函數(shù)的列表表示法.。
4.使學(xué)生會(huì)用描點(diǎn)法畫出簡(jiǎn)單函數(shù)的圖象.。
二、教學(xué)重點(diǎn)、難點(diǎn)。
重點(diǎn):介紹函數(shù)圖象的初步知識(shí).。
難點(diǎn):對(duì)于函數(shù)圖象的認(rèn)識(shí).。
三、教學(xué)過(guò)程。
復(fù)習(xí)提問(wèn)。
1.一種豆子每千克售2元,寫出買豆子的總金額y(元)與所買豆子的數(shù)量x(千克)之間的函數(shù)關(guān)系.(答:y=2x.)。
2.在第一題的函數(shù)式中,誰(shuí)是自變量?誰(shuí)是函數(shù)?說(shuō)出自變量的取值范圍.(答:x是自變量,y是x的函數(shù),x可取所有非負(fù)實(shí)數(shù).)。
3.由函數(shù)y=2x,填出下表:
(答:下一行:0,1,2,3,4,5,6.)。
4.平面直角坐標(biāo)系是怎樣組成的?(答:在平面內(nèi)畫兩條互相垂直的數(shù)軸,組成平面直角坐標(biāo)系.)。
5.什么是點(diǎn)的橫坐標(biāo)、縱坐標(biāo)、坐標(biāo)?(答:平面直角坐標(biāo)系中一個(gè)點(diǎn)a在x軸上的坐標(biāo)叫橫坐標(biāo)a,點(diǎn)a在y軸上的坐標(biāo)叫縱坐標(biāo)b,把a(bǔ),b合起來(lái),且a在前、b在后:(a,b)就是點(diǎn)a的坐標(biāo).)。
6.點(diǎn)a的坐標(biāo)如(5,4),又可以稱作什么?(答:一對(duì)有序?qū)崝?shù).)。
7.坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的關(guān)系是什么?(答:一一對(duì)應(yīng)關(guān)系.)。
新課。
3.從最簡(jiǎn)單的函數(shù)y=x入手來(lái)分析及畫出其圖象.。
(1)讓學(xué)生完成x與y的對(duì)應(yīng)值表.。
小結(jié)。
(1)根據(jù)函數(shù)的解析式列出函數(shù)對(duì)應(yīng)值表.。
(2)用這些對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在坐標(biāo)平面內(nèi)描點(diǎn).。
(3)把這些點(diǎn)用平滑曲線連結(jié)起來(lái),可得函數(shù)圖象.。
2.函數(shù)的三種表示法:(1)解析法,(2)列表法,(3)圖象法.。
練習(xí);選用課本練習(xí)(只要求列表、描點(diǎn).)。
補(bǔ)充例題。
1.解答課本本章題圖中的兩個(gè)問(wèn)題.。
2.畫出函數(shù)y=3x的圖象.(只要求列表、描點(diǎn).)。
作業(yè):選用課本習(xí)題(只填表、描點(diǎn),不要求連線.)。
四、教學(xué)注意問(wèn)題。
2.注意滲透轉(zhuǎn)化思想方法.比如,把有序?qū)崝?shù)對(duì)轉(zhuǎn)化為坐標(biāo)平面內(nèi)的點(diǎn)等等.。
函數(shù)的圖象教案篇八
按照描點(diǎn)法分三步畫圖:
(2)描點(diǎn)按照表中所列出的函數(shù)對(duì)應(yīng)值,在平面直角坐標(biāo)系中描出相應(yīng)的7個(gè)點(diǎn);
(3)邊線用平滑曲線順次連接各點(diǎn),即得所求y=x2的圖象。
注意兩點(diǎn):
(1)由于我們只描出了7個(gè)點(diǎn),但自礦業(yè)量取值范圍是實(shí)數(shù),故我們只畫出了實(shí)際圖象的一部分,即畫出了在原點(diǎn)附近、自變量在-3到3這個(gè)區(qū)間的一部分。而圖象在x3或x-3的`區(qū)間是無(wú)限延伸的。
(2)所畫的圖象是近似的。
3.在原點(diǎn)附近較精確地研究二次函數(shù)y=x2的圖象形狀到底如何?――我們c1與1之間每隔0.2的間距取x值表和圖13-14。按課本p118內(nèi)容講解。
4.引入拋物線的概念。
關(guān)于拋物線的頂點(diǎn)應(yīng)從兩方面分析:一是從圖象上看,y=x2的圖象的頂點(diǎn)是最低點(diǎn);一是從解析式y(tǒng)=x2看,當(dāng)x=0時(shí),y=x2取得最小值0,故拋物線y=x2的頂點(diǎn)是(0,0)。
小結(jié)。
(1)函數(shù)解析式關(guān)于自變量是整式;(2)函數(shù)自變量的最高次數(shù)是2。
函數(shù)的圖象教案篇九
1、本節(jié)課講述內(nèi)容為北師大版教材九年級(jí)下冊(cè)第五章《反比例函數(shù)》的第二節(jié),也這一章的重點(diǎn)。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎(chǔ)上,進(jìn)一步熟悉其圖象和性質(zhì)的過(guò)程。
2、對(duì)教材的分析。
(1)教學(xué)目標(biāo):進(jìn)一步熟悉作函數(shù)圖象的主要步驟,會(huì)作反比例函數(shù)的圖象;體會(huì)函數(shù)三種方式的相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整和;逐步提高從函數(shù)圖象中獲取知識(shí)的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
(2)重點(diǎn):會(huì)作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
(3)難點(diǎn):探索并掌握反比例函數(shù)的主要性質(zhì)。
1、提問(wèn):
(1)=4/x是什么函數(shù)?你會(huì)作反比例函數(shù)的圖象嗎?
(2)作圖的步驟是怎樣的。
(3)填寫電腦上的表格,開始在坐標(biāo)紙上描點(diǎn)連線。
2、按照上述方法作=—4/x的圖象。
3、對(duì)照你所作的兩個(gè)函數(shù)圖象,找一下它們的相同點(diǎn)和不同點(diǎn)。
1、讓學(xué)生觀察函數(shù)=/x的圖象,按下動(dòng)畫按鈕,在運(yùn)動(dòng)中觀察值的變化與函數(shù)圖象變化之間的關(guān)系,并與同學(xué)充分討論有何規(guī)律。
2、演示反比例函數(shù)中心對(duì)稱的性質(zhì)以及軸對(duì)稱性質(zhì),顯示反比例函數(shù)的兩條對(duì)稱軸。
3、讓學(xué)生觀察函數(shù)=/x的圖象,觀察過(guò)反比例函數(shù)上任意一點(diǎn)作x軸和軸的垂線,觀察其圍成矩形的面積變化情況。
(1)拖動(dòng),使變化,觀察不斷變化過(guò)程中,矩形面積的變化情況,討論得出結(jié)論。
(2)拖動(dòng)函數(shù)上的點(diǎn),觀察矩形面積的變化情況,討論得出結(jié)論。
1、給出兩個(gè)反比例函數(shù)的`圖象,判斷哪一個(gè)是=2/x和=—2/x的圖象。
課本137頁(yè)第1題、141頁(yè)第2題。
函數(shù)的圖象教案篇十
-6。
-5。
-4。
-3。
1
2
3
4
5
6
-1。
-1.2。
-1.5。
-2。
6
3
2
1.5。
1.2。
1
1
1.2。
1.5。
2
-6。
-3。
-2。
-1.5。
-1.2。
1
一般地反比例函數(shù)(k是常數(shù),)的圖象由兩條曲線組成,叫做雙曲線.
3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)。
前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí).
顯示這兩個(gè)函數(shù)的圖象,提出問(wèn)題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)。
(1)的圖象在第一、三象限.可以擴(kuò)展到k0時(shí)的情形,即k0時(shí),雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限.
的討論與此類似.
抓住機(jī)會(huì),說(shuō)明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過(guò)程.
(2)函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減?。?BR> 從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì).從列表中也可以看出這樣的變化趨勢(shì).有理數(shù)除法說(shuō)明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k0時(shí),函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小.
同樣可以推出的圖象的性質(zhì).
(3)函數(shù)的圖象不經(jīng)過(guò)原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來(lái)越大時(shí),y的值越來(lái)越小,趨近于零;如果x取負(fù)值且越來(lái)越小時(shí),y的值也越來(lái)越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出圖象的性質(zhì).
4、小結(jié):
本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問(wèn)題,并能運(yùn)用已有的`數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中.
5、布置作業(yè)??????習(xí)題13.8??1-4。
函數(shù)的圖象教案篇十一
教學(xué)目標(biāo):。
1.能夠利用描點(diǎn)法作出函數(shù)y=x2的圖象,能根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù)y=x2的性質(zhì).
2.猜想并能作出y=-x2的圖象,能比較它與y=x2的圖象的異同.
3.經(jīng)歷探索二次函數(shù)y=x2的圖象的作法和性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).
4.在利用圖象討論二次函數(shù)的性質(zhì)時(shí),讓學(xué)生盡可能多地合作交流,以便使學(xué)生能夠從多個(gè)角度看問(wèn)題,進(jìn)而比較準(zhǔn)確地理解二次函數(shù)的性質(zhì).
教學(xué)重點(diǎn):
1.利用描點(diǎn)法作出函數(shù)y=x2的圖象,根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù)y=x2的性質(zhì).
2.能夠作出二次函數(shù)y=-x2的圖象,并能比較它與y=x2的圖象的異同.
教學(xué)難點(diǎn):
經(jīng)歷探索二次函數(shù)y=x2的圖象的作法和性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).并把這種經(jīng)驗(yàn)運(yùn)用于研究二次函數(shù)y=-x2的圖象與性質(zhì)方面,實(shí)現(xiàn)探索經(jīng)驗(yàn)運(yùn)用的思維過(guò)程.
教學(xué)過(guò)程:
一、學(xué)前準(zhǔn)備。
我們?cè)趯W(xué)習(xí)了正比例函數(shù),一次函數(shù)與反比例函數(shù)的定義后,研究了它們各自的圖象特征.知道正比例函數(shù)的圖象是_______________,一般的一次函數(shù)的圖象是____________,反比例函數(shù)的圖象是_________________.上節(jié)課我們學(xué)習(xí)了二次函數(shù)的一般形式為_________________________,那么它的圖象是否也為直線或雙曲線呢?本節(jié)課我們將一起來(lái)研究有關(guān)問(wèn)題.
二、探究活動(dòng)。
(一)、作函數(shù)y=x2的圖象.
回憶畫函數(shù)圖象的一般步驟嗎?(列表,描點(diǎn),連線.)。
下面就請(qǐng)大家按上面的步驟作出y=x2的圖象.
(1)列表:
x-3-2-10123。
y9410149。
(2)在直角坐標(biāo)系中描點(diǎn).
(3)用光滑的,曲線連接各點(diǎn),便得到函數(shù)y=x2的圖象.
(二)、議一議。
對(duì)于二次函數(shù)y=x2的.圖象,(1)你能描述圖象的形狀嗎?與同伴進(jìn)行交流.
(2)圖象與x軸有交點(diǎn)嗎?如果有,交點(diǎn)坐標(biāo)是什么?
(3)當(dāng)x0時(shí),隨著x值的增大,y的值如何變化?當(dāng)x0時(shí)呢?
(4)當(dāng)x取什么值時(shí),y的值最小?最小值是什么?你是如何知道的?
(5)圖象是軸對(duì)稱圖形嗎?如果是,它的對(duì)稱軸是什么?請(qǐng)你找出幾對(duì)對(duì)稱點(diǎn),并交流.
下面我們系統(tǒng)地總結(jié):
二次函數(shù)y=-x2的圖象是什么形狀?先想一想,然后作出它的圖象.它與二次函數(shù)y=x2的圖象有什么關(guān)系?與同伴進(jìn)行交流.
大家討論之后系統(tǒng)地總結(jié)出y=x2的圖象的所有性質(zhì).
當(dāng)堂練習(xí):按照畫圖象的步驟作出函數(shù)y=-x2的圖象.
y=-x2的圖象如右圖,并讓學(xué)生總結(jié):
形狀是___________,只是它的開口方向____________,它。
與y=x2的圖象形狀________,方向________,這兩個(gè)圖形可。
以看成是__________對(duì)稱.
并嘗試比較y=x2與y=-x2的圖象,比較異同點(diǎn).
不同點(diǎn):
相同點(diǎn):
聯(lián)系:
(四)課堂練習(xí):隨堂練習(xí)(p47)。
三.學(xué)習(xí)體會(huì)。
1.本節(jié)課你有哪些收獲?你還有哪些疑問(wèn)?
2.你認(rèn)為老師上課過(guò)程中還有哪些須改進(jìn)的地方?
3.預(yù)習(xí)時(shí)的疑問(wèn)解決了嗎?
四.自我測(cè)試。
1.在同一直角坐標(biāo)系中畫出函數(shù)y=x2與y=-x2的圖象.
2.下列函數(shù)中是二次函數(shù)的是()。
a.y=2+5x2b.y=c.y=3x(x+5)2d.y=。
3.分別說(shuō)出拋物線y=4x2與y=-x2的開口方向,對(duì)稱軸與頂點(diǎn)坐標(biāo)。
4、已知函數(shù)y=mxm2+m.
(1)m取何值時(shí),它的圖象開口向上.
(2)當(dāng)x取何值時(shí),y隨x的增大而增大.
(3)當(dāng)x取何值時(shí),y隨x的增大而減小.
(4)x取何值時(shí),函數(shù)有最小值.
函數(shù)的圖象教案篇十二
1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象。
(2)能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題。
2.通過(guò)對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過(guò)對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。
3.通過(guò)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
(1)對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解。對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ)。
(2)本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)。由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。
(3)本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線展開。而通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。
(1)對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問(wèn)題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
(2)在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。
函數(shù)的圖象教案篇十三
1.能從二倍角的正弦、余弦、正切公式導(dǎo)出半角公式,了解它們的內(nèi)在聯(lián)系;揭示知識(shí)背景,引發(fā)學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識(shí).并培養(yǎng)學(xué)生綜合分析能力.
2.掌握公式及其推導(dǎo)過(guò)程,會(huì)用公式進(jìn)行化簡(jiǎn)、求值和證明。
3.通過(guò)公式推導(dǎo),掌握半角與倍角之間及半角公式與倍角公式之間的聯(lián)系,培養(yǎng)邏輯推理能力。
二、過(guò)程與方法。
2.通過(guò)例題講解,總結(jié)方法.通過(guò)做練習(xí),鞏固所學(xué)知識(shí).
三、情感、態(tài)度與價(jià)值觀。
1.通過(guò)公式的推導(dǎo),了解半角公式和倍角公式之間的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能力和辯證唯物主義觀點(diǎn)。
2.培養(yǎng)用聯(lián)系的觀點(diǎn)看問(wèn)題的觀點(diǎn)。
【教學(xué)重點(diǎn)與難點(diǎn)】:
重點(diǎn):半角公式的推導(dǎo)與應(yīng)用(求值、化簡(jiǎn)、證明)。
難點(diǎn):半角公式與倍角公式之間的內(nèi)在聯(lián)系,以及運(yùn)用公式時(shí)正負(fù)號(hào)的選取。
【學(xué)法與教學(xué)用具】:
1.學(xué)法:
(1)自主+探究性學(xué)習(xí):讓學(xué)生自己由和角公式導(dǎo)出倍角公式,領(lǐng)會(huì)從一般化歸為特殊的數(shù)學(xué)思想,體會(huì)公式所蘊(yùn)涵的和諧美,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣。
(2)反饋練習(xí)法:以練習(xí)來(lái)檢驗(yàn)知識(shí)的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距.
2.教學(xué)方法:觀察、歸納、啟發(fā)、探究相結(jié)合的教學(xué)方法。
引導(dǎo)學(xué)生復(fù)習(xí)二倍角公式,按課本知識(shí)結(jié)構(gòu)設(shè)置提問(wèn)引導(dǎo)學(xué)生動(dòng)手推導(dǎo)出半角公式,課堂上在老師引導(dǎo)下,以學(xué)生為主體,分析公式的結(jié)構(gòu)特征,會(huì)根據(jù)公式特點(diǎn)得出公式的應(yīng)用,用公式來(lái)進(jìn)行化簡(jiǎn)證明和求值,老師為學(xué)生創(chuàng)設(shè)問(wèn)題情景,鼓勵(lì)學(xué)生積極探究。
3.教學(xué)用具:多媒體、實(shí)物投影儀.
【授課類型】:新授課。
【課時(shí)安排】:1課時(shí)。
【教學(xué)思路】:
一、創(chuàng)設(shè)情景,揭示課題。
二、研探新知。
四、鞏固深化,反饋矯正。
五、歸納整理,整體認(rèn)識(shí)。
1.鞏固倍角公式,會(huì)推導(dǎo)半角公式、和差化積及積化和差公式。
2.熟悉"倍角"與"二次"的關(guān)系(升角--降次,降角--升次).
3.特別注意公式的三角表達(dá)形式,且要善于變形:
4.半角公式左邊是平方形式,只要知道角終邊所在象限,就可以開平方;公式的"本質(zhì)"是用?角的余弦表示角的正弦、余弦、正切.
5.注意公式的結(jié)構(gòu),尤其是符號(hào).
六、承上啟下,留下懸念。
七、板書設(shè)計(jì)(略)。
八、課后記:略。
函數(shù)的圖象教案篇十四
反比例函數(shù)圖像的性質(zhì)是反比例函數(shù)的教學(xué)重點(diǎn),學(xué)生需要在理解的基礎(chǔ)上熟練運(yùn)用。為此應(yīng)加強(qiáng)反比例函數(shù)圖像的直觀效應(yīng),讓學(xué)生在圖像上凸出反比例函數(shù)所具有的性質(zhì),這一個(gè)過(guò)程是在學(xué)生積極探索與討論交流達(dá)成的共識(shí)。我認(rèn)為這個(gè)經(jīng)驗(yàn)比較重要,雖然在這個(gè)過(guò)程耽誤了很多時(shí)間,但畢竟是學(xué)生收獲的結(jié)果。在引導(dǎo)例題的同時(shí),試著讓學(xué)生利用圖象解決問(wèn)題,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,并提示學(xué)生注意自變量在實(shí)際情境中的取值范圍問(wèn)題。而后,給學(xué)生幾分鐘的'思考時(shí)間,讓他們通過(guò)平時(shí)對(duì)生活的細(xì)心觀察,生活中有關(guān)反比例函數(shù)的有價(jià)值的問(wèn)題,說(shuō)出來(lái)與全班共同分享。這一環(huán)節(jié)的設(shè)置,不僅體現(xiàn)新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學(xué)生的主體性,讓他們也做了一回小老師,展示他們的個(gè)性,這樣有益于他們健康的人格的成長(zhǎng)。最后在總結(jié)中讓學(xué)生體會(huì)到利用反比例函數(shù)解決實(shí)際問(wèn)題,關(guān)鍵在于建立數(shù)學(xué)函數(shù)模型,并布置了作業(yè)。
不足與改進(jìn):在整個(gè)課堂教學(xué)過(guò)程中,教師圍繞主題、圍繞學(xué)生提問(wèn)的多,給學(xué)生提問(wèn)的時(shí)間和機(jī)會(huì)很少.我的改進(jìn)設(shè)想是:留給時(shí)間讓學(xué)生提出問(wèn)題,師生共同討論、交流,讓學(xué)生的學(xué)習(xí)更富有主動(dòng)性;在活動(dòng)一畫出反比例函數(shù)的圖象后,沒(méi)有讓學(xué)生趁熱打鐵“看圖說(shuō)話”,()說(shuō)出具體的圖象的特征,為活動(dòng)二猜想作很好的鋪墊.我的改進(jìn)設(shè)想是:在活動(dòng)一畫出反比例函數(shù)的圖象后,追加這樣一個(gè)問(wèn)題:“請(qǐng)同學(xué)們仔細(xì)觀察圖象并進(jìn)行討論,這個(gè)反比例函數(shù)的圖象區(qū)別于一次函數(shù)的圖象有那些不同的特征呢?”留給時(shí)間讓學(xué)生討論、交流,這樣改進(jìn)之后,必將能更大的激發(fā)學(xué)生的探索熱情,更能體現(xiàn)學(xué)生的創(chuàng)新能力,同時(shí)也為進(jìn)一步學(xué)習(xí)反比例函數(shù)的圖象的特征埋下伏筆,能增強(qiáng)學(xué)生學(xué)習(xí)的信心。
函數(shù)的圖象教案篇十五
1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。
3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問(wèn)題。
過(guò)程與方法。
1、通過(guò)函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
2、經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
情感與價(jià)值觀。
1、經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。
2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。
1、掌握函數(shù)概念。
2、判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。
3、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。
1、理解函數(shù)的概念。
2、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。
一、創(chuàng)設(shè)問(wèn)題情境,導(dǎo)入新課。
『師』:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?
函數(shù)的圖象教案篇十六
即:一角的正弦大于另一個(gè)角的余弦。
2、若,則,。
3、的圖象的對(duì)稱中心為(),對(duì)稱軸方程為。
4、的圖象的對(duì)稱中心為(),對(duì)稱軸方程為。
5、及的圖象的對(duì)稱中心為()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
萬(wàn)能公式:,,(其中)。
7、輔助角公式:,其中。輔助角的位置由坐標(biāo)決定,即角的終邊過(guò)點(diǎn)。
8、時(shí),。
9、。
其中為內(nèi)切圓半徑,為外接圓半徑。
特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。
10、的圖象的圖象(時(shí),向左平移個(gè)單位,時(shí),向右平移個(gè)單位)。
11、解題時(shí),條件中若有出現(xiàn),則可設(shè),。
則。
12、等腰三角形中,若且,則。
13、若等邊三角形的邊長(zhǎng)為,則其中線長(zhǎng)為,面積為。
14、;。
函數(shù)的圖象教案篇十七
1、使學(xué)生掌握的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域。
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì)。
(3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫出形如x的圖象。
2、x通過(guò)對(duì)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。
3、通過(guò)對(duì)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問(wèn)題,解決問(wèn)題。
(1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。
(2)x本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對(duì)底數(shù)x在x和x時(shí),函數(shù)值變化情況的區(qū)分。
(3)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問(wèn)題,所以從的研究過(guò)程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。
(1)關(guān)于的定義按照課本上說(shuō)法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點(diǎn)差異,諸如x,x等都不是。
(2)對(duì)底數(shù)x的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說(shuō)明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來(lái)。
關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。
1。x理解的定義,初步掌握的圖象,性質(zhì)及其簡(jiǎn)單應(yīng)用。
2。x通過(guò)的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。
3。x通過(guò)對(duì)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
重點(diǎn)是理解的定義,把握?qǐng)D象和性質(zhì)。
難點(diǎn)是認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí)。
投影儀
啟發(fā)討論研究式
一、x引入新課
我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來(lái)研究一類新的常見函數(shù)。
1、6、(板書)
這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問(wèn)題:
由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。
問(wèn)題2:有一根1米長(zhǎng)的繩子,第一次剪去繩長(zhǎng)一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長(zhǎng)度為x米,試寫出x與x之間的函數(shù)關(guān)系。
由學(xué)生回答:x。
在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
x的概念(板書)
1、定義:形如x的函數(shù)稱為。(板書)
教師在給出定義之后再對(duì)定義作幾點(diǎn)說(shuō)明。
2、幾點(diǎn)說(shuō)明x(板書)
(1)x關(guān)于對(duì)x的規(guī)定:
教師首先提出問(wèn)題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問(wèn)題分解為若x會(huì)有什么問(wèn)題?如x,此時(shí)x,x等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
若x對(duì)于x都無(wú)意義,若x則x無(wú)論x取何值,它總是1,對(duì)它沒(méi)有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
(2)關(guān)于的定義域x(板書)
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無(wú)理數(shù)時(shí),x也是一個(gè)確定的實(shí)數(shù),對(duì)于無(wú)理指數(shù)冪,學(xué)過(guò)的有理指數(shù)冪的"性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)閤。擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值。
(3)關(guān)于是否是的判斷(板書)
剛才分別認(rèn)識(shí)了中底數(shù),指數(shù)的要求,下面我們從整體的角度來(lái)認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是,請(qǐng)看下面函數(shù)是否是。
(4)x,x
(5)x。
學(xué)生回答并說(shuō)明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問(wèn)題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。
3、歸納性質(zhì)
作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。
函數(shù)
1、定義域x:
2、值域:
3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)
4、截距:在x軸上沒(méi)有,在x軸上為1。
對(duì)于性質(zhì)1和2可以兩條合在一起說(shuō),并追問(wèn)起什么作用。(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明。對(duì)于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)
在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱性,故x的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少。
此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(shì)(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
二、圖象與性質(zhì)(板書)
1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。
2、草圖:
當(dāng)畫完第一個(gè)圖象之后,可問(wèn)學(xué)生是否需要再畫第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個(gè),不妨取x為例。
此時(shí)畫它的圖象的方法應(yīng)讓學(xué)生來(lái)選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡(jiǎn)單。即x=x與x圖象之間關(guān)于x軸對(duì)稱,而此時(shí)x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對(duì)稱,教師借助計(jì)算機(jī)畫圖,在同一坐標(biāo)系下得到x的圖象。
最后問(wèn)學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無(wú)需再畫,則追問(wèn)其原因并要求其說(shuō)出性質(zhì),若認(rèn)為還需畫,則教師可利用計(jì)算機(jī)再畫出如x的圖象一起比較,再找共性)
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個(gè)表,如下:
以上內(nèi)容學(xué)生說(shuō)不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
填好后,讓學(xué)生仿照此例再列一個(gè)x的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來(lái)分類,整理函數(shù)的性質(zhì)。
3、性質(zhì)。
(1)無(wú)論x為何值,x都有定義域?yàn)閤,值域?yàn)閤,都過(guò)點(diǎn)x。
(2)x時(shí),x在定義域內(nèi)為增函數(shù),x時(shí),x為減函數(shù)。
(3)x時(shí),x,x x時(shí),x。
總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
三、簡(jiǎn)單應(yīng)用x (板書)
1、利用單調(diào)性比大小。x(板書)
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡(jiǎn)單的問(wèn)題。首先我們來(lái)看下面的問(wèn)題。
例1、x比較下列各組數(shù)的大小
(1)x與x;x(2)x與x;
(3)x與1x。(板書)
首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問(wèn)根據(jù)這個(gè)特點(diǎn),用什么方法來(lái)比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過(guò)程。
解:x在x上是增函數(shù),且
教師最后再?gòu)?qiáng)調(diào)過(guò)程必須寫清三句話:
(1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
(2)x自變量的大小比較。
(3)x函數(shù)值的大小比較。
后兩個(gè)題的過(guò)程略。要求學(xué)生仿照第(1)題敘述過(guò)程。
例2。比較下列各組數(shù)的大小
(1)x與x;x(2)x與x ;
(3)x與x。(板書)
先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來(lái)說(shuō)x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問(wèn)題,再用例1的方法解決,對(duì)(2)來(lái)說(shuō)x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來(lái)起橋梁作用)
最后由學(xué)生說(shuō)出x1,1。
解決后由教師小結(jié)比較大小的方法
(1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)
(2)x搭橋比較法:x用特殊的數(shù)1或0。
四、鞏固練習(xí)
練習(xí):比較下列各組數(shù)的大小(板書)
(1)x與x x(2)x與x;
(3)x與x;x(4)x與x。解答過(guò)程略
五、小結(jié)
1、的概念
2、的圖象和性質(zhì)
3、簡(jiǎn)單應(yīng)用
六、板書設(shè)計(jì)
函數(shù)的圖象教案篇十八
教學(xué)目標(biāo):
1、培養(yǎng)學(xué)生看圖識(shí)圖的能力.
2、在識(shí)圖過(guò)程中,滲透數(shù)形結(jié)合的數(shù)學(xué)思想.
3、從不同知識(shí)的背景提取的對(duì)象,可以使學(xué)生認(rèn)識(shí)到數(shù)學(xué)的廣泛應(yīng)用性.
4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的探索精神。
教學(xué)重點(diǎn):培養(yǎng)學(xué)生看圖識(shí)圖的能力。
教學(xué)難點(diǎn):滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
教學(xué)用具:計(jì)算機(jī)、投影機(jī)。
教學(xué)方法:談話法、分組討論。
教學(xué)過(guò)程:
1、閱讀習(xí)題13.3的第四題。
學(xué)生閱讀后,老師可以提問(wèn)學(xué)生,分別回答:
下圖是北京春季某一天的。
2、提出看圖說(shuō)圖的重要性。
隨著計(jì)算機(jī)的普及,很多軟件都可以做到輸入解析式后,立刻顯示出函數(shù)圖象來(lái),這樣看圖、識(shí)圖就變得相當(dāng)重要了.從上題就可以看出,圖形的表示更直觀,一目了然.也便于分析結(jié)論.數(shù)學(xué)不僅有數(shù)的一面,也有“形”的一面.美國(guó)著名數(shù)學(xué)家m克萊茵曾指出:“只要代數(shù)同幾何分道揚(yáng)鑣,它們的進(jìn)展就緩慢,它們的應(yīng)用就狹窄.但是當(dāng)這兩門科學(xué)結(jié)合成伴侶時(shí),它們就相互吸取新鮮的活力,從那以后,就以快速的步伐走向完善.”數(shù)學(xué)具有廣泛的應(yīng)用性,其它學(xué)科和日常生活都可以找到應(yīng)用數(shù)學(xué)解決問(wèn)題的例子.
3、為學(xué)生提供相對(duì)豐富的素材,體會(huì)以圖識(shí)性.
(讀題后,可組織學(xué)生分組討論.若學(xué)生還沒(méi)有學(xué)習(xí)相應(yīng)的化學(xué)知識(shí),老師可以解釋一下.一般學(xué)生都能理解.關(guān)鍵是學(xué)生都從圖中看出了什么.既有定量的分析,又能得出定性的規(guī)律).
從a、b的溶解度曲線分析,隨著溫度升高,a物質(zhì)的溶解度增大很快,而物質(zhì)b的溶解度變化不大,針對(duì)這兩種不同的特征,可以采用不同的方法.
如對(duì)未飽和的a溶液,可以采用降低溫度的使它飽和因?yàn)楦鶕?jù)a物質(zhì)的曲線,可以看出,降低溫度,物質(zhì)a的溶解度會(huì)迅速減小.
而對(duì)b物質(zhì)來(lái)講,它的溶解度受溫度的影響變化不大,要把不飽和溶液變?yōu)轱柡?,就需要用減少溶劑的辦法.把溶液加熱,使溶劑蒸發(fā)掉一些.溶劑逐漸減少到一定程度,不飽和的溶液就會(huì)變成飽和的了.
第12頁(yè)。
函數(shù)的圖象教案篇十九
目標(biāo):
2、根據(jù)圖象觀察、分析出二次函數(shù)的性質(zhì);
4、滲透由特殊到一般的辯證唯物主義觀點(diǎn);
5、滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)觀察能力和分析問(wèn)題的能力;
6、培養(yǎng)學(xué)生勇于探索創(chuàng)創(chuàng)新及實(shí)事求是的科學(xué)精神.
難點(diǎn):滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法。
用具:直尺、微機(jī)。
方法:談話、探究式。
過(guò)程:
1、列表、描點(diǎn)畫出函數(shù)與的圖象,引入新課。
解:列兩個(gè)表。
x
-4。
-3。
-2。
-1。
1
2
3
4
8
4.5。
2
0.5。
0.5。
2
4.5。
8
x
-2。
-1.5。
-1。
-0.5。
0.5。
1
1.5。
2
8
4.5。
2
0.5。
0.5。
2
4.5。
8
分別描點(diǎn)畫圖。
2、根據(jù)圖象發(fā)現(xiàn)問(wèn)題,由學(xué)生探索出新知識(shí).
提問(wèn):你能從圖象中發(fā)現(xiàn)拋物線是哪些性質(zhì)?這兩個(gè)函數(shù)圖象有何異同?
(1)這兩個(gè)函數(shù)的圖象都關(guān)于y軸對(duì)稱.這一點(diǎn)可以從剛才的列表中可以看出,時(shí)所對(duì)應(yīng)的y值分別相等,如等.這樣的兩個(gè)點(diǎn)關(guān)于y軸對(duì)稱.由這些點(diǎn)構(gòu)成的拋物線也關(guān)于y軸對(duì)稱.從解析式中也可以得出這個(gè)結(jié)論:互為相反數(shù)的兩個(gè)數(shù)的平方數(shù)相等,因此,這兩個(gè)函數(shù)的圖象都是關(guān)于y軸對(duì)稱的.
任意實(shí)數(shù).圖象開口向上.這也說(shuō)明數(shù)與形是數(shù)學(xué)中的兩條線索,它們是互相對(duì)應(yīng)的,反映了數(shù)形結(jié)合的思想.
(3)從圖中也可以看出拋物線不同于我們以前學(xué)過(guò)的正比例函數(shù)和一次函數(shù),這兩個(gè)函數(shù)的圖象都是直線,而拋物線是曲線,有一個(gè)拐彎,函數(shù)的圖象都在最低點(diǎn)拐了一個(gè)彎.這樣它們的性質(zhì)幾發(fā)生了變化.在y軸的左側(cè),從左向右呈下坡趨勢(shì),即y隨x的增大而減小;在y軸的右側(cè),從左向右,呈上坡趨勢(shì),即y隨x的增大而增大.這一變化趨勢(shì)也可以從列表中看出.
(4)這兩個(gè)圖象除以上相同之處外,還有不同的地方.如:離y軸近,離y軸遠(yuǎn).從列表中可以看出:如過(guò)點(diǎn)(2,2),而過(guò)點(diǎn)(2,8)也就是說(shuō),當(dāng)x=2時(shí),的圖象所對(duì)應(yīng)的點(diǎn)高于所對(duì)應(yīng)的點(diǎn).因此會(huì)有上述的結(jié)論.
與中的a都是正數(shù),當(dāng)a0時(shí),的圖象會(huì)是什么樣子呢?
我們看例2。
解:列表:
x
-3。
-2。
-1。
1
2
3
y
-9。
-4。
-1。
-1。
-4。
-9。
描點(diǎn)畫圖:
4、從函數(shù)圖象入手,再次總結(jié)二次函數(shù)的性質(zhì)。
(1)與剛才兩個(gè)圖象不同的是,的圖象開口向下.這是因?yàn)閤是任意實(shí)數(shù),,即,因此,開口會(huì)向下.圖象有最高點(diǎn)(0,0)。
(2)此圖象仍然是關(guān)于y軸對(duì)稱的。
(3)在y軸的左側(cè),y隨x的增大而增大;在y軸的右側(cè),y隨x的增大而減小。
5、得出一般的規(guī)律。
一般地,拋物線的對(duì)稱軸是y軸,頂點(diǎn)是原點(diǎn),當(dāng)a0時(shí),拋物線的開口向上,當(dāng)a0時(shí),拋物線的開口向下,a的絕對(duì)值越大,圖象越靠近y軸.
6、小結(jié):這一節(jié)課,從始至中都是結(jié)合圖象觀察、歸納總結(jié)出二次函數(shù)的性質(zhì),體現(xiàn)了數(shù)與形的結(jié)合.函數(shù)圖象是解決函數(shù)問(wèn)題的有利工具,希望大家能自覺(jué)地應(yīng)用.
7、作業(yè)?:習(xí)題13.6a組1、2b組1、2。
第12頁(yè)?。
函數(shù)的圖象教案篇二十
這一課主要的教學(xué)任務(wù)是探究反比例函數(shù)的比例系數(shù)k的幾何意義,研究與反比例函數(shù)有關(guān)的面積問(wèn)題。
課堂設(shè)計(jì)程序是:例題1研究從雙曲線上任意一點(diǎn)p作坐標(biāo)軸的垂線,圍成的長(zhǎng)方形pqor的面積與k的關(guān)系,進(jìn)而進(jìn)行題目的變化,得到從雙曲線上任意一點(diǎn)p作x、y軸的垂線三角形pqo的面積與k的關(guān)系,得到從雙曲線上任意一個(gè)動(dòng)點(diǎn)p作坐標(biāo)軸的垂線,圍成的長(zhǎng)方形s1、s2、s3的面積總有s1=s2=s3;例題2揭示了正比例函數(shù)的圖象與反比例函數(shù)的圖象兩個(gè)交點(diǎn)的關(guān)系(關(guān)于原點(diǎn)對(duì)稱),過(guò)兩個(gè)交點(diǎn)并且垂直于坐標(biāo)軸的直線圍成的矩形的面積(等于k的絕對(duì)值的4倍),進(jìn)而進(jìn)行題目的變化,得到幾種三角形的面積和平行四邊形的面積,由學(xué)生及時(shí)進(jìn)行相應(yīng)的練習(xí);例題3把一次函數(shù)與反比例函數(shù)相結(jié)合,進(jìn)行了比較簡(jiǎn)單的綜合應(yīng)用,讓學(xué)生進(jìn)行面積的和差組合,培養(yǎng)學(xué)生分析問(wèn)題解決問(wèn)題的能力。
在學(xué)生進(jìn)行到反比例函數(shù)的研究時(shí),數(shù)形結(jié)合的思想就能夠應(yīng)用自如了,學(xué)生的學(xué)習(xí)情況還是比較好的?;叵肫饋?lái),還是結(jié)合個(gè)方面的知識(shí)內(nèi)容,用待定系數(shù)法求函數(shù)的.解析式的題目類型學(xué)生的達(dá)成率不夠好,要加強(qiáng)這方面的訓(xùn)練。