9.總結(jié)是對自身成長與發(fā)展的一種自我審視和反思如何解決社會問題、減少貧困和不平等是社會發(fā)展的核心任務(wù)。閱讀下面這些范文,能幫助大家更好地理解寫作的要點。
數(shù)學(xué)建模論文篇一
信息化時代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進行定量化、精確化思維的意識,學(xué)會創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計知識很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識將現(xiàn)實問題化為數(shù)學(xué)問題,并進行求解運算的能力,激發(fā)學(xué)生對解決現(xiàn)實問題的探索欲望,強化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識為宗旨的教育改革需要。
大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴格的邏輯思維能力,而對數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實生活解決實際問題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過程中引導(dǎo)學(xué)生將數(shù)學(xué)知識內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進數(shù)學(xué)教育改革的重要舉措。
2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對數(shù)學(xué)本原知識的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標上的一致性、課程內(nèi)容上的互補性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對提高學(xué)生創(chuàng)新能力和對數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點,對課程體系進行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識應(yīng)用于工程問題的創(chuàng)新能力。
2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評價方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實踐檢驗。選取開展融入式教學(xué)的實驗班級,對數(shù)學(xué)建模思想方法融入主干課程進行教學(xué)效果實踐驗證。設(shè)計相應(yīng)的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進行建模求解等多方面對實驗課程的教學(xué)效果進行檢驗,深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進的對策。
3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴謹?shù)难堇[體系,教學(xué)過程中著力于對學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識,而對應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識,仍難以學(xué)會用數(shù)學(xué)的基本方法解決現(xiàn)實問題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進學(xué)生對數(shù)學(xué)基礎(chǔ)知識的掌握,同時理解數(shù)學(xué)原理所蘊涵的思想與方法。
這樣,在解決實際問題的時候,學(xué)生就會有意識地從數(shù)學(xué)的角度進行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進行求解,拓展了數(shù)學(xué)知識的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識與創(chuàng)新能力。
此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問題,比如數(shù)學(xué)建模與計算技術(shù)如何有效結(jié)合以進行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。
數(shù)學(xué)建模論文篇二
數(shù)學(xué)建模隨著人類的進步,科技的發(fā)展和社會的日趨數(shù)字化,應(yīng)用領(lǐng)域越來越廣泛,人們身邊的數(shù)學(xué)內(nèi)容越來越豐富。強調(diào)數(shù)學(xué)應(yīng)用及培養(yǎng)應(yīng)用數(shù)學(xué)意識對推動素質(zhì)教育的實施意義十分巨大。數(shù)學(xué)建模在數(shù)學(xué)教育中的地位被提到了新的高度,通過數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題,提高學(xué)生的綜合素質(zhì)。本文將結(jié)合數(shù)學(xué)應(yīng)用題的特點,把怎樣利用數(shù)學(xué)建模解好數(shù)學(xué)應(yīng)用問題進行剖析,希望得到同仁的幫助和指正。
一、數(shù)學(xué)應(yīng)用題的特點。
我們常把來源于客觀世界的實際,具有實際意義或?qū)嶋H背景,要通過數(shù)學(xué)建模的方法將問題轉(zhuǎn)化為數(shù)學(xué)形式表示,從而獲得解決的.一類數(shù)學(xué)問題叫做數(shù)學(xué)應(yīng)用題。數(shù)學(xué)應(yīng)用題具有如下特點:
第一、數(shù)學(xué)應(yīng)用題的本身具有實際意義或?qū)嶋H背景。這里的實際是指生產(chǎn)實際、社會實際、生活實際等現(xiàn)實世界的各個方面的實際。如與課本知識密切聯(lián)系的源于實際生活的應(yīng)用題;與模向?qū)W科知識網(wǎng)絡(luò)交匯點有聯(lián)系的應(yīng)用題;與現(xiàn)代科技發(fā)展、社會市場經(jīng)濟、環(huán)境保護、實事政治等有關(guān)的應(yīng)用題等。
第二、數(shù)學(xué)應(yīng)用題的求解需要采用數(shù)學(xué)建模的方法,使所求問題數(shù)學(xué)化,即將問題轉(zhuǎn)化成數(shù)學(xué)形式來表示后再求解。
第三、數(shù)學(xué)應(yīng)用題涉及的知識點多。是對綜合運用數(shù)學(xué)知識和方法解決實際問題能力的檢驗,考查的是學(xué)生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關(guān),很難將問題正確解答。
第一層次:直接建模。
根據(jù)題設(shè)條件,套用現(xiàn)成的數(shù)學(xué)公式、定理等數(shù)學(xué)模型,注解圖為:
第二層次:直接建模??衫矛F(xiàn)成的數(shù)學(xué)模型,但必須概括這個數(shù)學(xué)模型,對應(yīng)用題進行分析,然后確定解題所需要的具體數(shù)學(xué)模型或數(shù)學(xué)模型中所需數(shù)學(xué)量需進一步求出,然后才能使用現(xiàn)有數(shù)學(xué)模型。
第三層次:多重建模。對復(fù)雜的關(guān)系進行提煉加工,忽略次要因素,建立若干個數(shù)學(xué)模型方能解決問題。
第四層次:假設(shè)建模。要進行分析、加工和作出假設(shè),然后才能建立數(shù)學(xué)模型。如研究十字路口車流量問題,假設(shè)車流平穩(wěn),沒有突發(fā)事件等才能建模。
三、建立數(shù)學(xué)模型應(yīng)具備的能力。
從實際問題中建立數(shù)學(xué)模型,解決數(shù)學(xué)問題從而解決實際問題,這一數(shù)學(xué)全過程的教學(xué)關(guān)鍵是建立數(shù)學(xué)模型,數(shù)學(xué)建模能力的強弱,直接關(guān)系到數(shù)學(xué)應(yīng)用題的解題質(zhì)量,同時也體現(xiàn)一個學(xué)生的綜合能力。
1提高分析、理解、閱讀能力。
2強化將文字語言敘述轉(zhuǎn)譯成數(shù)學(xué)符號語言的能力。
3增強選擇數(shù)學(xué)模型的能力。
4加強數(shù)學(xué)運算能力。
數(shù)學(xué)應(yīng)用題一般運算量較大、較復(fù)雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數(shù)學(xué)運算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。
數(shù)學(xué)建模論文篇三
就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對學(xué)生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎(chǔ)開展教學(xué)活動。作為一門充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒有穿插應(yīng)用實例,在工作的時候?qū)W生不知道怎樣把問題解決,工作效率無法進一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動力。
(二)教學(xué)方法傳統(tǒng)化。
教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績。一般高數(shù)老師在授課的時候都是以課本的順次進行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無法為學(xué)生營造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨自學(xué)習(xí)、思考的能力進一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動參與學(xué)習(xí)。
二、建模在高等數(shù)學(xué)教學(xué)中的作用。
對學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進行培養(yǎng)的過程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動以及教研活動,其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識、實際應(yīng)用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學(xué)生的整體素質(zhì)進行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會對復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。
高等數(shù)學(xué)作為工科類學(xué)生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識的本來面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡化、抽象、翻譯部分現(xiàn)實世界信息的過程中使用數(shù)學(xué)的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學(xué)生的表達能力。在實際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗現(xiàn)實的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學(xué)生在分析問題的過程中可以主動地、客觀的辯證的運用數(shù)學(xué)方法,最終得出解決問題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。
三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施。
(一)在公式中使用建模思想。
在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的'教學(xué)效果進一步提升,在課堂上老師不僅要讓學(xué)生對計算的技巧進一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實例開展教學(xué)。
(二)講解習(xí)題的時候使用數(shù)學(xué)模型的方式。
課本例題使用建模思想進行解決,老師通過對例題的講解,很好的講述使用數(shù)學(xué)建模解決問題的方式,讓學(xué)生清醒的認識在解決問題的過程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學(xué)生解決問題的效率。
(三)組織學(xué)生積極參加數(shù)學(xué)建模競賽。
一般而言,在競賽中可以很好地鍛煉學(xué)生競爭意識以及獨立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競賽,在實踐中鍛煉學(xué)生的實際能力。在日常生活中使用數(shù)學(xué)建模解決問題,讓學(xué)生獨自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學(xué)習(xí),改正錯誤,提升自身的能力。
四、結(jié)束語。
高等數(shù)學(xué)主要對學(xué)生從理論學(xué)習(xí)走向解決實際問題的能力進行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對高數(shù)知識更充分的理解,學(xué)習(xí)的難度進一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進行深入的研究和探索的同時也需要學(xué)生很好的配合,以便于今后的教學(xué)中進一步提升教學(xué)的質(zhì)量。
參考文獻。
[1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。齊齊哈爾師范高等??茖W(xué)校學(xué)報,20xx(02):119—120。
[2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實踐[j]。教育實踐與改革,20xx(04):177—178,189。
[3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[j]。長春教育學(xué)院學(xué)報,20xx(30):89,95。
[4]劉合財。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。貴陽學(xué)院學(xué)報,20xx(03):63—65。
數(shù)學(xué)建模論文篇四
數(shù)學(xué),源于人們對生產(chǎn)與生活實際問題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來,信息技術(shù)飛速發(fā)展,推動了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會各個領(lǐng)域.中考實際應(yīng)用題目更貼近日常生活,具有時代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計、幾何等模型.數(shù)學(xué)課程標準指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實際問題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問、自主解決,體驗做數(shù)學(xué)的過程,從而提高解決實際問題的能力.
一是教師未能實現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開學(xué)生“做”數(shù)學(xué)的過程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺?,將解題過程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開展建模教學(xué),需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進行思考,誘發(fā)學(xué)生進行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實際問題,其題目長、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.
1.自主探索原則.
學(xué)生長期處于師講、生聽的教學(xué)模式,淪為被動接受知識的“容器”,難有創(chuàng)造的意識.在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問題的`能力.
2.因材施教原則.
教師要著眼于學(xué)生原有的認知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問題的解決方法。
3.可接受性原則.
數(shù)學(xué)建模內(nèi)容的設(shè)計,要符合學(xué)生的年齡特點和認知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計的問題不切實際,往往會扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實際,讓學(xué)生有能力解決問題.
數(shù)學(xué)建模論文篇五
運籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力.從運籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計等方面進行了探索與實踐.教學(xué)實踐表明,將數(shù)學(xué)建模思想融入到運籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動手實踐能力.
數(shù)學(xué)建模論文篇六
高校學(xué)生社團是一種具有共同興趣愛好的學(xué)生自發(fā)組織的開展一些藝術(shù)、娛樂和學(xué)術(shù)型的活動的團體。學(xué)生社團以其鮮明的開放性、自主性以及多樣性等特點,為一些有特長的學(xué)生提供了廣闊的舞臺,讓這些學(xué)生可以更好的發(fā)揮自己的才能,促進其更好的成才。全國大學(xué)生數(shù)學(xué)建模競賽是最早由教育部工業(yè)與數(shù)學(xué)應(yīng)用學(xué)會共同承辦的一個科技性的賽事,該比賽要通過數(shù)學(xué)和計算機的知識來解決實際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊員是件費神的事情,因此,為了更好的為數(shù)學(xué)建模競賽選拔人才,激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)術(shù)性社團“數(shù)學(xué)建模協(xié)會”也就應(yīng)運而生。數(shù)學(xué)建模協(xié)會的成立,可以更好的為學(xué)生提供一個展示自己的機會,可以增強學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力,激發(fā)學(xué)生的創(chuàng)新思維,為數(shù)學(xué)建模競賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學(xué)院數(shù)學(xué)建模協(xié)會為例,探討高職數(shù)學(xué)建模社團活動開展的形式和意義。
(一)數(shù)學(xué)建模社團有利于數(shù)學(xué)建模競賽的開展。高職數(shù)學(xué)建模協(xié)會為數(shù)學(xué)建模競賽搭建了一個平臺,是數(shù)學(xué)建模競賽強有力的后盾,數(shù)學(xué)建模競賽成績的取得與這個平臺密不可分,只有充分發(fā)揮數(shù)學(xué)建模社團的作用,才能源源不斷的為數(shù)學(xué)建模提供人力和智力保障,才能更好的推動高職數(shù)學(xué)的學(xué)習(xí)氛圍。1、數(shù)學(xué)建模協(xié)會起著動員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動員,才能讓更多的人了解數(shù)學(xué)建模,讓更多優(yōu)秀學(xué)生參加到數(shù)學(xué)建模競賽中。大學(xué)校園中有許多數(shù)學(xué)愛好者,他們對數(shù)學(xué)建模也有一定的認識,只要有參加數(shù)學(xué)建模活動的愿望的,都可以利用數(shù)學(xué)建模協(xié)會招新的機會,加入數(shù)學(xué)建模創(chuàng)新協(xié)會。將成績優(yōu)秀的學(xué)生邀請加入數(shù)學(xué)建模協(xié)會,對進一步擴大數(shù)學(xué)建模協(xié)會,夯實數(shù)學(xué)建?;A(chǔ),起著舉足輕重的作用。2、數(shù)學(xué)建模協(xié)會起著知識傳播的作用高職院校學(xué)生在校學(xué)習(xí)時間較短,學(xué)業(yè)較為繁重,課余時間較少,數(shù)學(xué)建模培訓(xùn)的時間不足,無法讓學(xué)生在短時期內(nèi)掌握較多的數(shù)學(xué)建模相關(guān)知識。因此,利用數(shù)學(xué)建模協(xié)會活動可以開展數(shù)學(xué)建模課程的培訓(xùn)工作,普及數(shù)學(xué)建模相關(guān)知識。采用“老帶新”的模式進行數(shù)學(xué)建模知識的普及。通過制定系統(tǒng)的培訓(xùn)方案,在每年秋季競賽后,參加過競賽的同學(xué)對新入?yún)f(xié)會的成員可以進行初級培訓(xùn),為今后的競賽奠定基礎(chǔ)。3、數(shù)學(xué)建模社團起著選拔學(xué)生的作用每年數(shù)學(xué)建模競賽的隊員需要通過校內(nèi)賽等形式進行選拔,此時,數(shù)學(xué)建模協(xié)會就起著校內(nèi)賽命題及選拔隊員的作用,當(dāng)然這種選拔方式也有的弊端,就是所有隊員都是來自校內(nèi)賽成績優(yōu)秀的學(xué)生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計算機技術(shù)水平優(yōu)秀的學(xué)生就沒法參加數(shù)學(xué)建模競賽。為確保每一位有能力的學(xué)生都能夠加入到建模競賽隊伍中來,可以通過校內(nèi)競賽與建模協(xié)會推薦兩者相結(jié)合的方式選拔建模競賽學(xué)生,以確保最優(yōu)優(yōu)秀的學(xué)生參加數(shù)學(xué)建模競賽。(二)數(shù)學(xué)建模社團有利于大學(xué)生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學(xué)建模社團屬于專業(yè)的學(xué)術(shù)性社團,成立的目的是為了參加全國大學(xué)生數(shù)學(xué)建模競賽,數(shù)學(xué)建模社團活動的趣味性和實踐性可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,增加學(xué)生參與競賽的熱情。社團活動中的培訓(xùn)使學(xué)生可以更好的應(yīng)對競賽,取得更好的成績。另外,競賽之余還可以進行其他領(lǐng)域的學(xué)術(shù)交流,比如計算機,經(jīng)濟,工程等領(lǐng)域,良好的交流氛圍激發(fā)學(xué)生的創(chuàng)新思維和意識,從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學(xué)建模社團是學(xué)生自發(fā)組織的服務(wù)學(xué)生的群體,除了學(xué)術(shù)研究之外,還可以進行一些創(chuàng)新創(chuàng)業(yè)的活動,具有更多的實踐的機會。比如,可以利用平時社團所學(xué)的知識,以團體的形式進行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺和微信群等發(fā)布一些數(shù)學(xué)建模相關(guān)的微課等,進行一些微信群講座等等。這樣可以讓學(xué)生真正體會到數(shù)學(xué)的用處,達到學(xué)以致用的效果。(3)數(shù)學(xué)建模社團是學(xué)生自發(fā)組織的學(xué)術(shù)性社團,社團的組織機構(gòu)都是學(xué)生在擔(dān)任,社團的活動也都是學(xué)生在協(xié)調(diào)策劃,甚至很多時候社團的老成員都可以輔助老師進行社團的一些學(xué)術(shù)性的講座。因此,在學(xué)習(xí)的同時還鍛煉了他們的處事應(yīng)變能力團隊合作的能力,可以說提高了學(xué)生的綜合素質(zhì)。
(一)數(shù)學(xué)建模社團的管理形式。數(shù)學(xué)建模協(xié)會作為一個學(xué)生群體組織,需要好的制度和管理模式。以筆者所在學(xué)校為例,數(shù)學(xué)建模創(chuàng)新協(xié)會具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個管理面”來進行社團管理和學(xué)術(shù)交流的,具體如下:1、學(xué)術(shù)交流面這個主要是通過“社團內(nèi)部進行學(xué)術(shù)交流活動”和“老帶新培訓(xùn)”兩部分組成,內(nèi)部的交流活動主要是學(xué)生之間的相互溝通和交流,以及不定期的邀請指導(dǎo)教師和外校專家做一些數(shù)學(xué)建模報告。老帶新培訓(xùn)是指社團主席團成員(一般是參加過前一年全國大學(xué)生數(shù)學(xué)建模競賽的學(xué)生)為新入社團的學(xué)生進行培訓(xùn),培訓(xùn)的內(nèi)容基本上都是之前指導(dǎo)教師對他們集訓(xùn)時的內(nèi)容,這種培訓(xùn)方式可以提升社團成員的授課和理解問題的能力,對于在校大學(xué)生來說是一次很好的鍛煉。2、網(wǎng)絡(luò)交流面采用qq群,網(wǎng)絡(luò)空間和微信公眾平臺等開展社團成員之間的交流互動,社團宣傳。筆者所在學(xué)校的數(shù)學(xué)建模創(chuàng)新協(xié)會每一屆社團都有相應(yīng)的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關(guān)注量也在800余人,微信平臺的建立可以更方面使大學(xué)生關(guān)注數(shù)學(xué)建模相關(guān)信息,尤其是對大一新生可以更多的取了解數(shù)學(xué)建模,擴大數(shù)學(xué)建模的受益面和影響力。力求在大學(xué)生中營造一種“人人知數(shù)模,人人愛數(shù)模,人人參與數(shù)模”的良好的教育環(huán)境,使建?;顒訌V泛化、群眾化。3、交流互訪面開展研討會,專家報告會,社團聯(lián)誼會等交流活動,既可以豐富數(shù)學(xué)建模社團學(xué)生的知識面,又能促進數(shù)學(xué)知識的理解和吸收,通過與其他社團的聯(lián)誼,豐富了社團學(xué)生的業(yè)余生活,又能學(xué)習(xí)其他社團好的管理經(jīng)驗,促進社團管理的制度化、規(guī)范化、專業(yè)化,也只有通過不斷的學(xué)習(xí),不斷的交流,才能真正“走出去”,建立一個管理完善,富有成效的學(xué)生社團。(二)數(shù)學(xué)建模社團的特色活動。數(shù)學(xué)建模社團在開展學(xué)術(shù)活動和輔助教師進行競賽培訓(xùn)的同時,還不定期的舉行一些活動,在提高學(xué)生學(xué)習(xí)興趣的同時也以擴大了數(shù)學(xué)建模的影響力。以筆者坐在學(xué)校為例,每年可以開展一系列的數(shù)學(xué)建?;顒?。比如,數(shù)學(xué)建模創(chuàng)新協(xié)會納新,數(shù)學(xué)建模創(chuàng)新協(xié)會趣味運動會,數(shù)學(xué)科技節(jié),趣味數(shù)學(xué)知識競賽,數(shù)學(xué)建模經(jīng)驗交流會,數(shù)學(xué)建模校內(nèi)賽,數(shù)學(xué)輔導(dǎo)周,數(shù)學(xué)建模專題講座。這些社團活動貫穿整個學(xué)年,不僅可以“由點及面、由淺入深”的對全國大學(xué)生數(shù)學(xué)建模競賽進行宣傳,在最大的范圍內(nèi),提升數(shù)學(xué)建模大賽的影響力及參與度,成效較好。而且讓枯燥的學(xué)術(shù)型社團變得豐富多彩,成為學(xué)生課后獲取知識的一種平臺,同時也是社團蓬勃發(fā)展的利器。
總之,數(shù)學(xué)建模社團活動的開展,有利于培養(yǎng)學(xué)生的創(chuàng)新意識和思維,有利于激發(fā)了學(xué)生的學(xué)習(xí)興趣,有利于豐富學(xué)生的課后生活,有利于調(diào)動了學(xué)生參加學(xué)術(shù)型社團的積極性,同時也是高職院校組織參加數(shù)學(xué)建模競賽的強有力的后盾。
[1]胡建茹,王搖娟.加強專業(yè)社團建設(shè)推進大學(xué)生創(chuàng)新實踐能力培養(yǎng)[j].中國石油大學(xué)學(xué)報:社會科學(xué)版,20xx(12)。
[2]王珍娥,宋維,孫潔.?dāng)?shù)學(xué)社團建設(shè)的探索與實踐[j].機械職業(yè)教育,20xx(7)。
[3]李湘玲,王泳興.大學(xué)生社團發(fā)展與創(chuàng)新型人才培養(yǎng)互動機制研究:以吉首大學(xué)為例[j].黑龍江教育,20xx(11)。
[4]孫浩,葉正麟.西北工業(yè)大學(xué)數(shù)學(xué)建模創(chuàng)新教育之探索[j].高等數(shù)學(xué)研究,20xx(4)。
作者:張?zhí)m單位:西安航空職業(yè)技術(shù)學(xué)院通識教育學(xué)院。
數(shù)學(xué)建模論文篇七
高校數(shù)學(xué)教育是高等教育的基礎(chǔ)學(xué)科,占據(jù)重要的一席之地。如何改變學(xué)生對數(shù)學(xué)枯燥乏味的學(xué)習(xí)狀態(tài),讓學(xué)生輕松愉快地參與到數(shù)學(xué)學(xué)習(xí)中,是當(dāng)前高校數(shù)學(xué)教學(xué)者面臨的一個重要課題。在高校數(shù)學(xué)教學(xué)中開展數(shù)學(xué)建模競賽,不僅能培養(yǎng)學(xué)生的創(chuàng)新思維,還能有效提高提高學(xué)生的創(chuàng)新能力、綜合素質(zhì)和對數(shù)學(xué)的應(yīng)用能力。本文對高校開展數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)進行了分析闡述,并對此進行了一定的思考。
數(shù)學(xué)建模是一種融合數(shù)學(xué)邏輯思想的思考方法,通過運用抽象性的數(shù)學(xué)語言和數(shù)學(xué)邏輯思考方法,創(chuàng)造性的解決數(shù)學(xué)問題。當(dāng)前很多高校中開始引入數(shù)學(xué)建模思想來加強學(xué)生創(chuàng)新能力的培養(yǎng),可以使學(xué)生的邏輯思維能力和運用數(shù)學(xué)邏輯創(chuàng)新解決問題的能力得到提升。數(shù)學(xué)建模競賽起源于1985年的美國,幾年后國內(nèi)幾所高校數(shù)學(xué)建模教師組織學(xué)生開始參與美國的數(shù)學(xué)建模大賽,促進了數(shù)學(xué)建模思維的快速發(fā)展。直到1992中國首屆數(shù)學(xué)建模大賽召開,而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長,呈現(xiàn)一派繁榮景象。
2.1數(shù)學(xué)建模競賽自主性較強。自主性首先體現(xiàn)在在數(shù)學(xué)建模過程中學(xué)生可以根據(jù)自己的建模需要通過一切可以利用的資源、工具來進行資料查閱和收集,建模比賽隊員可以根據(jù)自己的意見和思維進行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學(xué)建模競賽的組織形式呈現(xiàn)多元化特點,組織制度上也較為靈活多樣,數(shù)學(xué)建模主要側(cè)重于分析思想,沒有標準答案可以參考分享。2.2建模隊伍呈日益燎原之勢。1992年首屆中國數(shù)學(xué)建模大賽開展以來,其影響力與日俱增,高校和社會各界對數(shù)學(xué)建模頗為重視,參賽隊伍、參賽學(xué)生的質(zhì)量一直處于上升狀態(tài),數(shù)學(xué)模型也日漸合理科學(xué),學(xué)生團隊在國際數(shù)學(xué)建模大賽中屢創(chuàng)驕人戰(zhàn)績。2.3組織培訓(xùn)日益加強。數(shù)學(xué)建模競賽對學(xué)生數(shù)學(xué)知識的掌握及靈活運用、口套表達、語言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓(xùn)的時間很長,培訓(xùn)內(nèi)容也很豐富,為數(shù)學(xué)建模競賽取得好成績奠定了堅實的基礎(chǔ)。
3.1學(xué)生的團隊協(xié)作能力和意識得到增強。數(shù)學(xué)建模競賽的團隊組織形式活潑自由,通常采用學(xué)生組隊模式開展,數(shù)學(xué)建模競賽隊伍形成一個團結(jié)戰(zhàn)斗的整體,代表著不僅僅是學(xué)校的聲譽,還一定程度上展示著國家的形象。經(jīng)過長時間的培訓(xùn),對數(shù)學(xué)模型的研究和分析,根據(jù)學(xué)生訓(xùn)練中的優(yōu)勢和特長,進行合理科學(xué)的小組分工,讓學(xué)生快速高效地完成整個數(shù)學(xué)建模,在建模過程中學(xué)生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢和長處,確保數(shù)學(xué)建模取得最大效用,學(xué)生的團隊協(xié)作能力和意識得到鍛煉,責(zé)任感和榮譽感進一步增強,通過建模競賽彰顯團隊的合作能力和中國數(shù)學(xué)建模方面的發(fā)展。
3.2高校學(xué)生參賽積極性高漲。近年來大學(xué)生數(shù)學(xué)建模競賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學(xué)的應(yīng)用能力提升。
3.3高校學(xué)生數(shù)學(xué)邏輯思維能力和靈活運用知識的能力得到提升。數(shù)學(xué)建模競賽充滿著刺激性和挑戰(zhàn)性,是學(xué)生各方面綜合能力的一個展示。在數(shù)學(xué)建模競賽中,學(xué)生不僅要需要扎實豐厚的數(shù)學(xué)知識儲備,還需要具備清晰的數(shù)學(xué)邏輯思維和語言表達能力。同時要有機智的臨場發(fā)揮能力和應(yīng)變能力,不怯場、不驚慌,有充分的思想準備,能輕松應(yīng)對其他參賽選手和評委的提問,能組織條理性、邏輯性的語言進行表述,將參賽小組數(shù)學(xué)模型的含義和設(shè)計清晰完整的傳達給評委和其他參賽選手。在這個過程中,無疑會使學(xué)生的數(shù)學(xué)邏輯思維和語言表達能力及靈活運用數(shù)學(xué)知識的能力有一個較大的提升。
3.4學(xué)生的自學(xué)能力和意志力得到鍛。數(shù)學(xué)建模競賽對參賽學(xué)生的綜合知識和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力??梢哉f數(shù)學(xué)建模過程中,有許多高深的知識難于理解,有的日常學(xué)習(xí)過程中根本接觸不到,需要數(shù)學(xué)建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢和平時培訓(xùn)中的知識積淀,通過借助大量的工具書及參考資料,加上團隊的`理解分析去摸索,探尋數(shù)學(xué)建模所需要的基礎(chǔ)知識,無疑這對學(xué)生的自學(xué)能力培養(yǎng)是一個很好的鍛煉。另外,搜尋資料、學(xué)習(xí)數(shù)學(xué)建模知識的過程是枯燥乏味的,需要長久的耐力和信心,無疑這對學(xué)生的堅毅不畏難的品質(zhì)是一個很好的培養(yǎng)和磨煉。
3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過艱苦復(fù)雜的數(shù)學(xué)建模訓(xùn)練,高校學(xué)生信息收集與處理復(fù)雜問題的能力得到培養(yǎng)鍛煉,學(xué)生數(shù)量觀念得到增強,能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學(xué)的嚴謹推導(dǎo)也使學(xué)生養(yǎng)成認真細心、一絲不茍的習(xí)慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復(fù)雜問題,有效解決數(shù)學(xué)疑難,數(shù)學(xué)理論能更好第應(yīng)用于實踐,數(shù)學(xué)素養(yǎng)進一步得到提升。
綜上所述,高校學(xué)生數(shù)學(xué)建模競賽的開展,能較高地提升學(xué)生的創(chuàng)新能力和綜合素養(yǎng),團隊合作能力、競爭能力、表達交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開展數(shù)學(xué)建模競賽,使學(xué)生的綜合素質(zhì)得到發(fā)展和鍛煉。學(xué)校用重視和鼓勵全體學(xué)生參與數(shù)學(xué)建模競賽,通過競賽實現(xiàn)學(xué)生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。
[1]趙剛.高校數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).
[2]陳羽,徐小紅,房少梅.數(shù)學(xué)建模實踐及其對培養(yǎng)學(xué)生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).
[3]趙建英.數(shù)學(xué)建模競賽對高校創(chuàng)新人才培養(yǎng)的促進作用分析[j].科技展望,20xx(08)5.
[4]畢波,杜輝.關(guān)于高校開展數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)的思考[j].中國校外教育,20xx(12).
數(shù)學(xué)建模論文篇八
眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅實的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時碰到的問題?如何調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來,各所高校的教師們都在努力的想辦法、找對策,一些實用有效的方法已經(jīng)提出并且在逐步推廣,比如,問題驅(qū)動式的教學(xué)方法和基于pbl的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級中已經(jīng)實際應(yīng)用過幾屆,學(xué)生普遍反映效果較好,任課老師也認為該方法確實能極大地調(diào)動學(xué)生的學(xué)習(xí)積極性。
提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運算充斥腦海;定義、定理、推論一個連著一個;極限、連續(xù)、可導(dǎo)可積一個涵蓋另一個[1]。和高中數(shù)學(xué)相比,記憶的負擔(dān)輕了(實際上是知識點太多,記不住了),而對思維的要求卻提高了。對大學(xué)生來說,每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時間可以達到,長久下去學(xué)生們會覺得很辛苦,很有壓力,會出現(xiàn)抱怨。筆者碰到過這樣的學(xué)生,剛開始時,興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應(yīng)對。怪學(xué)生嗎?誠然學(xué)生有責(zé)任,但任課老師也該負很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對學(xué)生提的這些問題:(1)我學(xué)的專業(yè)和高等數(shù)學(xué)相差甚遠,有可能這一輩子都不會用到高等數(shù)學(xué)的知識,那我學(xué)高等數(shù)學(xué)的目的何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強大功能和廣泛用途,但是通過一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問題不及時解決,時間長了一定會影響到大學(xué)生對高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽到自己高等數(shù)學(xué)考過了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時碰到的問題?如何調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。
一、以實際問題反推解決問題時我們需要的高等數(shù)學(xué)知識。
有這樣一個實際問題:報童每天清晨從報社購進報紙零售,晚上將沒賣掉的報紙退回給報社。假設(shè)報紙每份的購進價為b元,零售價為a元,退回價為c元,自然地有abc。這就是說,報童每售出一份報紙賺a-b元,每退回一份報紙賠b-c元,報童每天如果購進的報紙?zhí)?,那么會不夠賣,就會少賺錢;如果每天購進的報紙?zhí)?,那么會賣不完,將要賠錢。請為報童規(guī)劃一下,他該如何確定每天購進的報紙份數(shù),以獲得最大的收入[3]。
現(xiàn)在我們來反推該問題涉及到的高等數(shù)學(xué)的知識:首先,通過分析題目可知,問題解決的關(guān)鍵在于——如何確定每天的報紙需求量,注意每天的報紙需求量是隨機變化的?解決這個關(guān)鍵問題的知識我們早就掌握了,分別是數(shù)理統(tǒng)計中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學(xué)中的定積分[4]。
二、利用高等數(shù)學(xué)的解決實際問題。
f(r)[4]。如果求出了f(r),那么。
g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)。
現(xiàn)在我們來求f(r),假定報童已經(jīng)通過自己的經(jīng)驗和其他渠道掌握了一年(365天)中每天報紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報紙日需求量r的概率f(r)為:
f(r)=,r=(0,1,2,3,…)。
其中k表示為賣出r份的天數(shù)。
g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)。
通過上面的分析,可知實際問題歸結(jié)為,在p(r)和a,b,c已知時,求n使得g(n)最大。
=-(b-c)p(r)dr+(a-b)p(r)dr.(3)。
令=0,得到=,又因為p(r)dr+p(r)dr=1,所以p(r)dr=.(4)。
在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識一定可以求出n。也即可以確定每天購進的報紙份數(shù),使報童每天獲得最大的收入。
三、利用現(xiàn)實問題,讓學(xué)生學(xué)會思考,給他們提供創(chuàng)造成就感的機會。
通過上面碰到的實際問題,可以很容易地說服同學(xué)們靜下心來好好學(xué)習(xí)高等數(shù)學(xué)。因為通過實際問題的求解,學(xué)生們了解到了,要想解決一個實際問題(哪怕是很小的問題),也需要大量的高等數(shù)學(xué)知識的儲備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡單、直接,勝過老師課堂上反復(fù)的嘮叨與強調(diào)。有了這樣的一些實際問題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們在解決實際問題中學(xué)會思考,掌握知識,提高能力。
通過訓(xùn)練后,碰到實際問題,同學(xué)們會自然的想到我們的教學(xué)方法:(1)這些實際問題涉及到的高等數(shù)學(xué)知識?那些自己掌握了,那些還沒有弄明白,學(xué)要加強學(xué)習(xí)。(2)知識點找到后,如何建立起數(shù)學(xué)與實際問題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專業(yè)中的實際問題,能否用高等數(shù)學(xué)的知識去解決?通過思考、分析、解決這些問題,學(xué)生們會有一種創(chuàng)造創(chuàng)新的成就感,會愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會大大提高了。
數(shù)學(xué)建模論文篇九
大量的應(yīng)用型技能型人才,有效滿足了社會各行各業(yè)的用工需求。隨著國家對高職教育的重視和不斷投入,提高教育的教學(xué)質(zhì)量勢在必行[1]。數(shù)學(xué)建模的核心是以數(shù)學(xué)模型為基礎(chǔ)的實際運用,鑒于數(shù)學(xué)建模的這種特點,國內(nèi)高職數(shù)學(xué)教育逐步把數(shù)學(xué)建模理念融入到課題教學(xué)中,提高學(xué)生的應(yīng)用能力。以數(shù)學(xué)建模理念的告知書明確教學(xué)改革要求學(xué)生結(jié)合計算機技術(shù),靈活運用數(shù)學(xué)的思想和方法獨立地分析和解決問題,不僅能培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識,而且能培養(yǎng)學(xué)生團結(jié)協(xié)作、不怕困難、求實嚴謹?shù)淖黠L(fēng)[2]。筆者結(jié)合自身的教學(xué)工作經(jīng)驗,對基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革進行了探索,對教學(xué)實踐中出現(xiàn)的問題進行了分析梳理,以期為高職數(shù)學(xué)教學(xué)改革提供新思路,推動高職數(shù)學(xué)教學(xué)水平的不斷提高,培養(yǎng)出具有良好數(shù)學(xué)素養(yǎng)和專業(yè)技能的新型高職人才。
近年來,隨著國內(nèi)產(chǎn)業(yè)結(jié)構(gòu)的不斷調(diào)整,對于高等職業(yè)技術(shù)人才需求不斷增大,社會對高等職業(yè)技術(shù)教育寄予厚望。但是傳統(tǒng)的高職教育由于專業(yè)設(shè)置不合理,使用教材落后,實訓(xùn)實踐場地不足,培養(yǎng)出的學(xué)生動手能力差、專業(yè)能力不足,面對社會發(fā)展的新形勢,高職教育必須進行教學(xué)改革,提高學(xué)生的職業(yè)能力和就業(yè)競爭力。高職教育不同于普通本科教育,它有以下幾方面的特點。
1人才培養(yǎng)目標不同。
高職教育和本科教育人才培養(yǎng)目標不同,高職教育是以技術(shù)應(yīng)用型高技能人才為培養(yǎng)目標,所有的教學(xué)課程設(shè)計和人才培養(yǎng)體系設(shè)計都是基于此目標展開的,高職教育主要是為了向產(chǎn)業(yè)發(fā)展提供生產(chǎn)、服務(wù)、管理等一線工作的高級技術(shù)應(yīng)用型人才,專業(yè)能力培養(yǎng)和目標職業(yè)匹配度高,所以高職教育教學(xué)成果最直接的評價就是畢業(yè)生的就業(yè)競爭力和上崗后的適應(yīng)能力。
2兩者的教學(xué)內(nèi)容不同。
高職教育的教學(xué)重點是學(xué)生要掌握與實踐工作關(guān)系較為密切的業(yè)務(wù)處理能力、動手能力與交流能力,把學(xué)生的職業(yè)能力建設(shè)列為教學(xué)重點,課程設(shè)計專業(yè)性強,一旦就業(yè)能為企業(yè)創(chuàng)造明顯的效益,高職教育各專業(yè)課程差別較大。
3生源情況不同。
在當(dāng)前的教育教學(xué)體系下,高職教育的生源普遍較差,大多是沒有希望考上大學(xué),轉(zhuǎn)而進入高職學(xué)習(xí),希望通過掌握一定的技術(shù)來實現(xiàn)就業(yè),所以高職學(xué)生的基礎(chǔ)知識普遍較差,學(xué)習(xí)興趣不高。數(shù)學(xué)建模給高職數(shù)學(xué)教學(xué)改革開辟了新思路,數(shù)學(xué)建模為數(shù)學(xué)理論學(xué)習(xí)和工程實踐應(yīng)用搭建了橋梁,在工學(xué)結(jié)合的基本原則下,采取數(shù)學(xué)建模教學(xué)理念,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)及動手應(yīng)用能力是一個非常有效的手段[3]。
1數(shù)學(xué)建模的概念數(shù)學(xué)建模是將數(shù)學(xué)理論和現(xiàn)實問題相結(jié)合的一門科學(xué),它將實際問題抽象、歸納成為相應(yīng)的數(shù)學(xué)模型,在此基礎(chǔ)上應(yīng)用數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)方法等手段研究處理實際問題,從定性或者定理的角度給出科學(xué)的結(jié)果[4]。數(shù)學(xué)建模的發(fā)展為數(shù)學(xué)知識的應(yīng)用提供了途徑,對于現(xiàn)實中的特點問題,可以用數(shù)學(xué)語言來描述其內(nèi)在規(guī)律和問題,運用數(shù)學(xué)研究的成果,結(jié)合計算機專業(yè)軟件,通過抽象、簡化、假設(shè)、引進變量等處理過程后,將實際問題用數(shù)學(xué)方式表達,轉(zhuǎn)化成為數(shù)學(xué)問題,借助數(shù)學(xué)思想建立起數(shù)學(xué)模型,從而解決實際問題。2基于數(shù)學(xué)建模思想的教學(xué)理念基于數(shù)學(xué)建模的這種學(xué)科特點,可以把數(shù)學(xué)知識應(yīng)用化,因此,基于數(shù)學(xué)建模思想的教學(xué)理念可以概括為三個層次:首先,確立提高學(xué)生數(shù)學(xué)應(yīng)用能力為目標,以提高學(xué)生數(shù)學(xué)學(xué)習(xí)興趣為手段,以學(xué)習(xí)數(shù)學(xué)建模為途徑;其次,結(jié)合教學(xué)內(nèi)容,開發(fā)相應(yīng)的數(shù)學(xué)建模案例,因地制宜、因生制宜,根據(jù)專業(yè)不同編寫相應(yīng)的校本教材;最后,改進教學(xué)方法,創(chuàng)新課堂教學(xué)模式,建立課外數(shù)學(xué)建模學(xué)習(xí)興趣小組,帶領(lǐng)學(xué)生進行數(shù)學(xué)應(yīng)用實踐活動,鼓勵學(xué)生參加各種數(shù)學(xué)建模競賽[5]。
傳統(tǒng)的數(shù)學(xué)教學(xué)模式以教師課堂講授為中心,學(xué)生只能被動的接受,由于學(xué)生的基礎(chǔ)知識水平不同,掌握新知識的能力也不同,這種沒有區(qū)分的教學(xué)模式教學(xué)效果差,往往帶來的結(jié)果是造成基礎(chǔ)差的學(xué)生跟不上,對數(shù)學(xué)感興趣的學(xué)生失去興趣?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革,是以學(xué)生數(shù)學(xué)應(yīng)用能力提高為目標,以數(shù)學(xué)學(xué)習(xí)興趣培養(yǎng)為出發(fā)點,以數(shù)學(xué)建模為途徑,以教學(xué)方式改革為保障,打造高職數(shù)學(xué)教學(xué)改革新模式,全面提高高職教育應(yīng)用型人才培養(yǎng)水平。
1結(jié)合專業(yè)特色,突出數(shù)學(xué)教育的應(yīng)用性。
數(shù)學(xué)作為高職教育的基礎(chǔ)性學(xué)科,理論性強,體系性強,對于基礎(chǔ)知識薄弱、學(xué)習(xí)興趣差的高職生來說感覺難學(xué)、枯燥,這是因為高職數(shù)學(xué)教育沒有教會學(xué)生如何在專業(yè)學(xué)習(xí)中和以后的工作中如何去用學(xué)到的數(shù)學(xué)知識,學(xué)生感覺知識無用自然也就不會主動去學(xué),之所以引入數(shù)學(xué)建模的思想就是為了讓學(xué)生利用學(xué)到的數(shù)學(xué)知識去解決實際問題,讓學(xué)生認識到數(shù)學(xué)不只是紙面上的寫寫算算,數(shù)學(xué)可以把實際問題抽象化,變成數(shù)學(xué)問題,利用數(shù)學(xué)的研究方法給實際問題進行科學(xué)的指導(dǎo),這樣高職數(shù)學(xué)教育就不再是課堂上的照本宣科,課下的演算作業(yè),將基礎(chǔ)數(shù)學(xué)教育和學(xué)生的專業(yè)教育相結(jié)合,帶來學(xué)生用數(shù)學(xué)解決專業(yè)問題是大幅度提高學(xué)生專業(yè)能力的有效途徑。
2結(jié)合學(xué)生能力,因材施教、因地制宜。
高職學(xué)校的生源不如普通高校,一般學(xué)習(xí)基礎(chǔ)較差,對于專業(yè)實訓(xùn)課并不明顯,但是在基礎(chǔ)學(xué)科教學(xué)過程特別突出,很多基礎(chǔ)知識掌握不牢,甚至一點印象都沒有,教師在上課時要充分考慮到這種情況,在課堂授課時給予實時的補充,以助于知識的過渡。因材施教是我國傳統(tǒng)的教育思想,在掌握學(xué)生知識水平的基礎(chǔ)上,教師要根據(jù)不同學(xué)習(xí)層次學(xué)生的具體情況,安排教學(xué)內(nèi)容和設(shè)置教學(xué)目標,對于基礎(chǔ)知識水平不高、學(xué)習(xí)興趣較差、學(xué)習(xí)能力較弱的學(xué)生要進行課外輔導(dǎo)。高職基礎(chǔ)課教育是專業(yè)課學(xué)習(xí)的基礎(chǔ),授課教師要根據(jù)學(xué)生的專業(yè)學(xué)習(xí)情況和專業(yè)特點,把遷移知識運用能力在課堂上結(jié)合學(xué)生的專業(yè)背景進行輔導(dǎo),高職數(shù)學(xué)教育不僅僅是為了學(xué)習(xí)數(shù)學(xué),更多的是發(fā)揮數(shù)學(xué)知識在其專業(yè)能力培養(yǎng)中的作用。
3培養(yǎng)學(xué)生學(xué)習(xí)興趣,促進整體教學(xué)質(zhì)量提高。
高職學(xué)校的學(xué)生學(xué)習(xí)興趣普遍不高,尤其是對于學(xué)了十幾年都感覺頭痛的數(shù)學(xué),要想提高數(shù)學(xué)的教學(xué)質(zhì)量,首先必須要培養(yǎng)學(xué)生的學(xué)習(xí)興趣,長期以來學(xué)生在數(shù)學(xué)學(xué)習(xí)上已經(jīng)有了根深蒂固的認識,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣很難,但是如果學(xué)生沒有學(xué)習(xí)興趣,教師授課內(nèi)容、授課方式改革都起不了太大的作用,學(xué)生對于數(shù)學(xué)學(xué)習(xí)興趣低由于低年級學(xué)習(xí)時受到的挫敗感,因此要讓學(xué)生建立學(xué)習(xí)數(shù)學(xué)的自信心,讓他們體驗學(xué)會數(shù)學(xué)的成就感,這樣才能逐步培養(yǎng)他們的學(xué)習(xí)興趣。教師可以采取以點帶面的方式,先選擇有一定基礎(chǔ)的學(xué)生,再從全部課程學(xué)習(xí)中發(fā)現(xiàn)表現(xiàn)優(yōu)秀的個體,組織參加建模競賽,進行單獨賽前加強指導(dǎo),用這些榜樣的力量提高全體同學(xué)的學(xué)習(xí)積極性。數(shù)學(xué)建模作為提高高職數(shù)學(xué)教育教學(xué)水平的“點”,能夠以其趣味性強,帶動學(xué)生的學(xué)習(xí)興趣,促進高職數(shù)學(xué)教育教學(xué)水平的全面提高。
4改革教學(xué)及評價方式,建立面向應(yīng)用的數(shù)學(xué)教育體系。
由于基于數(shù)學(xué)建模思想的高職數(shù)學(xué)教學(xué)改革打破了以往的課堂教學(xué)方式和考核方式,學(xué)生面對的不再是期末的一張試卷,而是一個個數(shù)學(xué)建模案例,需要學(xué)生運用本學(xué)期學(xué)到的數(shù)學(xué)知識解決實際問題,教師根據(jù)學(xué)生對案例的理解程度,數(shù)學(xué)模型運用能力,實際過程分析和解題技巧等多方面給出評價,同時積極評價、鼓勵學(xué)生的創(chuàng)新思維,并將其納入到考核體系當(dāng)中。通過以上各個方面評價的加權(quán)作為最后的評價指標。這種以數(shù)學(xué)知識應(yīng)用為基礎(chǔ),直接面向應(yīng)用的高職數(shù)學(xué)教育模式能極大的激發(fā)學(xué)生的學(xué)習(xí)積極性和知識應(yīng)用能力,符合高職應(yīng)用型人才培養(yǎng)理念,對提高高職學(xué)生的專業(yè)能力也打下了堅實的基礎(chǔ)?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革是推動高職應(yīng)用型人才培養(yǎng)體系建設(shè)的新舉措,也是推動高職基礎(chǔ)課教學(xué)水平的重要內(nèi)容,能有效解決學(xué)生學(xué)習(xí)興趣低,基礎(chǔ)知識掌握不牢,數(shù)學(xué)知識應(yīng)用能力低等問題,通過“案例驅(qū)動法+討論法”,引導(dǎo)學(xué)生再次對課本知識進行思考和應(yīng)用,有利于培養(yǎng)學(xué)生的創(chuàng)新思維和應(yīng)用能力。引入數(shù)學(xué)建模理念教學(xué),把課堂學(xué)習(xí)的主動權(quán)交回給學(xué)生,既保證了高等數(shù)學(xué)原有的知識體系的完整,也可以提高教學(xué)效率。通過教學(xué)方式和評價方式改革,學(xué)生的學(xué)習(xí)主動性增強,也改變了以往對于數(shù)學(xué)學(xué)習(xí)的學(xué)習(xí)態(tài)度。高等數(shù)學(xué)作為高職教育學(xué)生必修的基礎(chǔ)課,在培養(yǎng)學(xué)生基本數(shù)學(xué)素養(yǎng)上具有重要作用,是理工類專業(yè)課程體系的重要組成部分,基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革也為同類基礎(chǔ)理論課改革提供了新思路和范例。
[1]孫麗.在高職數(shù)學(xué)教學(xué)改革中應(yīng)注重數(shù)學(xué)建模思想的滲透[j].科技資訊,20xx(22):188.
數(shù)學(xué)建模論文篇十
對于高職院校的學(xué)生來講,數(shù)學(xué)在其教學(xué)過程中起著基礎(chǔ)性的作用,對于學(xué)生后續(xù)的學(xué)習(xí)相當(dāng)關(guān)鍵。但是從現(xiàn)階段高職院校數(shù)學(xué)教學(xué)的基本情況來看,數(shù)學(xué)教師的教學(xué)方法以及教學(xué)策略都相當(dāng)落后,對于學(xué)生數(shù)學(xué)興趣的提升造成了不同程度的影響。在這樣的背景下,相關(guān)專家提出了數(shù)學(xué)建模的方式,希望以此提升高職院校高等數(shù)學(xué)的教學(xué)效率。本文結(jié)合數(shù)學(xué)建模在高職高專人才培養(yǎng)當(dāng)中的意義和作用入手,對于其中的應(yīng)用策略進行全面的分析,希望為相關(guān)單位提供一個全面的參考。
隨著我國社會的發(fā)展,經(jīng)濟產(chǎn)業(yè)結(jié)構(gòu)日益升級,因此高等院校的人才需求日益擴大,對于高職教育的發(fā)展提供了前所未有的契機。在這樣的背景下,從數(shù)學(xué)建模入手,將其思想融入到高等教育的數(shù)學(xué)教學(xué)當(dāng)中,對于其中的策略和方法進行全面的研究應(yīng)該是一項具有普遍現(xiàn)實意義的工作。
從近些年的發(fā)展來看,參加過數(shù)學(xué)競賽的學(xué)生在科研能力等方面都具有比其他同學(xué)更強的優(yōu)勢,因此數(shù)學(xué)建模在提升學(xué)生創(chuàng)新能力、提高學(xué)生知識水平以及調(diào)動學(xué)生的.學(xué)習(xí)興趣都具有十分重要的意義。比如在解決實際問題的時候,數(shù)學(xué)建模通過利用各種技巧,可以使得學(xué)生分析問題、創(chuàng)造能力得以全面的提升,進而使得學(xué)生在摒棄原始思考問題方式的基礎(chǔ)上,敢于向傳統(tǒng)的知識發(fā)出挑戰(zhàn),對于學(xué)生的綜合能力的全面提升相當(dāng)關(guān)鍵。其次,數(shù)學(xué)知識本就源于生活,因此在建模的基礎(chǔ)上學(xué)生就可以帶著問題去思考,這對于數(shù)學(xué)知識整體性的發(fā)揮以及解決問題能力的提升都具有十分重要的意義。最后,面對傳統(tǒng)數(shù)學(xué)的解決方式,很多學(xué)生望而生畏,因此主動分析問題的欲望就會受到遏制。在這樣的背景下,通過數(shù)學(xué)建模方式,學(xué)生會發(fā)現(xiàn)數(shù)學(xué)方法的靈活性,進而使得他們解決問題的能力得以全面的提升。
3.1制定切實可行的教學(xué)大綱,從而使得教學(xué)進度得以保障。教學(xué)大綱在高職教學(xué)當(dāng)中起著十分重要的作用,這對于教學(xué)內(nèi)容的合理性以及提升學(xué)生學(xué)習(xí)的針對性都具有十分重要的意義[1]。比如在教學(xué)高等數(shù)學(xué)(一)的選修模塊時,教學(xué)大綱的制定應(yīng)該結(jié)合學(xué)生的專業(yè),從而使得學(xué)生的數(shù)學(xué)學(xué)習(xí)真正取得實效。比如可以為理工類的學(xué)生選擇無窮級數(shù)以及傅里葉變換的內(nèi)容;機械類的學(xué)生選擇線性代數(shù)以及解析幾何作為教學(xué)內(nèi)容,從而使得學(xué)生的綜合能力得以全面的提升。3.2開展“三段式”的教學(xué)模式。數(shù)學(xué)建模在以解決實際問題為核心的過程中,使得學(xué)生分析問題以及組織問題的能力得以全面的提升,這種方式的本質(zhì)為素質(zhì)教育,因此不能和現(xiàn)行的其他教學(xué)模式分割開來,這就需要相關(guān)部門開展“三段式”的教學(xué)模式,使得學(xué)生的數(shù)學(xué)興趣得以全面的提升。其中,第一段需要還原數(shù)學(xué)知識的原創(chuàng)過程,使得學(xué)生明確數(shù)學(xué)知識的產(chǎn)生過程,進而讓學(xué)生從生活案例當(dāng)中發(fā)現(xiàn)數(shù)學(xué)的價值,比如知道極限是由人影的長度變化引起的,導(dǎo)數(shù)是由于駕車的速度引入的,使得學(xué)生發(fā)現(xiàn)知識的價值,進而就會大大提升自己的學(xué)習(xí)興趣和探究意識。第二段:講解數(shù)學(xué)知識。數(shù)學(xué)建模是在實際問題當(dāng)中引入的,因此要通過具體數(shù)學(xué)知識的講解使得學(xué)生明確數(shù)學(xué)建模的真正價值,比如在講解微積分的過程中,可以以“極限-微分-積分”為主線,使得學(xué)生對于數(shù)學(xué)的分析能力真正得以提升[2]。然后在為學(xué)生積極引入大量數(shù)學(xué)圖表的基礎(chǔ)上,為增強學(xué)生的感性認識,進而提升學(xué)生的綜合能力奠定堅實的基礎(chǔ)。第三段:數(shù)學(xué)知識的運用。隨著社會的發(fā)展,數(shù)學(xué)的應(yīng)用在各行各業(yè)都發(fā)揮出巨大的作用,因此對于高等數(shù)學(xué)在實際生活當(dāng)中發(fā)揮出來的作用進行全面的探究是實現(xiàn)這種知識價值的真正途徑。在這樣的背景下,高等數(shù)學(xué)教師要將每個知識點的運用真正灌輸給學(xué)生,比如指數(shù)增長在銀行計息當(dāng)中的應(yīng)用、定積分在學(xué)習(xí)曲線當(dāng)中的應(yīng)用、再生資源在數(shù)學(xué)開發(fā)以及管理當(dāng)中的應(yīng)用等等。從而使得學(xué)生數(shù)學(xué)學(xué)習(xí)中的創(chuàng)新意識以及應(yīng)用能力得以全面的提升。3.3開設(shè)數(shù)學(xué)實驗,提升學(xué)生的綜合素質(zhì)。數(shù)學(xué)建模為學(xué)生提供了一種真正的“數(shù)學(xué)實驗”,在這種實驗的過程中,學(xué)生對于數(shù)學(xué)知識的發(fā)展以及由來過程都會得到進行全面的考慮,這對于他們數(shù)學(xué)探索意識的提升具有十分重要的意義。另外,在計算機輔助實驗的過程中,學(xué)生的動腦能力也會得到全面的提升,這對于學(xué)生主動的學(xué)習(xí)數(shù)學(xué)相當(dāng)關(guān)鍵。因此在教學(xué)過程中,教師要積極利用這種方式對于學(xué)生進行全面的培養(yǎng)。
總之,隨著我國經(jīng)濟水平的不斷提升,社會對于高職院校的重視力度日益提升,因此對于高職院校當(dāng)中數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)當(dāng)中的應(yīng)用進行全面的分析是實現(xiàn)學(xué)生綜合素質(zhì)得以全面提升的關(guān)鍵措施,這對于學(xué)生的長遠發(fā)展也相當(dāng)關(guān)鍵,相關(guān)教育工作者要加大在這方面的研究力度,力求將高職院校的學(xué)生培養(yǎng)成為新時代所需要的人才。
[1]吳健輝,黃志堅,汪龍虎.對數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中的探討[j].景德鎮(zhèn)高專學(xué)報,20xx,(4).
[2]張卓飛.將數(shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)教學(xué)的探討[j].湘潭師范學(xué)院學(xué)報(自然科學(xué)版),20xx,(1).
數(shù)學(xué)建模論文篇十一
隨著社會的不斷發(fā)展和科學(xué)技術(shù)的進步,數(shù)學(xué)在現(xiàn)實生活中的應(yīng)用越來越廣泛,尤其是計算機技術(shù)的發(fā)展及廣泛應(yīng)用,使數(shù)學(xué)建模思想在解決社會各個領(lǐng)域中的實際問題的應(yīng)用越來越深入。本文筆者簡要談?wù)剶?shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)類課程的意義和方法。
所謂數(shù)學(xué)建模就是指構(gòu)造數(shù)學(xué)模型的過程,也就是說用公式、符號和圖表等數(shù)學(xué)語言來刻畫和描述一個實際問題,再經(jīng)過計算、迭代等數(shù)學(xué)處理得到定量的結(jié)果,從而供人們分析、預(yù)報、決策與控制。那么數(shù)學(xué)模型就是利用數(shù)學(xué)術(shù)語對一部分現(xiàn)實世界的描述。數(shù)學(xué)建模思想是指理論聯(lián)系實際,將實際的事物抽象成數(shù)學(xué)模型,然后利用所學(xué)的理論來解決問題的一種思想。
在新形勢下,傳統(tǒng)的數(shù)學(xué)教學(xué)方法已經(jīng)無法適應(yīng)現(xiàn)在大學(xué)數(shù)學(xué)教育改革的需求,數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程教育融合成為目前高等院校數(shù)學(xué)教學(xué)改革的突破口。
(1)數(shù)學(xué)知識在各個領(lǐng)域的應(yīng)用越來越廣泛。如今數(shù)學(xué)知識在各個領(lǐng)域的應(yīng)用越來越廣泛,尤其是在經(jīng)濟學(xué)中的應(yīng)用最為顯著。自從1969年創(chuàng)設(shè)諾貝爾經(jīng)濟學(xué)獎以來,就有不少理論成果來自利用數(shù)學(xué)工具分析經(jīng)濟問題。事實上,從1969年到20xx年這35年中,一共產(chǎn)生了53位獲獎?wù)撸渲袚碛袛?shù)學(xué)學(xué)位的共有19人,所占比例為35.8%;其中擁有理工學(xué)位的有9人,所占比例為17%;二者共計占52.8%;其中共有29位諾貝爾經(jīng)濟學(xué)獎的獲得者是以數(shù)學(xué)方法為主要的研究方法,約占總?cè)藬?shù)的63.1%。然而幾乎所有的諾貝爾經(jīng)濟學(xué)獎獲得者都運用了數(shù)學(xué)方法來研究經(jīng)濟學(xué)理論。除了在經(jīng)濟領(lǐng)域,數(shù)學(xué)建模思想也廣泛應(yīng)用于生物醫(yī)學(xué),包括超聲波、電磁診斷等方面。同時數(shù)學(xué)建模還將數(shù)學(xué)與生物學(xué)融合進了基因科學(xué),例如基因表達的定型、基因組測序、基因分類等等,在生物學(xué)領(lǐng)域需要建立大規(guī)模的模擬以及復(fù)雜的數(shù)學(xué)模型??梢姅?shù)學(xué)建模思想的應(yīng)用是非常廣泛的,并對其他領(lǐng)域的發(fā)展起著重要的推動作用。
(2)有利于激發(fā)學(xué)生的學(xué)習(xí)熱情,豐富大學(xué)數(shù)學(xué)課程。一般的數(shù)學(xué)課,通常只是重視理論知識的講解和傳授,對知識點的推理和思想方法的分析較少。而且多數(shù)學(xué)生為了應(yīng)付考試,也只是以“類型題”的方式去復(fù)習(xí)知識點。這樣的方式雖然能夠讓學(xué)生掌握一部分數(shù)學(xué)知識,可是卻不能提高學(xué)生的數(shù)學(xué)素質(zhì),不能提高學(xué)生對大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣。而數(shù)學(xué)建模思想運用數(shù)學(xué)知識來解決生活中的實際問題,這樣就使數(shù)學(xué)活了起來,而不是死的理論知識。運用數(shù)學(xué)建模思想能夠讓學(xué)生在數(shù)學(xué)中感悟生活,在生活中體會數(shù)學(xué)的價值,更容易吸引學(xué)生的學(xué)習(xí)興趣。而興趣是學(xué)習(xí)最有效的動力,讓學(xué)生主動參與學(xué)習(xí)而非被動學(xué)習(xí),取得的教學(xué)效果會更好。
(3)是加強數(shù)學(xué)教學(xué)改革,適應(yīng)時代發(fā)展的需要。在大學(xué)數(shù)學(xué)教學(xué)活動中,許多學(xué)生常常陷入這樣的困惑之中:花費了大量的精力,做了很多習(xí)題,但是卻感受不到數(shù)學(xué)的作用和價值。而教師在教學(xué)中也總是告訴學(xué)生數(shù)學(xué)是一門很有用的課程,但是卻舉不出現(xiàn)實的例子。并且傳統(tǒng)的教學(xué)方式也只是教會學(xué)生掌握簡單的理論知識,并不能提高學(xué)生的數(shù)學(xué)素養(yǎng)和數(shù)學(xué)意識。而將數(shù)學(xué)建模思想融入到大學(xué)的數(shù)學(xué)類課程之中就能很好地解決這些問題。因為將數(shù)學(xué)建模思想運用到數(shù)學(xué)類課程中,就能夠讓學(xué)生在獨立思考和探索中感受到數(shù)學(xué)在現(xiàn)實生活中的實用價值,提高學(xué)生運用數(shù)學(xué)的眼光去觀察、分析以及表示各種事物的空間關(guān)系、數(shù)量關(guān)系和數(shù)學(xué)信息的能力,提高學(xué)生的創(chuàng)造能力和創(chuàng)新意識。
(1)教師在教學(xué)過程中較少滲入數(shù)學(xué)建模思想。目前在高校數(shù)學(xué)教學(xué)中數(shù)學(xué)建模的思想應(yīng)用得仍然較少,重視程度不夠。不少高校的教師在開展大學(xué)數(shù)學(xué)類課程時,仍然只是停留在數(shù)學(xué)知識的教學(xué)方面,并沒有對學(xué)生進行研究性學(xué)習(xí)探索。據(jù)調(diào)查,大多數(shù)高校教師對日常的教學(xué)工作能夠認真完成規(guī)定的教學(xué)任務(wù),但能夠真正創(chuàng)造性地把數(shù)學(xué)建模思想融入到數(shù)學(xué)教學(xué)任務(wù)中的教師較少。大多數(shù)高校數(shù)學(xué)老師都意識到探索式的數(shù)學(xué)建模教學(xué)很重要,但真正將數(shù)學(xué)建模思想與數(shù)學(xué)教學(xué)融合的嘗試和探索卻很少??梢姸鄶?shù)高校教師雖然明白數(shù)學(xué)建模思想的重要性,但是由于缺乏足夠的數(shù)學(xué)建模教學(xué)的相關(guān)知識及經(jīng)驗,在實際教學(xué)中數(shù)學(xué)建模思想仍未得到充分的運用。
(2)開設(shè)的有關(guān)數(shù)學(xué)建模的課程和活動較少。雖然數(shù)學(xué)建模思想得到了越來越廣泛的應(yīng)用,但是在高校中實際開設(shè)的有關(guān)數(shù)學(xué)建模的課程并不多,尤其是應(yīng)用數(shù)學(xué)、數(shù)學(xué)實驗以及計算機應(yīng)用等一些需要滲入數(shù)學(xué)建模思想的課程在實際的教學(xué)過程中并沒有創(chuàng)造性地運用數(shù)學(xué)建模思想。另一方面,校內(nèi)自主開展的有關(guān)數(shù)學(xué)建模競賽和活動并不多,宣傳力度也不夠,無法讓更多的學(xué)生了解數(shù)學(xué)建模的意義和價值,更無法參與到數(shù)學(xué)建?;顒又腥?。
(3)學(xué)生對數(shù)學(xué)的態(tài)度和觀念還未改變,對數(shù)學(xué)建模缺乏深入的了解。大學(xué)數(shù)學(xué)是一門較為抽象的學(xué)科,其概念、定理和性質(zhì)都不容易掌握,由于其具有一定的難度,所以不少學(xué)生對大學(xué)數(shù)學(xué)類課程以及數(shù)學(xué)建模沒有興趣。并且這些學(xué)生在初中和高中階段也學(xué)習(xí)數(shù)學(xué),但是不少學(xué)生是為了應(yīng)付考試,并沒有見識到數(shù)學(xué)的應(yīng)用性,覺得數(shù)學(xué)是一門純理論的課程,沒有實用價值。同時很多學(xué)生對數(shù)學(xué)建模思想的運用并不夠了解,不知道如何將數(shù)學(xué)知識和數(shù)學(xué)方法應(yīng)用到實際的生活中去,覺得數(shù)學(xué)沒有用,也沒有深入學(xué)習(xí)的意義。
(1)提高課堂教學(xué)質(zhì)量,創(chuàng)造性地運用數(shù)學(xué)建模思想。大學(xué)的數(shù)學(xué)類課程主要有“線性代數(shù)”、“高等數(shù)學(xué)”、“運籌學(xué)”、“數(shù)學(xué)建模”、“概率論與數(shù)理統(tǒng)計”等,這些課程的核心部分都跟高等數(shù)學(xué)有關(guān),所以要注重提高數(shù)學(xué)類課程的教學(xué)質(zhì)量關(guān)鍵就在于高等數(shù)學(xué),而要提高高等數(shù)學(xué)的教學(xué)質(zhì)量就必須在教學(xué)過程中創(chuàng)造性地應(yīng)用數(shù)學(xué)建模思想。對于主修數(shù)學(xué)的學(xué)生,要加強對計算機軟件和語言的學(xué)習(xí),系統(tǒng)性地對數(shù)學(xué)原理進行剖解和分析,合理運用數(shù)學(xué)知識和數(shù)學(xué)方法解決社會實際問題。在教學(xué)中多引導(dǎo)、啟發(fā)學(xué)生利用對生活問題和科學(xué)問題的深入研究,主動結(jié)合自己的課程理論知識和數(shù)學(xué)建模,使數(shù)學(xué)建模思想融入到學(xué)生的整個學(xué)習(xí)過程中去。對于非數(shù)學(xué)領(lǐng)域的問題,要啟發(fā)學(xué)生運用計算機軟件建模,從而解決不同領(lǐng)域中的數(shù)學(xué)建模問題。
(2)多開設(shè)跟數(shù)學(xué)建模有關(guān)的數(shù)學(xué)類課程。例如除了開設(shè)跟數(shù)學(xué)建模有關(guān)的必修課,還可以開設(shè)一些跟數(shù)學(xué)建模有關(guān)的選修課,為其他專業(yè)的學(xué)生提供接觸和了解數(shù)學(xué)建模思想的機會,為學(xué)生拓展知識領(lǐng)域,為其解決該領(lǐng)域的問題提供有效的方法。例如,經(jīng)濟學(xué)有關(guān)專業(yè)的學(xué)生就可以通過選修跟數(shù)學(xué)建模有關(guān)的課程,解決其在經(jīng)濟學(xué)中遇到的問題,因為很多跟經(jīng)濟學(xué)有關(guān)的問題僅僅靠經(jīng)濟學(xué)的知識是無法解決的,像貸款計算這樣的問題就要將數(shù)學(xué)與經(jīng)濟學(xué)聯(lián)系起來才能解決實際問題。
(3)廣泛宣傳,讓學(xué)生了解數(shù)學(xué)建模的意義和價值。學(xué)生是教學(xué)過程中的主體,目前,大學(xué)數(shù)學(xué)建模課程開設(shè)效果不佳,學(xué)生參與度低的主要原因就是學(xué)生缺乏對數(shù)學(xué)建模的深入了解。那么,要提高學(xué)生的參與性,促進數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程的融合就必須加強宣傳,讓學(xué)生深入了解什么是數(shù)學(xué)建模。同時,在課堂上就是也要轉(zhuǎn)變傳統(tǒng)枯燥的教學(xué)方式,多使用啟發(fā)式教學(xué)和探索式教學(xué),吸引學(xué)生的學(xué)習(xí)興趣,讓他們發(fā)現(xiàn)數(shù)學(xué)對社會實際生活的重要作用,轉(zhuǎn)變他們對數(shù)學(xué)的態(tài)度,并引導(dǎo)學(xué)生對數(shù)學(xué)建模和數(shù)學(xué)課程感興趣。
(4)轉(zhuǎn)變數(shù)學(xué)教育理念及教育方式。要轉(zhuǎn)變傳統(tǒng)的教育方式,將教學(xué)的重點放在數(shù)學(xué)知識在生活中的應(yīng)用問題上,而不是將知識與實際生活割裂開來。同時在教學(xué)中要注重證明和推理,加強學(xué)生對數(shù)學(xué)方法的掌握注重培養(yǎng)學(xué)生對實際問題的邏輯分析、簡化、抽象并運用數(shù)學(xué)語言表達的能力。也就是說教學(xué)的重點在于提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力和加強數(shù)學(xué)意識和數(shù)學(xué)方法的應(yīng)用,這樣才能夠培養(yǎng)出具有創(chuàng)新能力和創(chuàng)新意識的人才。
(5)多開展數(shù)學(xué)建模活動和競賽,提高學(xué)生參與性。在高校內(nèi)部要多開展跟數(shù)學(xué)有關(guān)的活動和競賽以及專家講座等,一方面加強學(xué)生對數(shù)學(xué)建模的認識,另一方面也提高了學(xué)生的參與性。通過專家講座,不僅可以讓學(xué)生更深入地了解數(shù)學(xué)建模的價值,也加強了學(xué)術(shù)交流,提高學(xué)生的數(shù)學(xué)建模應(yīng)用能力。通過數(shù)學(xué)建模競賽,為學(xué)生提供展示自己智慧、充分發(fā)揮其能力的平臺。同時,競賽也可以讓學(xué)生在競賽中發(fā)現(xiàn)自己的不足,在交流中不斷完善自己的缺陷,拓展學(xué)生的思維。而且,在數(shù)學(xué)建模比賽中,通過讓學(xué)生探究跟生活實際有關(guān)的例子,提高學(xué)生對數(shù)學(xué)建模的興趣,加強學(xué)生對模型應(yīng)用的直觀性認識,促進學(xué)校應(yīng)用型人才的培養(yǎng)。
總之,數(shù)學(xué)建模思想和高校數(shù)學(xué)類課程的融合,對于高等數(shù)學(xué)教學(xué)改革具有非常重要的意義。把數(shù)學(xué)建模思想融入到高等數(shù)學(xué)教學(xué)中,可以更好地提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,提高他們運用數(shù)學(xué)思想和數(shù)學(xué)方法分析問題、解決問題和抽象思維的能力。高校教師要加強數(shù)學(xué)建模思想的應(yīng)用,讓學(xué)生初步掌握從實際問題中總結(jié)數(shù)學(xué)內(nèi)涵的方法,提高學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,為高校學(xué)生專業(yè)課的學(xué)習(xí)奠定堅實的數(shù)學(xué)基礎(chǔ)。
數(shù)學(xué)建模論文篇十二
2.1、建立引導(dǎo)機制,激發(fā)學(xué)習(xí)動力。
2.2、建立轉(zhuǎn)化機制,促進知識向能力的轉(zhuǎn)化。
2.3、建立協(xié)作機制,增強團隊意識。
高校學(xué)生在平時的學(xué)習(xí)過程中,絕大多數(shù)情況下,基本上都是獨自學(xué)習(xí),與他人合作研究和解決問題機會很少.而在各種層次級別的數(shù)學(xué)建模競賽中,參賽學(xué)生要3人一組,以團隊而不是個人身份參賽.在正式比賽之前,要按照學(xué)科、特長等因素尋找隊友,組成隊伍.在比賽期間,由于隊友經(jīng)常是來自不同專業(yè),知識能力水平各有所長,脾氣秉性各有特點,需要在比賽時認真溝通,相互協(xié)調(diào),合理分工,團結(jié)協(xié)作共同完成整個比賽.為了比賽,在發(fā)生矛盾時,要學(xué)會忍耐和妥協(xié),而不能意氣用事.在整個比賽期間,求同存異,取長補短,優(yōu)勢互補,最終合作完成任務(wù).這個過程,無形中就培養(yǎng)了學(xué)生的合作意識和團隊精神,使學(xué)生親身感受到現(xiàn)代社會與人合作是大多數(shù)人成功的必要選擇.依托數(shù)學(xué)建模競賽,培養(yǎng)創(chuàng)新型人才的團隊協(xié)作意識,建立培養(yǎng)人才的.合作交流機制,這是適應(yīng)社會和時代需要的人才培養(yǎng)過程中的重要環(huán)節(jié)之一。
2.4、建立溝通表達機制,提高學(xué)生的語言及文字表達能力。
2.5、建立問題導(dǎo)向機制,培養(yǎng)學(xué)生主動式學(xué)習(xí)的自主學(xué)習(xí)能力。
3.1、促進了學(xué)生全面發(fā)展。
3.2、提高了學(xué)生的就業(yè)質(zhì)量。
數(shù)學(xué)建模論文篇十三
使學(xué)生的綜合應(yīng)用能力、實踐創(chuàng)新能力和綜合應(yīng)用素質(zhì)等多方面均能得到提升和發(fā)展。
對于醫(yī)學(xué)專業(yè)的學(xué)生來說,在校所學(xué)的數(shù)學(xué)基礎(chǔ)理論課程比較有限,并且學(xué)生對純粹的數(shù)學(xué)知識與復(fù)雜的理論推導(dǎo)已經(jīng)極為厭倦,如果數(shù)學(xué)建模還是以傳統(tǒng)的“灌輸式”和教師“主導(dǎo)型”為主、簡單的應(yīng)用案例為主要教學(xué)內(nèi)容的話,其結(jié)果勢必會使學(xué)生有一種再講數(shù)學(xué)課和做應(yīng)用題的感覺,既不能很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,也不能體現(xiàn)數(shù)學(xué)建模的思想方法和本質(zhì)特色。
因此,如何使學(xué)生擺脫這種尷尬的現(xiàn)狀已成為我們教學(xué)的一大難點。針對這種情況,在教學(xué)模式上,我們大膽嘗試研究型教學(xué)模式,即采用“從實踐中來,到實踐中去”的教學(xué)理念。一方面,從最現(xiàn)實、最熱門的醫(yī)學(xué)話題出發(fā),從學(xué)生最感興趣的.問題入手,激發(fā)學(xué)生的學(xué)習(xí)興趣和進一步學(xué)習(xí)的主動性,使他們從一開始就能進入到學(xué)習(xí)的角色中去;另一方面,通過開展多種方式的實踐教學(xué)活動,使學(xué)生在實踐中掌握數(shù)學(xué)建模的常用方法和基本技能,忽略繁瑣的數(shù)學(xué)推導(dǎo)過程,讓學(xué)生體會發(fā)現(xiàn)問題和思考問題的過程,培養(yǎng)學(xué)生解決問題的創(chuàng)新能力。
近些年來,我們開設(shè)的醫(yī)藥數(shù)學(xué)建模課受到了學(xué)生的一致好評,其關(guān)鍵之處在于我們一改傳統(tǒng)的教學(xué)模式,通過組織數(shù)學(xué)建模興趣研討班,讓每位同學(xué)都能充分地參與到研究中去并且使每位學(xué)生都有發(fā)言的機會。這些舉措旨在進一步激發(fā)學(xué)生的創(chuàng)新意識,提高學(xué)生的數(shù)學(xué)建模實踐能力。研討班面向全校各類醫(yī)學(xué)專業(yè)的學(xué)生,并以三人為單位,劃分成若干個組,通過專題研討的形式開展活動。實踐證明:通過這種研討過程,學(xué)生不僅對所學(xué)的醫(yī)學(xué)知識有了更深刻的理解與認識,在文獻資料查閱、計算機編程、語言表達能力等諸多方面也都有了顯著的提高。通過這個過程的學(xué)習(xí),為學(xué)生今后從事醫(yī)學(xué)科研工作打下了良好的基礎(chǔ)。
為了有效的培養(yǎng)學(xué)生綜合應(yīng)用能力和深層次學(xué)習(xí)的習(xí)慣與意識,我們在教學(xué)方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導(dǎo),突出知識的應(yīng)用思想和應(yīng)用意識,讓學(xué)生帶著問題上課,嘗試在解決問題中與教師進行交流,下課帶著問題回去。
在課堂教學(xué)中,重點講解發(fā)現(xiàn)問題和解決問題的方法與技巧。通過課前作業(yè),引導(dǎo)學(xué)生自我發(fā)現(xiàn)問題;通過課堂講解和研討,引導(dǎo)學(xué)生解決問題;通過課后作業(yè),總結(jié)和鞏固所學(xué)知識,學(xué)習(xí)應(yīng)用與拓展知識。這種完全以學(xué)生為主,教師為輔的做法,有利于培養(yǎng)學(xué)生樹立勇于探索求知的信心和探索新知識的能力與意識,提高學(xué)生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學(xué)生的綜合應(yīng)用素質(zhì)。
在現(xiàn)實生活中的實際問題是比較復(fù)雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應(yīng)用方能解決。
因此,以實際問題驅(qū)動的教學(xué)模式,主要是引導(dǎo)學(xué)生如何將復(fù)雜的實際問題分解為一系列簡單的小問題,在解決每一個小問題的過程中,讓學(xué)生學(xué)習(xí)并掌握相關(guān)的數(shù)學(xué)知識與方法。這種在應(yīng)用中學(xué)習(xí)的教學(xué)方法,在很大程度上解決了學(xué)生普遍存在的“學(xué)數(shù)學(xué)有什么用、學(xué)了數(shù)學(xué)不知怎么用”的困惑。
在整個教學(xué)過程中,貫穿以學(xué)生為主體,通過案例分析引導(dǎo)學(xué)生的思維方法,針對一個案例的解決過程和方法,要求實現(xiàn)舉一反三,促使學(xué)生對所掌握的知識進行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學(xué)生在學(xué)習(xí)和問題的解決中學(xué)會不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問題,通過不斷地歸納演繹、對比分析、總結(jié)經(jīng)驗、彌補不足,進一步學(xué)習(xí)相關(guān)知識和方法,再進行實踐,從而不斷增強自身的綜合應(yīng)用能力和素質(zhì)。
隨著醫(yī)學(xué)院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對培養(yǎng)適應(yīng)科學(xué)技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學(xué)人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專業(yè)人才已成為亟待解決的問題之一。本文探討了醫(yī)藥數(shù)學(xué)建模課程的開設(shè)對培養(yǎng)大學(xué)生實踐創(chuàng)新能力的幾點做法。教學(xué)實踐證明:數(shù)學(xué)建模課充分鍛煉了學(xué)生的各項能力,是提高醫(yī)學(xué)專業(yè)學(xué)生綜合應(yīng)用素質(zhì)行之有效的方法。
數(shù)學(xué)建模論文篇十四
摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識解決日常問題的一個重要手段。本文通過簡述數(shù)學(xué)建模的方法與過程,以及應(yīng)用數(shù)學(xué)建模解決實際經(jīng)濟問題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟問題解決中的重要作用。
經(jīng)濟現(xiàn)象具有多變性,隨著經(jīng)濟社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟形勢受到的影響因素越來越復(fù)雜多變。而日常經(jīng)濟生活中所遇到的經(jīng)濟現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對這些難以把控的變量,做好風(fēng)險的預(yù)估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識、應(yīng)用數(shù)學(xué)建模為工具進行較為理性的計算,為經(jīng)濟決策、企業(yè)規(guī)劃提供重要的幫助。
數(shù)學(xué)建模,其實就是建立數(shù)學(xué)模型的簡稱,實際上數(shù)學(xué)建??梢苑Q之為解決問題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進行合理的運算,推導(dǎo)出一種理性的結(jié)果的過程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個中介和橋梁,在工業(yè)設(shè)計、經(jīng)濟領(lǐng)域、工程建設(shè)等各個方面,運用數(shù)學(xué)的語言和方法進行問題的求解和推導(dǎo),實際上,都是一種數(shù)學(xué)建模的過程。數(shù)學(xué)建模的主要過程可以總結(jié)為如下的框圖形式:實際上,數(shù)學(xué)模型的最終建立是一個反復(fù)驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數(shù)學(xué)模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實際對象的特性,對復(fù)雜問題進行簡化,提取主要因素,提煉精確的數(shù)學(xué)語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個量(變量、常量)間的數(shù)學(xué)關(guān)系,化實際問題為數(shù)學(xué)語言;4.模型求解:對上述數(shù)學(xué)關(guān)系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結(jié)果與實際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結(jié)果與實際情況相驗證,檢驗?zāi)P偷暮侠硇院瓦m用性。
二、經(jīng)濟問題數(shù)學(xué)模型的建立。
經(jīng)濟類問題因為其特有的特點,可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機性情況的模型,可以解決類似風(fēng)險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設(shè),精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟問題的建模計算實際上是一個從經(jīng)濟世界進入數(shù)學(xué)世界再回到經(jīng)濟世界的過程。建立經(jīng)濟數(shù)學(xué)模型,需要首先對實際經(jīng)濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應(yīng)用數(shù)學(xué)知識建立完整的數(shù)學(xué)經(jīng)濟模型。
三、建模舉例。
四、結(jié)語。
綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟中的應(yīng)用可以非常廣泛,對很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤、規(guī)避風(fēng)險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。
數(shù)學(xué)建模論文篇十五
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重數(shù)學(xué)建模思想的有效培養(yǎng),促進學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點,提高數(shù)學(xué)建模思想培養(yǎng)的有效性?;诖?,文章將從不同的方面對小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持數(shù)學(xué)課堂教學(xué)的高效性。要實現(xiàn)這樣的發(fā)展目標,增強小學(xué)生數(shù)學(xué)建模思想的實際培養(yǎng)效果,需要加強對學(xué)生動手實踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學(xué)教學(xué)計劃的實施。因此,教師需要利用學(xué)生動手實踐能力的作用,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學(xué)生認為邊越長角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R點有更加正確而全面的認識,教師可以通過在黑板上設(shè)置一些能夠活動的三角板,讓學(xué)生親自動手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學(xué)計劃的實施打下堅實的基礎(chǔ)。通過這種教學(xué)方法的合理運用,可以激發(fā)出學(xué)生們在數(shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。
通過對小學(xué)階段各種數(shù)學(xué)實踐教學(xué)活動實際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點的深入理解,增強其主動參與數(shù)學(xué)建模教學(xué)活動的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達到預(yù)期的效果,教師需要結(jié)合實際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對數(shù)學(xué)建模思想的整體認知水平。比如,在講授“異分母分數(shù)加減法”這部分知識的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當(dāng)學(xué)生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對知識點的理解,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動開展中注重對數(shù)學(xué)思想的靈活運用,增強相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運用各種數(shù)學(xué)知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對角的分類及畫角相關(guān)知識點的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學(xué)設(shè)備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點的過程中,教師應(yīng)通過對學(xué)生的正確引導(dǎo),運用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實際發(fā)展概況,可知靈活運用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標的順利實現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
數(shù)學(xué)建模論文篇十六
隨著我國高等教育的發(fā)展,高校招生規(guī)模越來越大,而生源質(zhì)量較低,特別是獨立學(xué)院院校。就我校而言,絕大多數(shù)專業(yè)都開設(shè)了數(shù)學(xué)類課程。但在教學(xué)中,普遍認為理論性太強,與實際脫節(jié)嚴重,不能引起學(xué)生的學(xué)習(xí)興趣。并且,傳統(tǒng)教學(xué)忽視了學(xué)生用數(shù)學(xué)解決實際問題的能力,所以,進行數(shù)學(xué)教學(xué)改革勢在必行。數(shù)學(xué)建??膳囵B(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力,通過數(shù)模方法對實際問題進行巧妙處理,讓學(xué)生體會到數(shù)學(xué)不僅能傳播理論知識和求解一些數(shù)學(xué)問題,還可將其應(yīng)用到實際問題中,讓學(xué)生看到一些實際模型的來龍去脈,提高學(xué)生的學(xué)習(xí)積極性。數(shù)學(xué)建模是培養(yǎng)學(xué)生綜合科學(xué)素質(zhì)和創(chuàng)新能力的一個極好載體,而且能充分考驗學(xué)生的洞察能力、創(chuàng)新能力、聯(lián)想能力、使用當(dāng)代科技最新成果的能力等。學(xué)生們同舟共濟的團隊合作精神和協(xié)調(diào)組織能力,以及誠信意識和自律精神的塑造,都能得到很好的培養(yǎng)。技能技術(shù)的掌握和團隊合作精神對于獨立學(xué)院學(xué)生將來進入社會十分重要,這也是衡量獨立學(xué)院辦學(xué)成功與否的一個方面。因此,獨立學(xué)院的人才培養(yǎng)目標定位,既要達到本科生應(yīng)具備的理論基礎(chǔ),又要有相對突出的專業(yè)技能,應(yīng)培養(yǎng)“應(yīng)用型本科”人才。因而,獨立學(xué)院的數(shù)學(xué)課堂上應(yīng)該多方面滲透數(shù)學(xué)模型的思想。
(一)人才培養(yǎng)創(chuàng)新的需要。
根據(jù)獨立學(xué)院人才培養(yǎng)目標和實際情況,有針對性的加大基礎(chǔ)課和實踐環(huán)節(jié)教學(xué)的'比重,側(cè)重于實踐能力的培養(yǎng),在專業(yè)課程體系中適當(dāng)增加實驗、實踐教學(xué)內(nèi)容,加強與社會實體的聯(lián)系。力求培養(yǎng)出具有實際操作能力的高素質(zhì)大學(xué)生。數(shù)學(xué)建模是將一個實際問題,對其作出一些必要的簡化與假設(shè),將其轉(zhuǎn)化成一個數(shù)學(xué)問題,借助數(shù)學(xué)工具和數(shù)學(xué)方法精確或近似地解決該問題,并用數(shù)學(xué)結(jié)果解釋客觀現(xiàn)象、回答實際問題并接受客觀實際的檢驗。數(shù)學(xué)建模能彌補傳統(tǒng)數(shù)學(xué)教學(xué)在實際應(yīng)用方面的不足,促進數(shù)學(xué)教師在現(xiàn)代化教學(xué)手段、教學(xué)模式方面的更新。數(shù)學(xué)建模有助于調(diào)動學(xué)生的學(xué)習(xí)興趣,在計算機應(yīng)用能力、實踐能力和創(chuàng)新意識的培養(yǎng)方面都有著非常大的作用,以便學(xué)生將來能更好地適應(yīng)工作崗位。
(二)高校教學(xué)改革的需要。
當(dāng)今社會信息高度發(fā)達,競爭日益激烈,必須具備一定的創(chuàng)新意識和創(chuàng)新能力,否則很難適應(yīng)社會信息時代的要求。傳統(tǒng)的教學(xué)模式是以課堂理論講授為主,學(xué)生絕大部分時間都集中學(xué)習(xí)書本知識,很少有機會接觸社會,也難做到學(xué)以致用。絕大多數(shù)課程都是教師的一言堂,考試也是以教師講課內(nèi)容為主。學(xué)生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學(xué)導(dǎo)致學(xué)生明顯缺乏學(xué)習(xí)的主動性,會聽從而不會質(zhì)疑,更不會形成開創(chuàng)性的觀點,很難適應(yīng)企事業(yè)單位動態(tài)的工作環(huán)境。數(shù)學(xué)作為一門傳統(tǒng)基礎(chǔ)學(xué)科,對獨立學(xué)院的學(xué)生來說,學(xué)習(xí)上有一定的難度。我們的教學(xué)應(yīng)以“必需,夠用”為度。數(shù)學(xué)建模從形式到內(nèi)容,都與畢業(yè)后工作時的條件非常相近,是一次非常好的鍛煉,學(xué)生通過自主的學(xué)習(xí),把實際的問題轉(zhuǎn)化為數(shù)學(xué)理論解決,有助于學(xué)生創(chuàng)新能力的培養(yǎng)動手能力的提高,這也正是獨立學(xué)院院校應(yīng)用型本科人才培養(yǎng)的方向。
(三)學(xué)生參加數(shù)學(xué)建模競賽的需要。
獨立學(xué)院學(xué)生思維活躍,且比較注重個人能力素質(zhì)的提高。很多學(xué)生愿意在學(xué)校參加一些競賽來提高自己。全國大學(xué)生數(shù)學(xué)建模競賽尤其受學(xué)生重視,但仍有很多大學(xué)生不了解這類競賽,因此,在數(shù)學(xué)課堂上引入數(shù)學(xué)建模思想,學(xué)生既了解了數(shù)學(xué)建模,又對數(shù)學(xué)公式提起了興趣,還有助于獨立學(xué)院學(xué)生在全國大學(xué)生數(shù)學(xué)建模競賽中取得優(yōu)異成績。
高等數(shù)學(xué)的作用表現(xiàn)在為各專業(yè)后續(xù)課程的學(xué)習(xí)提供必要的數(shù)學(xué)知識,培養(yǎng)各專業(yè)學(xué)生的數(shù)學(xué)思想與數(shù)學(xué)修養(yǎng),全面提高大學(xué)生創(chuàng)新思維和應(yīng)用能力。只有把數(shù)學(xué)建模思想融入數(shù)學(xué)教學(xué)中,才能調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的創(chuàng)新能力,實現(xiàn)提高學(xué)生綜合分析問題能力的最終目標。
作者:崔瑋王文麗單位:中國地質(zhì)大學(xué)長城學(xué)院信息工程系。
數(shù)學(xué)建模論文篇十七
大學(xué)數(shù)學(xué)具有高度抽象性和概括性等特點,知識本身難度大再加上學(xué)時少、內(nèi)容多等教學(xué)現(xiàn)狀常常造成學(xué)生的學(xué)習(xí)積極性不高、知識掌握不夠透徹、遇到實際問題時束手無策,而數(shù)學(xué)建模思想能激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,提高其解決實際問題的能力。數(shù)學(xué)建模活動為學(xué)生構(gòu)建了一個由數(shù)學(xué)知識通向?qū)嶋H問題的橋梁,是學(xué)生的數(shù)學(xué)知識和應(yīng)用能力共同提高的最佳結(jié)合方式。因此在大學(xué)數(shù)學(xué)教育中應(yīng)加強數(shù)學(xué)建模教育和活動,讓學(xué)生積極主動學(xué)習(xí)建模思想,認真體驗和感知建模過程,以此啟迪創(chuàng)新意識和創(chuàng)新思維,提高其素質(zhì)和創(chuàng)新能力,實現(xiàn)向素質(zhì)教育的轉(zhuǎn)化和深入。
數(shù)學(xué)建模即抓住問題的本質(zhì),抽取影響研究對象的主因素,將其轉(zhuǎn)化為數(shù)學(xué)問題,利用數(shù)學(xué)思維、數(shù)學(xué)邏輯進行分析,借助于數(shù)學(xué)方法及相關(guān)工具進行計算,最后將所得的答案回歸實際問題,即模型的檢驗,這就是數(shù)學(xué)建模的全過程。一般來說",數(shù)學(xué)建模"包含五個階段。
1.準備階段。
主要分析問題背景,已知條件,建模目的等問題。
2.假設(shè)階段。
做出科學(xué)合理的假設(shè),既能簡化問題,又能抓住問題的本質(zhì)。
3.建立階段。
從眾多影響研究對象的因素中適當(dāng)?shù)厝∩幔槿≈饕蛩赜枰钥紤],建立能刻畫實際問題本質(zhì)的數(shù)學(xué)模型。
4.求解階段。
對已建立的數(shù)學(xué)模型,運用數(shù)學(xué)方法、數(shù)學(xué)軟件及相關(guān)的工具進行求解。
5.驗證階段。
用實際數(shù)據(jù)檢驗?zāi)P?,如果偏差較大,就要分析假設(shè)中某些因素的合理性,修改模型,直至吻合或接近現(xiàn)實。如果建立的模型經(jīng)得起實踐的檢驗,那么此模型就是符合實際規(guī)律的,能解決實際問題或有效預(yù)測未來的,這樣的建模就是成功的,得到的模型必被推廣應(yīng)用。
二、加強數(shù)學(xué)建模教育的作用和意義。
(一)加強數(shù)學(xué)建模教育有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高數(shù)學(xué)修養(yǎng)和素質(zhì)。
數(shù)學(xué)建模教育強調(diào)如何把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,進而利用數(shù)學(xué)及其有關(guān)的工具解決這些問題,因此在大學(xué)數(shù)學(xué)的教學(xué)活動中融入數(shù)學(xué)建模思想,鼓勵學(xué)生參與數(shù)學(xué)建模實踐活動,不但可以使學(xué)生學(xué)以致用,做到理論聯(lián)系實際,而且還會使他們感受到數(shù)學(xué)的生機與活力,激發(fā)求知的興趣和探索的欲望,變被動學(xué)習(xí)為主動參與其效率就會大為改善。數(shù)學(xué)修養(yǎng)和素質(zhì)自然而然得以培養(yǎng)并提高。
(二)加強數(shù)學(xué)建模教育有助于提高學(xué)生的分析解決問題能力、綜合應(yīng)用能力。
數(shù)學(xué)建模問題來源于社會生活的眾多領(lǐng)域,在建模過程中,學(xué)生首先需要閱讀相關(guān)的文獻資料,然后應(yīng)用數(shù)學(xué)思維、數(shù)學(xué)邏輯及相關(guān)知識對實際問題進行深入剖析研究并經(jīng)過一系列復(fù)雜計算,得出反映實際問題的最佳數(shù)學(xué)模型及模型最優(yōu)解。因此通過數(shù)學(xué)建?;顒訉W(xué)生的視野將會得以拓寬,應(yīng)用意識、解決復(fù)雜問題的能力也會得到增強和提高。
(三)加強數(shù)學(xué)建模教育有助于培養(yǎng)學(xué)生的創(chuàng)造性思維和創(chuàng)新能力。
所謂創(chuàng)造力是指"對已積累的知識和經(jīng)驗進行科學(xué)地加工和創(chuàng)造,產(chǎn)生新概念、新知識、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構(gòu)成".現(xiàn)今教育界認為,創(chuàng)造力的培養(yǎng)是人才培養(yǎng)的關(guān)鍵,數(shù)學(xué)建?;顒拥母鱾€環(huán)節(jié)無不充滿了創(chuàng)造性思維的挑戰(zhàn)。
很多不同的實際問題,其數(shù)學(xué)模型可以是相同或相似的,這就要求學(xué)生在建模時觸類旁通,挖掘不同事物間的本質(zhì),尋找其內(nèi)在聯(lián)系。而對一個具體的建模問題,能否把握其本質(zhì)轉(zhuǎn)化為數(shù)學(xué)問題,是完成建模過程的關(guān)鍵所在。同時建模題材有較大的靈活性,沒有統(tǒng)一的標準答案,因此數(shù)學(xué)建模過程是培養(yǎng)學(xué)生創(chuàng)造性思維,提高創(chuàng)新能力的過程.
(四)加強數(shù)學(xué)建模教育有助于提高學(xué)生科技論文的撰寫能力。
數(shù)學(xué)建模的結(jié)果是以論文形式呈現(xiàn)的,如何將建模思想、建立的`模型、最優(yōu)解及其關(guān)鍵環(huán)節(jié)的處理在論文中清晰地表述出來,對本科生來說是一個挑戰(zhàn)。經(jīng)歷數(shù)學(xué)建模全過程的磨練,特別是數(shù)模論文的撰寫,學(xué)生的文字語言、數(shù)學(xué)表述能力及論文的撰寫能力無疑會得到前所未有的提高。
(五)加強數(shù)學(xué)建模教育有助于增強學(xué)生的團結(jié)合作精神并提高協(xié)調(diào)組織能力建模問題通常較復(fù)雜,涉及的知識面也很廣,因此數(shù)學(xué)建模實踐活動一般效仿正規(guī)競賽的規(guī)則,三人為一隊在三天內(nèi)以論文形式完成建模題目。要較好地完成任務(wù),離不開良好的組織與管理、分工與協(xié)作.
三、開展數(shù)學(xué)建模教育及活動的具體途徑和有效方法。
即在課堂教學(xué)中,教師以具體的案例作為主要的教學(xué)內(nèi)容,通過具體問題的建模,介紹建模的過程和思想方法及建模中要注意的問題。案例教學(xué)法的關(guān)鍵在于把握兩個重要環(huán)節(jié):
案例的選取和課堂教學(xué)的組織。
教學(xué)案例一定要精心選取,才能達到預(yù)期的教學(xué)效果。其選取一般要遵循以下幾點。
1.代表性:案例的選取要具有科學(xué)性,能拓寬學(xué)生的知識面,突出數(shù)學(xué)建模活動重在培養(yǎng)興趣提高能力等特點。
2.原始性:來自媒體的信息,企事業(yè)單位的報告,現(xiàn)實生活和各學(xué)科中的問題等等,都是數(shù)學(xué)建模問題原始資料的重要來源。
3.創(chuàng)新性:案例應(yīng)注意選取在建模的某些環(huán)節(jié)上具有挑戰(zhàn)性,能激發(fā)學(xué)生的創(chuàng)造性思維,培養(yǎng)學(xué)生的創(chuàng)新精神和提高創(chuàng)造能力。
案例教學(xué)的課堂組織,一部分是教師講授,從實際問題出發(fā),講清問題的背景、建模的要求和已掌握的信息,介紹如何通過合理的假設(shè)和簡化建立優(yōu)化的數(shù)學(xué)模型。還要強調(diào)如何用求解結(jié)果去解釋實際現(xiàn)象即檢驗?zāi)P?。另一部分是課堂討論,讓學(xué)生自由發(fā)言各抒己見并提出新的模型,簡介關(guān)鍵環(huán)節(jié)的處理。最后教師做出點評,提供一些改進的方向,讓學(xué)生自己課外獨立探索和鉆研,這樣既突出了教學(xué)重點,又給學(xué)生留下了進一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學(xué)生的課堂學(xué)習(xí)興趣和積極性,使傳授知識變?yōu)閷W(xué)習(xí)知識、應(yīng)用知識,真正地達到提高素質(zhì)和培養(yǎng)能力的教學(xué)目的.
(二)開展數(shù)模競賽的專題培訓(xùn)指導(dǎo)工作。
建立數(shù)學(xué)建模競賽指導(dǎo)團隊,分專題實行教師負責(zé)制。每位教師根據(jù)自己的專長,負責(zé)講授某一方面的數(shù)學(xué)建模知識與技巧,并選取相應(yīng)地建模案例進行剖析。如離散模型、連續(xù)模型、優(yōu)化模型、微分方程模型、概率模型、統(tǒng)計回歸模型及數(shù)學(xué)軟件的使用等。學(xué)生根據(jù)自己的薄弱點,選擇適合的專題培訓(xùn)班進行學(xué)習(xí),以彌補自己的不足。這種針對性的數(shù)模教學(xué),會極大地提高教學(xué)效率。
以現(xiàn)代網(wǎng)絡(luò)技術(shù)為依托,建立數(shù)學(xué)建模課程網(wǎng)站,內(nèi)容包括:課程介紹,課程大綱,教師教案,電子課件,教學(xué)實驗,教學(xué)錄像,網(wǎng)上答疑等;還可以增加一些有關(guān)欄目,如歷年國內(nèi)外數(shù)模競賽介紹,校內(nèi)競賽,專家點評,獲獎心得交流;同時提供數(shù)模學(xué)習(xí)資源下載如講義,背景材料,歷年國內(nèi)外競賽題,優(yōu)秀論文等。以此為學(xué)生提供良好的自主學(xué)習(xí)網(wǎng)絡(luò)平臺,實現(xiàn)課堂教學(xué)與網(wǎng)絡(luò)教學(xué)的有機結(jié)合,達到有效地提高學(xué)生數(shù)學(xué)建模綜合應(yīng)用能力的目的。
完全模擬全國大學(xué)生數(shù)模競賽的形式規(guī)則:定時公布賽題,三人一組,只能隊內(nèi)討論,按時提交論文,之后指導(dǎo)教師、參賽同學(xué)集中討論,進一步完善。筆者負責(zé)數(shù)學(xué)建模競賽培訓(xùn)近20年,多年的實踐證明,每進行一次這樣的訓(xùn)練,學(xué)生在建模思路、建模水平、使用軟件能力、論文書寫方面就有大幅提高。多次訓(xùn)練之后,學(xué)生的建模水平更是突飛猛進,效果甚佳。
如20xx年我指導(dǎo)的隊榮獲全國高教社杯大學(xué)生數(shù)學(xué)建模競賽的最高獎---高教社杯獎,這是此賽設(shè)置的唯一一個名額,也是當(dāng)年從全國(包括香港)院校的約1萬多個本科參賽隊中脫穎而出的。又如20xx年我校57隊參加全國大學(xué)生數(shù)學(xué)建模競賽,43隊獲獎,獲獎比例達75%,創(chuàng)歷年之最。
(五)鼓勵學(xué)生積極參加全國大學(xué)生數(shù)學(xué)建模競賽、國際數(shù)學(xué)建模競賽。
全國大學(xué)生數(shù)學(xué)建模競賽創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競賽,國際大學(xué)生數(shù)學(xué)建模競賽是世界上影響范圍最大的高水平大學(xué)生學(xué)術(shù)賽事。參加數(shù)學(xué)建模大賽可以激勵學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高運用數(shù)學(xué)及相關(guān)工具分析問題解決問題的綜合能力,開拓知識面,培養(yǎng)創(chuàng)造精神及合作意識。
四、結(jié)束語。
數(shù)學(xué)建模本身是一個創(chuàng)造性的思維過程,它是對數(shù)學(xué)知識的綜合應(yīng)用,具有較強的創(chuàng)新性,而高校數(shù)學(xué)教學(xué)改革的目的之一是要著力培養(yǎng)學(xué)生的創(chuàng)造性思維,提高學(xué)生的創(chuàng)新能力。因此應(yīng)將數(shù)學(xué)建模思想融入教學(xué)活動中,通過不斷的數(shù)學(xué)建模教育和實踐培養(yǎng)學(xué)生的創(chuàng)新能力和應(yīng)用能力從而提高學(xué)生的基本素質(zhì)以適應(yīng)社會發(fā)展的要求。
數(shù)學(xué)建模論文篇十八
摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
一、新課的引入需要發(fā)揮教師的作用。
教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導(dǎo)入會點燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識上來。這對提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時,新課前的導(dǎo)入環(huán)節(jié)是對學(xué)生進行情感教育的最佳時刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會到數(shù)學(xué)建模的價值、增強學(xué)好數(shù)學(xué)建模的信心。俗話說:“好的開始是成功的一半。”數(shù)學(xué)建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。
二、在教學(xué)任務(wù)的設(shè)計上需要發(fā)揮教師的作用。
數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來達到特定的教學(xué)目標和學(xué)習(xí)目標。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計質(zhì)量的高低。教師應(yīng)通過設(shè)計一系列高質(zhì)量的問題把復(fù)雜的數(shù)學(xué)建模問題分解成若干簡單問題來引導(dǎo)學(xué)生更好地發(fā)揮其主動性。學(xué)生也只有在這些問題的正確引導(dǎo)下才能突破難點并向著學(xué)習(xí)目標努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
三、在新舊知識的聯(lián)系點上需要發(fā)揮教師的作用。
建構(gòu)主義強調(diào)新知識是在學(xué)生已有知識的基礎(chǔ)上通過學(xué)生自身有意義的建構(gòu)獲得的。筆者認為,學(xué)生自主建構(gòu)知識應(yīng)在教師的科學(xué)引導(dǎo)下進行。尤其是對于數(shù)學(xué)建模這樣高難度的知識更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識聯(lián)系點上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準確掌握教學(xué)目標、難點的基礎(chǔ)上,充分考慮學(xué)生的認知能力、習(xí)慣、思維方式,通過有針對性的具體問題喚起學(xué)生對舊知識的回憶,再通過啟發(fā)性問題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識,從而實現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識。
四、在教學(xué)重點、難點上需要教師的引導(dǎo)。
教學(xué)的重點、難點是每一節(jié)課的核心和主線,只有準確把握了重點、突破了難點才能更好地掌握本節(jié)課的內(nèi)容。在強調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點、難點學(xué)生往往把握不準、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動去發(fā)現(xiàn)重點、突破難點。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點、突破難點并不是讓教師直接告訴學(xué)生本節(jié)課的重點是什么、怎樣突破難點,而是通過具體問題的引導(dǎo)讓學(xué)生自己找到重點、并通過學(xué)生自己的思考、討論解決疑難問題。學(xué)生在教師的引導(dǎo)下通過自己的努力、討論解決了疑難后,學(xué)生會非常興奮,從而會越來越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
數(shù)學(xué)建模論文篇一
信息化時代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進行定量化、精確化思維的意識,學(xué)會創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計知識很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識將現(xiàn)實問題化為數(shù)學(xué)問題,并進行求解運算的能力,激發(fā)學(xué)生對解決現(xiàn)實問題的探索欲望,強化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識為宗旨的教育改革需要。
大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴格的邏輯思維能力,而對數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實生活解決實際問題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過程中引導(dǎo)學(xué)生將數(shù)學(xué)知識內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進數(shù)學(xué)教育改革的重要舉措。
2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對數(shù)學(xué)本原知識的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標上的一致性、課程內(nèi)容上的互補性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對提高學(xué)生創(chuàng)新能力和對數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點,對課程體系進行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識應(yīng)用于工程問題的創(chuàng)新能力。
2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評價方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實踐檢驗。選取開展融入式教學(xué)的實驗班級,對數(shù)學(xué)建模思想方法融入主干課程進行教學(xué)效果實踐驗證。設(shè)計相應(yīng)的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進行建模求解等多方面對實驗課程的教學(xué)效果進行檢驗,深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進的對策。
3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴謹?shù)难堇[體系,教學(xué)過程中著力于對學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識,而對應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識,仍難以學(xué)會用數(shù)學(xué)的基本方法解決現(xiàn)實問題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進學(xué)生對數(shù)學(xué)基礎(chǔ)知識的掌握,同時理解數(shù)學(xué)原理所蘊涵的思想與方法。
這樣,在解決實際問題的時候,學(xué)生就會有意識地從數(shù)學(xué)的角度進行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進行求解,拓展了數(shù)學(xué)知識的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識與創(chuàng)新能力。
此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問題,比如數(shù)學(xué)建模與計算技術(shù)如何有效結(jié)合以進行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。
數(shù)學(xué)建模論文篇二
數(shù)學(xué)建模隨著人類的進步,科技的發(fā)展和社會的日趨數(shù)字化,應(yīng)用領(lǐng)域越來越廣泛,人們身邊的數(shù)學(xué)內(nèi)容越來越豐富。強調(diào)數(shù)學(xué)應(yīng)用及培養(yǎng)應(yīng)用數(shù)學(xué)意識對推動素質(zhì)教育的實施意義十分巨大。數(shù)學(xué)建模在數(shù)學(xué)教育中的地位被提到了新的高度,通過數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題,提高學(xué)生的綜合素質(zhì)。本文將結(jié)合數(shù)學(xué)應(yīng)用題的特點,把怎樣利用數(shù)學(xué)建模解好數(shù)學(xué)應(yīng)用問題進行剖析,希望得到同仁的幫助和指正。
一、數(shù)學(xué)應(yīng)用題的特點。
我們常把來源于客觀世界的實際,具有實際意義或?qū)嶋H背景,要通過數(shù)學(xué)建模的方法將問題轉(zhuǎn)化為數(shù)學(xué)形式表示,從而獲得解決的.一類數(shù)學(xué)問題叫做數(shù)學(xué)應(yīng)用題。數(shù)學(xué)應(yīng)用題具有如下特點:
第一、數(shù)學(xué)應(yīng)用題的本身具有實際意義或?qū)嶋H背景。這里的實際是指生產(chǎn)實際、社會實際、生活實際等現(xiàn)實世界的各個方面的實際。如與課本知識密切聯(lián)系的源于實際生活的應(yīng)用題;與模向?qū)W科知識網(wǎng)絡(luò)交匯點有聯(lián)系的應(yīng)用題;與現(xiàn)代科技發(fā)展、社會市場經(jīng)濟、環(huán)境保護、實事政治等有關(guān)的應(yīng)用題等。
第二、數(shù)學(xué)應(yīng)用題的求解需要采用數(shù)學(xué)建模的方法,使所求問題數(shù)學(xué)化,即將問題轉(zhuǎn)化成數(shù)學(xué)形式來表示后再求解。
第三、數(shù)學(xué)應(yīng)用題涉及的知識點多。是對綜合運用數(shù)學(xué)知識和方法解決實際問題能力的檢驗,考查的是學(xué)生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關(guān),很難將問題正確解答。
第一層次:直接建模。
根據(jù)題設(shè)條件,套用現(xiàn)成的數(shù)學(xué)公式、定理等數(shù)學(xué)模型,注解圖為:
第二層次:直接建模??衫矛F(xiàn)成的數(shù)學(xué)模型,但必須概括這個數(shù)學(xué)模型,對應(yīng)用題進行分析,然后確定解題所需要的具體數(shù)學(xué)模型或數(shù)學(xué)模型中所需數(shù)學(xué)量需進一步求出,然后才能使用現(xiàn)有數(shù)學(xué)模型。
第三層次:多重建模。對復(fù)雜的關(guān)系進行提煉加工,忽略次要因素,建立若干個數(shù)學(xué)模型方能解決問題。
第四層次:假設(shè)建模。要進行分析、加工和作出假設(shè),然后才能建立數(shù)學(xué)模型。如研究十字路口車流量問題,假設(shè)車流平穩(wěn),沒有突發(fā)事件等才能建模。
三、建立數(shù)學(xué)模型應(yīng)具備的能力。
從實際問題中建立數(shù)學(xué)模型,解決數(shù)學(xué)問題從而解決實際問題,這一數(shù)學(xué)全過程的教學(xué)關(guān)鍵是建立數(shù)學(xué)模型,數(shù)學(xué)建模能力的強弱,直接關(guān)系到數(shù)學(xué)應(yīng)用題的解題質(zhì)量,同時也體現(xiàn)一個學(xué)生的綜合能力。
1提高分析、理解、閱讀能力。
2強化將文字語言敘述轉(zhuǎn)譯成數(shù)學(xué)符號語言的能力。
3增強選擇數(shù)學(xué)模型的能力。
4加強數(shù)學(xué)運算能力。
數(shù)學(xué)應(yīng)用題一般運算量較大、較復(fù)雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數(shù)學(xué)運算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。
數(shù)學(xué)建模論文篇三
就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對學(xué)生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎(chǔ)開展教學(xué)活動。作為一門充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒有穿插應(yīng)用實例,在工作的時候?qū)W生不知道怎樣把問題解決,工作效率無法進一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動力。
(二)教學(xué)方法傳統(tǒng)化。
教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績。一般高數(shù)老師在授課的時候都是以課本的順次進行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無法為學(xué)生營造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨自學(xué)習(xí)、思考的能力進一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動參與學(xué)習(xí)。
二、建模在高等數(shù)學(xué)教學(xué)中的作用。
對學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進行培養(yǎng)的過程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動以及教研活動,其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識、實際應(yīng)用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學(xué)生的整體素質(zhì)進行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會對復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。
高等數(shù)學(xué)作為工科類學(xué)生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識的本來面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡化、抽象、翻譯部分現(xiàn)實世界信息的過程中使用數(shù)學(xué)的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學(xué)生的表達能力。在實際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗現(xiàn)實的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學(xué)生在分析問題的過程中可以主動地、客觀的辯證的運用數(shù)學(xué)方法,最終得出解決問題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。
三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施。
(一)在公式中使用建模思想。
在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的'教學(xué)效果進一步提升,在課堂上老師不僅要讓學(xué)生對計算的技巧進一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實例開展教學(xué)。
(二)講解習(xí)題的時候使用數(shù)學(xué)模型的方式。
課本例題使用建模思想進行解決,老師通過對例題的講解,很好的講述使用數(shù)學(xué)建模解決問題的方式,讓學(xué)生清醒的認識在解決問題的過程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學(xué)生解決問題的效率。
(三)組織學(xué)生積極參加數(shù)學(xué)建模競賽。
一般而言,在競賽中可以很好地鍛煉學(xué)生競爭意識以及獨立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競賽,在實踐中鍛煉學(xué)生的實際能力。在日常生活中使用數(shù)學(xué)建模解決問題,讓學(xué)生獨自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學(xué)習(xí),改正錯誤,提升自身的能力。
四、結(jié)束語。
高等數(shù)學(xué)主要對學(xué)生從理論學(xué)習(xí)走向解決實際問題的能力進行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對高數(shù)知識更充分的理解,學(xué)習(xí)的難度進一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進行深入的研究和探索的同時也需要學(xué)生很好的配合,以便于今后的教學(xué)中進一步提升教學(xué)的質(zhì)量。
參考文獻。
[1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。齊齊哈爾師范高等??茖W(xué)校學(xué)報,20xx(02):119—120。
[2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實踐[j]。教育實踐與改革,20xx(04):177—178,189。
[3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[j]。長春教育學(xué)院學(xué)報,20xx(30):89,95。
[4]劉合財。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。貴陽學(xué)院學(xué)報,20xx(03):63—65。
數(shù)學(xué)建模論文篇四
數(shù)學(xué),源于人們對生產(chǎn)與生活實際問題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來,信息技術(shù)飛速發(fā)展,推動了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會各個領(lǐng)域.中考實際應(yīng)用題目更貼近日常生活,具有時代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計、幾何等模型.數(shù)學(xué)課程標準指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實際問題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問、自主解決,體驗做數(shù)學(xué)的過程,從而提高解決實際問題的能力.
一是教師未能實現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開學(xué)生“做”數(shù)學(xué)的過程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺?,將解題過程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開展建模教學(xué),需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進行思考,誘發(fā)學(xué)生進行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實際問題,其題目長、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.
1.自主探索原則.
學(xué)生長期處于師講、生聽的教學(xué)模式,淪為被動接受知識的“容器”,難有創(chuàng)造的意識.在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問題的`能力.
2.因材施教原則.
教師要著眼于學(xué)生原有的認知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問題的解決方法。
3.可接受性原則.
數(shù)學(xué)建模內(nèi)容的設(shè)計,要符合學(xué)生的年齡特點和認知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計的問題不切實際,往往會扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實際,讓學(xué)生有能力解決問題.
數(shù)學(xué)建模論文篇五
運籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力.從運籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計等方面進行了探索與實踐.教學(xué)實踐表明,將數(shù)學(xué)建模思想融入到運籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動手實踐能力.
數(shù)學(xué)建模論文篇六
高校學(xué)生社團是一種具有共同興趣愛好的學(xué)生自發(fā)組織的開展一些藝術(shù)、娛樂和學(xué)術(shù)型的活動的團體。學(xué)生社團以其鮮明的開放性、自主性以及多樣性等特點,為一些有特長的學(xué)生提供了廣闊的舞臺,讓這些學(xué)生可以更好的發(fā)揮自己的才能,促進其更好的成才。全國大學(xué)生數(shù)學(xué)建模競賽是最早由教育部工業(yè)與數(shù)學(xué)應(yīng)用學(xué)會共同承辦的一個科技性的賽事,該比賽要通過數(shù)學(xué)和計算機的知識來解決實際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊員是件費神的事情,因此,為了更好的為數(shù)學(xué)建模競賽選拔人才,激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)術(shù)性社團“數(shù)學(xué)建模協(xié)會”也就應(yīng)運而生。數(shù)學(xué)建模協(xié)會的成立,可以更好的為學(xué)生提供一個展示自己的機會,可以增強學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力,激發(fā)學(xué)生的創(chuàng)新思維,為數(shù)學(xué)建模競賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學(xué)院數(shù)學(xué)建模協(xié)會為例,探討高職數(shù)學(xué)建模社團活動開展的形式和意義。
(一)數(shù)學(xué)建模社團有利于數(shù)學(xué)建模競賽的開展。高職數(shù)學(xué)建模協(xié)會為數(shù)學(xué)建模競賽搭建了一個平臺,是數(shù)學(xué)建模競賽強有力的后盾,數(shù)學(xué)建模競賽成績的取得與這個平臺密不可分,只有充分發(fā)揮數(shù)學(xué)建模社團的作用,才能源源不斷的為數(shù)學(xué)建模提供人力和智力保障,才能更好的推動高職數(shù)學(xué)的學(xué)習(xí)氛圍。1、數(shù)學(xué)建模協(xié)會起著動員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動員,才能讓更多的人了解數(shù)學(xué)建模,讓更多優(yōu)秀學(xué)生參加到數(shù)學(xué)建模競賽中。大學(xué)校園中有許多數(shù)學(xué)愛好者,他們對數(shù)學(xué)建模也有一定的認識,只要有參加數(shù)學(xué)建模活動的愿望的,都可以利用數(shù)學(xué)建模協(xié)會招新的機會,加入數(shù)學(xué)建模創(chuàng)新協(xié)會。將成績優(yōu)秀的學(xué)生邀請加入數(shù)學(xué)建模協(xié)會,對進一步擴大數(shù)學(xué)建模協(xié)會,夯實數(shù)學(xué)建?;A(chǔ),起著舉足輕重的作用。2、數(shù)學(xué)建模協(xié)會起著知識傳播的作用高職院校學(xué)生在校學(xué)習(xí)時間較短,學(xué)業(yè)較為繁重,課余時間較少,數(shù)學(xué)建模培訓(xùn)的時間不足,無法讓學(xué)生在短時期內(nèi)掌握較多的數(shù)學(xué)建模相關(guān)知識。因此,利用數(shù)學(xué)建模協(xié)會活動可以開展數(shù)學(xué)建模課程的培訓(xùn)工作,普及數(shù)學(xué)建模相關(guān)知識。采用“老帶新”的模式進行數(shù)學(xué)建模知識的普及。通過制定系統(tǒng)的培訓(xùn)方案,在每年秋季競賽后,參加過競賽的同學(xué)對新入?yún)f(xié)會的成員可以進行初級培訓(xùn),為今后的競賽奠定基礎(chǔ)。3、數(shù)學(xué)建模社團起著選拔學(xué)生的作用每年數(shù)學(xué)建模競賽的隊員需要通過校內(nèi)賽等形式進行選拔,此時,數(shù)學(xué)建模協(xié)會就起著校內(nèi)賽命題及選拔隊員的作用,當(dāng)然這種選拔方式也有的弊端,就是所有隊員都是來自校內(nèi)賽成績優(yōu)秀的學(xué)生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計算機技術(shù)水平優(yōu)秀的學(xué)生就沒法參加數(shù)學(xué)建模競賽。為確保每一位有能力的學(xué)生都能夠加入到建模競賽隊伍中來,可以通過校內(nèi)競賽與建模協(xié)會推薦兩者相結(jié)合的方式選拔建模競賽學(xué)生,以確保最優(yōu)優(yōu)秀的學(xué)生參加數(shù)學(xué)建模競賽。(二)數(shù)學(xué)建模社團有利于大學(xué)生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學(xué)建模社團屬于專業(yè)的學(xué)術(shù)性社團,成立的目的是為了參加全國大學(xué)生數(shù)學(xué)建模競賽,數(shù)學(xué)建模社團活動的趣味性和實踐性可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,增加學(xué)生參與競賽的熱情。社團活動中的培訓(xùn)使學(xué)生可以更好的應(yīng)對競賽,取得更好的成績。另外,競賽之余還可以進行其他領(lǐng)域的學(xué)術(shù)交流,比如計算機,經(jīng)濟,工程等領(lǐng)域,良好的交流氛圍激發(fā)學(xué)生的創(chuàng)新思維和意識,從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學(xué)建模社團是學(xué)生自發(fā)組織的服務(wù)學(xué)生的群體,除了學(xué)術(shù)研究之外,還可以進行一些創(chuàng)新創(chuàng)業(yè)的活動,具有更多的實踐的機會。比如,可以利用平時社團所學(xué)的知識,以團體的形式進行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺和微信群等發(fā)布一些數(shù)學(xué)建模相關(guān)的微課等,進行一些微信群講座等等。這樣可以讓學(xué)生真正體會到數(shù)學(xué)的用處,達到學(xué)以致用的效果。(3)數(shù)學(xué)建模社團是學(xué)生自發(fā)組織的學(xué)術(shù)性社團,社團的組織機構(gòu)都是學(xué)生在擔(dān)任,社團的活動也都是學(xué)生在協(xié)調(diào)策劃,甚至很多時候社團的老成員都可以輔助老師進行社團的一些學(xué)術(shù)性的講座。因此,在學(xué)習(xí)的同時還鍛煉了他們的處事應(yīng)變能力團隊合作的能力,可以說提高了學(xué)生的綜合素質(zhì)。
(一)數(shù)學(xué)建模社團的管理形式。數(shù)學(xué)建模協(xié)會作為一個學(xué)生群體組織,需要好的制度和管理模式。以筆者所在學(xué)校為例,數(shù)學(xué)建模創(chuàng)新協(xié)會具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個管理面”來進行社團管理和學(xué)術(shù)交流的,具體如下:1、學(xué)術(shù)交流面這個主要是通過“社團內(nèi)部進行學(xué)術(shù)交流活動”和“老帶新培訓(xùn)”兩部分組成,內(nèi)部的交流活動主要是學(xué)生之間的相互溝通和交流,以及不定期的邀請指導(dǎo)教師和外校專家做一些數(shù)學(xué)建模報告。老帶新培訓(xùn)是指社團主席團成員(一般是參加過前一年全國大學(xué)生數(shù)學(xué)建模競賽的學(xué)生)為新入社團的學(xué)生進行培訓(xùn),培訓(xùn)的內(nèi)容基本上都是之前指導(dǎo)教師對他們集訓(xùn)時的內(nèi)容,這種培訓(xùn)方式可以提升社團成員的授課和理解問題的能力,對于在校大學(xué)生來說是一次很好的鍛煉。2、網(wǎng)絡(luò)交流面采用qq群,網(wǎng)絡(luò)空間和微信公眾平臺等開展社團成員之間的交流互動,社團宣傳。筆者所在學(xué)校的數(shù)學(xué)建模創(chuàng)新協(xié)會每一屆社團都有相應(yīng)的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關(guān)注量也在800余人,微信平臺的建立可以更方面使大學(xué)生關(guān)注數(shù)學(xué)建模相關(guān)信息,尤其是對大一新生可以更多的取了解數(shù)學(xué)建模,擴大數(shù)學(xué)建模的受益面和影響力。力求在大學(xué)生中營造一種“人人知數(shù)模,人人愛數(shù)模,人人參與數(shù)模”的良好的教育環(huán)境,使建?;顒訌V泛化、群眾化。3、交流互訪面開展研討會,專家報告會,社團聯(lián)誼會等交流活動,既可以豐富數(shù)學(xué)建模社團學(xué)生的知識面,又能促進數(shù)學(xué)知識的理解和吸收,通過與其他社團的聯(lián)誼,豐富了社團學(xué)生的業(yè)余生活,又能學(xué)習(xí)其他社團好的管理經(jīng)驗,促進社團管理的制度化、規(guī)范化、專業(yè)化,也只有通過不斷的學(xué)習(xí),不斷的交流,才能真正“走出去”,建立一個管理完善,富有成效的學(xué)生社團。(二)數(shù)學(xué)建模社團的特色活動。數(shù)學(xué)建模社團在開展學(xué)術(shù)活動和輔助教師進行競賽培訓(xùn)的同時,還不定期的舉行一些活動,在提高學(xué)生學(xué)習(xí)興趣的同時也以擴大了數(shù)學(xué)建模的影響力。以筆者坐在學(xué)校為例,每年可以開展一系列的數(shù)學(xué)建?;顒?。比如,數(shù)學(xué)建模創(chuàng)新協(xié)會納新,數(shù)學(xué)建模創(chuàng)新協(xié)會趣味運動會,數(shù)學(xué)科技節(jié),趣味數(shù)學(xué)知識競賽,數(shù)學(xué)建模經(jīng)驗交流會,數(shù)學(xué)建模校內(nèi)賽,數(shù)學(xué)輔導(dǎo)周,數(shù)學(xué)建模專題講座。這些社團活動貫穿整個學(xué)年,不僅可以“由點及面、由淺入深”的對全國大學(xué)生數(shù)學(xué)建模競賽進行宣傳,在最大的范圍內(nèi),提升數(shù)學(xué)建模大賽的影響力及參與度,成效較好。而且讓枯燥的學(xué)術(shù)型社團變得豐富多彩,成為學(xué)生課后獲取知識的一種平臺,同時也是社團蓬勃發(fā)展的利器。
總之,數(shù)學(xué)建模社團活動的開展,有利于培養(yǎng)學(xué)生的創(chuàng)新意識和思維,有利于激發(fā)了學(xué)生的學(xué)習(xí)興趣,有利于豐富學(xué)生的課后生活,有利于調(diào)動了學(xué)生參加學(xué)術(shù)型社團的積極性,同時也是高職院校組織參加數(shù)學(xué)建模競賽的強有力的后盾。
[1]胡建茹,王搖娟.加強專業(yè)社團建設(shè)推進大學(xué)生創(chuàng)新實踐能力培養(yǎng)[j].中國石油大學(xué)學(xué)報:社會科學(xué)版,20xx(12)。
[2]王珍娥,宋維,孫潔.?dāng)?shù)學(xué)社團建設(shè)的探索與實踐[j].機械職業(yè)教育,20xx(7)。
[3]李湘玲,王泳興.大學(xué)生社團發(fā)展與創(chuàng)新型人才培養(yǎng)互動機制研究:以吉首大學(xué)為例[j].黑龍江教育,20xx(11)。
[4]孫浩,葉正麟.西北工業(yè)大學(xué)數(shù)學(xué)建模創(chuàng)新教育之探索[j].高等數(shù)學(xué)研究,20xx(4)。
作者:張?zhí)m單位:西安航空職業(yè)技術(shù)學(xué)院通識教育學(xué)院。
數(shù)學(xué)建模論文篇七
高校數(shù)學(xué)教育是高等教育的基礎(chǔ)學(xué)科,占據(jù)重要的一席之地。如何改變學(xué)生對數(shù)學(xué)枯燥乏味的學(xué)習(xí)狀態(tài),讓學(xué)生輕松愉快地參與到數(shù)學(xué)學(xué)習(xí)中,是當(dāng)前高校數(shù)學(xué)教學(xué)者面臨的一個重要課題。在高校數(shù)學(xué)教學(xué)中開展數(shù)學(xué)建模競賽,不僅能培養(yǎng)學(xué)生的創(chuàng)新思維,還能有效提高提高學(xué)生的創(chuàng)新能力、綜合素質(zhì)和對數(shù)學(xué)的應(yīng)用能力。本文對高校開展數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)進行了分析闡述,并對此進行了一定的思考。
數(shù)學(xué)建模是一種融合數(shù)學(xué)邏輯思想的思考方法,通過運用抽象性的數(shù)學(xué)語言和數(shù)學(xué)邏輯思考方法,創(chuàng)造性的解決數(shù)學(xué)問題。當(dāng)前很多高校中開始引入數(shù)學(xué)建模思想來加強學(xué)生創(chuàng)新能力的培養(yǎng),可以使學(xué)生的邏輯思維能力和運用數(shù)學(xué)邏輯創(chuàng)新解決問題的能力得到提升。數(shù)學(xué)建模競賽起源于1985年的美國,幾年后國內(nèi)幾所高校數(shù)學(xué)建模教師組織學(xué)生開始參與美國的數(shù)學(xué)建模大賽,促進了數(shù)學(xué)建模思維的快速發(fā)展。直到1992中國首屆數(shù)學(xué)建模大賽召開,而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長,呈現(xiàn)一派繁榮景象。
2.1數(shù)學(xué)建模競賽自主性較強。自主性首先體現(xiàn)在在數(shù)學(xué)建模過程中學(xué)生可以根據(jù)自己的建模需要通過一切可以利用的資源、工具來進行資料查閱和收集,建模比賽隊員可以根據(jù)自己的意見和思維進行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學(xué)建模競賽的組織形式呈現(xiàn)多元化特點,組織制度上也較為靈活多樣,數(shù)學(xué)建模主要側(cè)重于分析思想,沒有標準答案可以參考分享。2.2建模隊伍呈日益燎原之勢。1992年首屆中國數(shù)學(xué)建模大賽開展以來,其影響力與日俱增,高校和社會各界對數(shù)學(xué)建模頗為重視,參賽隊伍、參賽學(xué)生的質(zhì)量一直處于上升狀態(tài),數(shù)學(xué)模型也日漸合理科學(xué),學(xué)生團隊在國際數(shù)學(xué)建模大賽中屢創(chuàng)驕人戰(zhàn)績。2.3組織培訓(xùn)日益加強。數(shù)學(xué)建模競賽對學(xué)生數(shù)學(xué)知識的掌握及靈活運用、口套表達、語言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓(xùn)的時間很長,培訓(xùn)內(nèi)容也很豐富,為數(shù)學(xué)建模競賽取得好成績奠定了堅實的基礎(chǔ)。
3.1學(xué)生的團隊協(xié)作能力和意識得到增強。數(shù)學(xué)建模競賽的團隊組織形式活潑自由,通常采用學(xué)生組隊模式開展,數(shù)學(xué)建模競賽隊伍形成一個團結(jié)戰(zhàn)斗的整體,代表著不僅僅是學(xué)校的聲譽,還一定程度上展示著國家的形象。經(jīng)過長時間的培訓(xùn),對數(shù)學(xué)模型的研究和分析,根據(jù)學(xué)生訓(xùn)練中的優(yōu)勢和特長,進行合理科學(xué)的小組分工,讓學(xué)生快速高效地完成整個數(shù)學(xué)建模,在建模過程中學(xué)生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢和長處,確保數(shù)學(xué)建模取得最大效用,學(xué)生的團隊協(xié)作能力和意識得到鍛煉,責(zé)任感和榮譽感進一步增強,通過建模競賽彰顯團隊的合作能力和中國數(shù)學(xué)建模方面的發(fā)展。
3.2高校學(xué)生參賽積極性高漲。近年來大學(xué)生數(shù)學(xué)建模競賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學(xué)的應(yīng)用能力提升。
3.3高校學(xué)生數(shù)學(xué)邏輯思維能力和靈活運用知識的能力得到提升。數(shù)學(xué)建模競賽充滿著刺激性和挑戰(zhàn)性,是學(xué)生各方面綜合能力的一個展示。在數(shù)學(xué)建模競賽中,學(xué)生不僅要需要扎實豐厚的數(shù)學(xué)知識儲備,還需要具備清晰的數(shù)學(xué)邏輯思維和語言表達能力。同時要有機智的臨場發(fā)揮能力和應(yīng)變能力,不怯場、不驚慌,有充分的思想準備,能輕松應(yīng)對其他參賽選手和評委的提問,能組織條理性、邏輯性的語言進行表述,將參賽小組數(shù)學(xué)模型的含義和設(shè)計清晰完整的傳達給評委和其他參賽選手。在這個過程中,無疑會使學(xué)生的數(shù)學(xué)邏輯思維和語言表達能力及靈活運用數(shù)學(xué)知識的能力有一個較大的提升。
3.4學(xué)生的自學(xué)能力和意志力得到鍛。數(shù)學(xué)建模競賽對參賽學(xué)生的綜合知識和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力??梢哉f數(shù)學(xué)建模過程中,有許多高深的知識難于理解,有的日常學(xué)習(xí)過程中根本接觸不到,需要數(shù)學(xué)建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢和平時培訓(xùn)中的知識積淀,通過借助大量的工具書及參考資料,加上團隊的`理解分析去摸索,探尋數(shù)學(xué)建模所需要的基礎(chǔ)知識,無疑這對學(xué)生的自學(xué)能力培養(yǎng)是一個很好的鍛煉。另外,搜尋資料、學(xué)習(xí)數(shù)學(xué)建模知識的過程是枯燥乏味的,需要長久的耐力和信心,無疑這對學(xué)生的堅毅不畏難的品質(zhì)是一個很好的培養(yǎng)和磨煉。
3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過艱苦復(fù)雜的數(shù)學(xué)建模訓(xùn)練,高校學(xué)生信息收集與處理復(fù)雜問題的能力得到培養(yǎng)鍛煉,學(xué)生數(shù)量觀念得到增強,能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學(xué)的嚴謹推導(dǎo)也使學(xué)生養(yǎng)成認真細心、一絲不茍的習(xí)慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復(fù)雜問題,有效解決數(shù)學(xué)疑難,數(shù)學(xué)理論能更好第應(yīng)用于實踐,數(shù)學(xué)素養(yǎng)進一步得到提升。
綜上所述,高校學(xué)生數(shù)學(xué)建模競賽的開展,能較高地提升學(xué)生的創(chuàng)新能力和綜合素養(yǎng),團隊合作能力、競爭能力、表達交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開展數(shù)學(xué)建模競賽,使學(xué)生的綜合素質(zhì)得到發(fā)展和鍛煉。學(xué)校用重視和鼓勵全體學(xué)生參與數(shù)學(xué)建模競賽,通過競賽實現(xiàn)學(xué)生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。
[1]趙剛.高校數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).
[2]陳羽,徐小紅,房少梅.數(shù)學(xué)建模實踐及其對培養(yǎng)學(xué)生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).
[3]趙建英.數(shù)學(xué)建模競賽對高校創(chuàng)新人才培養(yǎng)的促進作用分析[j].科技展望,20xx(08)5.
[4]畢波,杜輝.關(guān)于高校開展數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)的思考[j].中國校外教育,20xx(12).
數(shù)學(xué)建模論文篇八
眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅實的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時碰到的問題?如何調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來,各所高校的教師們都在努力的想辦法、找對策,一些實用有效的方法已經(jīng)提出并且在逐步推廣,比如,問題驅(qū)動式的教學(xué)方法和基于pbl的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級中已經(jīng)實際應(yīng)用過幾屆,學(xué)生普遍反映效果較好,任課老師也認為該方法確實能極大地調(diào)動學(xué)生的學(xué)習(xí)積極性。
提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運算充斥腦海;定義、定理、推論一個連著一個;極限、連續(xù)、可導(dǎo)可積一個涵蓋另一個[1]。和高中數(shù)學(xué)相比,記憶的負擔(dān)輕了(實際上是知識點太多,記不住了),而對思維的要求卻提高了。對大學(xué)生來說,每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時間可以達到,長久下去學(xué)生們會覺得很辛苦,很有壓力,會出現(xiàn)抱怨。筆者碰到過這樣的學(xué)生,剛開始時,興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應(yīng)對。怪學(xué)生嗎?誠然學(xué)生有責(zé)任,但任課老師也該負很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對學(xué)生提的這些問題:(1)我學(xué)的專業(yè)和高等數(shù)學(xué)相差甚遠,有可能這一輩子都不會用到高等數(shù)學(xué)的知識,那我學(xué)高等數(shù)學(xué)的目的何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強大功能和廣泛用途,但是通過一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問題不及時解決,時間長了一定會影響到大學(xué)生對高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽到自己高等數(shù)學(xué)考過了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時碰到的問題?如何調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。
一、以實際問題反推解決問題時我們需要的高等數(shù)學(xué)知識。
有這樣一個實際問題:報童每天清晨從報社購進報紙零售,晚上將沒賣掉的報紙退回給報社。假設(shè)報紙每份的購進價為b元,零售價為a元,退回價為c元,自然地有abc。這就是說,報童每售出一份報紙賺a-b元,每退回一份報紙賠b-c元,報童每天如果購進的報紙?zhí)?,那么會不夠賣,就會少賺錢;如果每天購進的報紙?zhí)?,那么會賣不完,將要賠錢。請為報童規(guī)劃一下,他該如何確定每天購進的報紙份數(shù),以獲得最大的收入[3]。
現(xiàn)在我們來反推該問題涉及到的高等數(shù)學(xué)的知識:首先,通過分析題目可知,問題解決的關(guān)鍵在于——如何確定每天的報紙需求量,注意每天的報紙需求量是隨機變化的?解決這個關(guān)鍵問題的知識我們早就掌握了,分別是數(shù)理統(tǒng)計中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學(xué)中的定積分[4]。
二、利用高等數(shù)學(xué)的解決實際問題。
f(r)[4]。如果求出了f(r),那么。
g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)。
現(xiàn)在我們來求f(r),假定報童已經(jīng)通過自己的經(jīng)驗和其他渠道掌握了一年(365天)中每天報紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報紙日需求量r的概率f(r)為:
f(r)=,r=(0,1,2,3,…)。
其中k表示為賣出r份的天數(shù)。
g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)。
通過上面的分析,可知實際問題歸結(jié)為,在p(r)和a,b,c已知時,求n使得g(n)最大。
=-(b-c)p(r)dr+(a-b)p(r)dr.(3)。
令=0,得到=,又因為p(r)dr+p(r)dr=1,所以p(r)dr=.(4)。
在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識一定可以求出n。也即可以確定每天購進的報紙份數(shù),使報童每天獲得最大的收入。
三、利用現(xiàn)實問題,讓學(xué)生學(xué)會思考,給他們提供創(chuàng)造成就感的機會。
通過上面碰到的實際問題,可以很容易地說服同學(xué)們靜下心來好好學(xué)習(xí)高等數(shù)學(xué)。因為通過實際問題的求解,學(xué)生們了解到了,要想解決一個實際問題(哪怕是很小的問題),也需要大量的高等數(shù)學(xué)知識的儲備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡單、直接,勝過老師課堂上反復(fù)的嘮叨與強調(diào)。有了這樣的一些實際問題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們在解決實際問題中學(xué)會思考,掌握知識,提高能力。
通過訓(xùn)練后,碰到實際問題,同學(xué)們會自然的想到我們的教學(xué)方法:(1)這些實際問題涉及到的高等數(shù)學(xué)知識?那些自己掌握了,那些還沒有弄明白,學(xué)要加強學(xué)習(xí)。(2)知識點找到后,如何建立起數(shù)學(xué)與實際問題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專業(yè)中的實際問題,能否用高等數(shù)學(xué)的知識去解決?通過思考、分析、解決這些問題,學(xué)生們會有一種創(chuàng)造創(chuàng)新的成就感,會愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會大大提高了。
數(shù)學(xué)建模論文篇九
大量的應(yīng)用型技能型人才,有效滿足了社會各行各業(yè)的用工需求。隨著國家對高職教育的重視和不斷投入,提高教育的教學(xué)質(zhì)量勢在必行[1]。數(shù)學(xué)建模的核心是以數(shù)學(xué)模型為基礎(chǔ)的實際運用,鑒于數(shù)學(xué)建模的這種特點,國內(nèi)高職數(shù)學(xué)教育逐步把數(shù)學(xué)建模理念融入到課題教學(xué)中,提高學(xué)生的應(yīng)用能力。以數(shù)學(xué)建模理念的告知書明確教學(xué)改革要求學(xué)生結(jié)合計算機技術(shù),靈活運用數(shù)學(xué)的思想和方法獨立地分析和解決問題,不僅能培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識,而且能培養(yǎng)學(xué)生團結(jié)協(xié)作、不怕困難、求實嚴謹?shù)淖黠L(fēng)[2]。筆者結(jié)合自身的教學(xué)工作經(jīng)驗,對基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革進行了探索,對教學(xué)實踐中出現(xiàn)的問題進行了分析梳理,以期為高職數(shù)學(xué)教學(xué)改革提供新思路,推動高職數(shù)學(xué)教學(xué)水平的不斷提高,培養(yǎng)出具有良好數(shù)學(xué)素養(yǎng)和專業(yè)技能的新型高職人才。
近年來,隨著國內(nèi)產(chǎn)業(yè)結(jié)構(gòu)的不斷調(diào)整,對于高等職業(yè)技術(shù)人才需求不斷增大,社會對高等職業(yè)技術(shù)教育寄予厚望。但是傳統(tǒng)的高職教育由于專業(yè)設(shè)置不合理,使用教材落后,實訓(xùn)實踐場地不足,培養(yǎng)出的學(xué)生動手能力差、專業(yè)能力不足,面對社會發(fā)展的新形勢,高職教育必須進行教學(xué)改革,提高學(xué)生的職業(yè)能力和就業(yè)競爭力。高職教育不同于普通本科教育,它有以下幾方面的特點。
1人才培養(yǎng)目標不同。
高職教育和本科教育人才培養(yǎng)目標不同,高職教育是以技術(shù)應(yīng)用型高技能人才為培養(yǎng)目標,所有的教學(xué)課程設(shè)計和人才培養(yǎng)體系設(shè)計都是基于此目標展開的,高職教育主要是為了向產(chǎn)業(yè)發(fā)展提供生產(chǎn)、服務(wù)、管理等一線工作的高級技術(shù)應(yīng)用型人才,專業(yè)能力培養(yǎng)和目標職業(yè)匹配度高,所以高職教育教學(xué)成果最直接的評價就是畢業(yè)生的就業(yè)競爭力和上崗后的適應(yīng)能力。
2兩者的教學(xué)內(nèi)容不同。
高職教育的教學(xué)重點是學(xué)生要掌握與實踐工作關(guān)系較為密切的業(yè)務(wù)處理能力、動手能力與交流能力,把學(xué)生的職業(yè)能力建設(shè)列為教學(xué)重點,課程設(shè)計專業(yè)性強,一旦就業(yè)能為企業(yè)創(chuàng)造明顯的效益,高職教育各專業(yè)課程差別較大。
3生源情況不同。
在當(dāng)前的教育教學(xué)體系下,高職教育的生源普遍較差,大多是沒有希望考上大學(xué),轉(zhuǎn)而進入高職學(xué)習(xí),希望通過掌握一定的技術(shù)來實現(xiàn)就業(yè),所以高職學(xué)生的基礎(chǔ)知識普遍較差,學(xué)習(xí)興趣不高。數(shù)學(xué)建模給高職數(shù)學(xué)教學(xué)改革開辟了新思路,數(shù)學(xué)建模為數(shù)學(xué)理論學(xué)習(xí)和工程實踐應(yīng)用搭建了橋梁,在工學(xué)結(jié)合的基本原則下,采取數(shù)學(xué)建模教學(xué)理念,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)及動手應(yīng)用能力是一個非常有效的手段[3]。
1數(shù)學(xué)建模的概念數(shù)學(xué)建模是將數(shù)學(xué)理論和現(xiàn)實問題相結(jié)合的一門科學(xué),它將實際問題抽象、歸納成為相應(yīng)的數(shù)學(xué)模型,在此基礎(chǔ)上應(yīng)用數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)方法等手段研究處理實際問題,從定性或者定理的角度給出科學(xué)的結(jié)果[4]。數(shù)學(xué)建模的發(fā)展為數(shù)學(xué)知識的應(yīng)用提供了途徑,對于現(xiàn)實中的特點問題,可以用數(shù)學(xué)語言來描述其內(nèi)在規(guī)律和問題,運用數(shù)學(xué)研究的成果,結(jié)合計算機專業(yè)軟件,通過抽象、簡化、假設(shè)、引進變量等處理過程后,將實際問題用數(shù)學(xué)方式表達,轉(zhuǎn)化成為數(shù)學(xué)問題,借助數(shù)學(xué)思想建立起數(shù)學(xué)模型,從而解決實際問題。2基于數(shù)學(xué)建模思想的教學(xué)理念基于數(shù)學(xué)建模的這種學(xué)科特點,可以把數(shù)學(xué)知識應(yīng)用化,因此,基于數(shù)學(xué)建模思想的教學(xué)理念可以概括為三個層次:首先,確立提高學(xué)生數(shù)學(xué)應(yīng)用能力為目標,以提高學(xué)生數(shù)學(xué)學(xué)習(xí)興趣為手段,以學(xué)習(xí)數(shù)學(xué)建模為途徑;其次,結(jié)合教學(xué)內(nèi)容,開發(fā)相應(yīng)的數(shù)學(xué)建模案例,因地制宜、因生制宜,根據(jù)專業(yè)不同編寫相應(yīng)的校本教材;最后,改進教學(xué)方法,創(chuàng)新課堂教學(xué)模式,建立課外數(shù)學(xué)建模學(xué)習(xí)興趣小組,帶領(lǐng)學(xué)生進行數(shù)學(xué)應(yīng)用實踐活動,鼓勵學(xué)生參加各種數(shù)學(xué)建模競賽[5]。
傳統(tǒng)的數(shù)學(xué)教學(xué)模式以教師課堂講授為中心,學(xué)生只能被動的接受,由于學(xué)生的基礎(chǔ)知識水平不同,掌握新知識的能力也不同,這種沒有區(qū)分的教學(xué)模式教學(xué)效果差,往往帶來的結(jié)果是造成基礎(chǔ)差的學(xué)生跟不上,對數(shù)學(xué)感興趣的學(xué)生失去興趣?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革,是以學(xué)生數(shù)學(xué)應(yīng)用能力提高為目標,以數(shù)學(xué)學(xué)習(xí)興趣培養(yǎng)為出發(fā)點,以數(shù)學(xué)建模為途徑,以教學(xué)方式改革為保障,打造高職數(shù)學(xué)教學(xué)改革新模式,全面提高高職教育應(yīng)用型人才培養(yǎng)水平。
1結(jié)合專業(yè)特色,突出數(shù)學(xué)教育的應(yīng)用性。
數(shù)學(xué)作為高職教育的基礎(chǔ)性學(xué)科,理論性強,體系性強,對于基礎(chǔ)知識薄弱、學(xué)習(xí)興趣差的高職生來說感覺難學(xué)、枯燥,這是因為高職數(shù)學(xué)教育沒有教會學(xué)生如何在專業(yè)學(xué)習(xí)中和以后的工作中如何去用學(xué)到的數(shù)學(xué)知識,學(xué)生感覺知識無用自然也就不會主動去學(xué),之所以引入數(shù)學(xué)建模的思想就是為了讓學(xué)生利用學(xué)到的數(shù)學(xué)知識去解決實際問題,讓學(xué)生認識到數(shù)學(xué)不只是紙面上的寫寫算算,數(shù)學(xué)可以把實際問題抽象化,變成數(shù)學(xué)問題,利用數(shù)學(xué)的研究方法給實際問題進行科學(xué)的指導(dǎo),這樣高職數(shù)學(xué)教育就不再是課堂上的照本宣科,課下的演算作業(yè),將基礎(chǔ)數(shù)學(xué)教育和學(xué)生的專業(yè)教育相結(jié)合,帶來學(xué)生用數(shù)學(xué)解決專業(yè)問題是大幅度提高學(xué)生專業(yè)能力的有效途徑。
2結(jié)合學(xué)生能力,因材施教、因地制宜。
高職學(xué)校的生源不如普通高校,一般學(xué)習(xí)基礎(chǔ)較差,對于專業(yè)實訓(xùn)課并不明顯,但是在基礎(chǔ)學(xué)科教學(xué)過程特別突出,很多基礎(chǔ)知識掌握不牢,甚至一點印象都沒有,教師在上課時要充分考慮到這種情況,在課堂授課時給予實時的補充,以助于知識的過渡。因材施教是我國傳統(tǒng)的教育思想,在掌握學(xué)生知識水平的基礎(chǔ)上,教師要根據(jù)不同學(xué)習(xí)層次學(xué)生的具體情況,安排教學(xué)內(nèi)容和設(shè)置教學(xué)目標,對于基礎(chǔ)知識水平不高、學(xué)習(xí)興趣較差、學(xué)習(xí)能力較弱的學(xué)生要進行課外輔導(dǎo)。高職基礎(chǔ)課教育是專業(yè)課學(xué)習(xí)的基礎(chǔ),授課教師要根據(jù)學(xué)生的專業(yè)學(xué)習(xí)情況和專業(yè)特點,把遷移知識運用能力在課堂上結(jié)合學(xué)生的專業(yè)背景進行輔導(dǎo),高職數(shù)學(xué)教育不僅僅是為了學(xué)習(xí)數(shù)學(xué),更多的是發(fā)揮數(shù)學(xué)知識在其專業(yè)能力培養(yǎng)中的作用。
3培養(yǎng)學(xué)生學(xué)習(xí)興趣,促進整體教學(xué)質(zhì)量提高。
高職學(xué)校的學(xué)生學(xué)習(xí)興趣普遍不高,尤其是對于學(xué)了十幾年都感覺頭痛的數(shù)學(xué),要想提高數(shù)學(xué)的教學(xué)質(zhì)量,首先必須要培養(yǎng)學(xué)生的學(xué)習(xí)興趣,長期以來學(xué)生在數(shù)學(xué)學(xué)習(xí)上已經(jīng)有了根深蒂固的認識,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣很難,但是如果學(xué)生沒有學(xué)習(xí)興趣,教師授課內(nèi)容、授課方式改革都起不了太大的作用,學(xué)生對于數(shù)學(xué)學(xué)習(xí)興趣低由于低年級學(xué)習(xí)時受到的挫敗感,因此要讓學(xué)生建立學(xué)習(xí)數(shù)學(xué)的自信心,讓他們體驗學(xué)會數(shù)學(xué)的成就感,這樣才能逐步培養(yǎng)他們的學(xué)習(xí)興趣。教師可以采取以點帶面的方式,先選擇有一定基礎(chǔ)的學(xué)生,再從全部課程學(xué)習(xí)中發(fā)現(xiàn)表現(xiàn)優(yōu)秀的個體,組織參加建模競賽,進行單獨賽前加強指導(dǎo),用這些榜樣的力量提高全體同學(xué)的學(xué)習(xí)積極性。數(shù)學(xué)建模作為提高高職數(shù)學(xué)教育教學(xué)水平的“點”,能夠以其趣味性強,帶動學(xué)生的學(xué)習(xí)興趣,促進高職數(shù)學(xué)教育教學(xué)水平的全面提高。
4改革教學(xué)及評價方式,建立面向應(yīng)用的數(shù)學(xué)教育體系。
由于基于數(shù)學(xué)建模思想的高職數(shù)學(xué)教學(xué)改革打破了以往的課堂教學(xué)方式和考核方式,學(xué)生面對的不再是期末的一張試卷,而是一個個數(shù)學(xué)建模案例,需要學(xué)生運用本學(xué)期學(xué)到的數(shù)學(xué)知識解決實際問題,教師根據(jù)學(xué)生對案例的理解程度,數(shù)學(xué)模型運用能力,實際過程分析和解題技巧等多方面給出評價,同時積極評價、鼓勵學(xué)生的創(chuàng)新思維,并將其納入到考核體系當(dāng)中。通過以上各個方面評價的加權(quán)作為最后的評價指標。這種以數(shù)學(xué)知識應(yīng)用為基礎(chǔ),直接面向應(yīng)用的高職數(shù)學(xué)教育模式能極大的激發(fā)學(xué)生的學(xué)習(xí)積極性和知識應(yīng)用能力,符合高職應(yīng)用型人才培養(yǎng)理念,對提高高職學(xué)生的專業(yè)能力也打下了堅實的基礎(chǔ)?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革是推動高職應(yīng)用型人才培養(yǎng)體系建設(shè)的新舉措,也是推動高職基礎(chǔ)課教學(xué)水平的重要內(nèi)容,能有效解決學(xué)生學(xué)習(xí)興趣低,基礎(chǔ)知識掌握不牢,數(shù)學(xué)知識應(yīng)用能力低等問題,通過“案例驅(qū)動法+討論法”,引導(dǎo)學(xué)生再次對課本知識進行思考和應(yīng)用,有利于培養(yǎng)學(xué)生的創(chuàng)新思維和應(yīng)用能力。引入數(shù)學(xué)建模理念教學(xué),把課堂學(xué)習(xí)的主動權(quán)交回給學(xué)生,既保證了高等數(shù)學(xué)原有的知識體系的完整,也可以提高教學(xué)效率。通過教學(xué)方式和評價方式改革,學(xué)生的學(xué)習(xí)主動性增強,也改變了以往對于數(shù)學(xué)學(xué)習(xí)的學(xué)習(xí)態(tài)度。高等數(shù)學(xué)作為高職教育學(xué)生必修的基礎(chǔ)課,在培養(yǎng)學(xué)生基本數(shù)學(xué)素養(yǎng)上具有重要作用,是理工類專業(yè)課程體系的重要組成部分,基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革也為同類基礎(chǔ)理論課改革提供了新思路和范例。
[1]孫麗.在高職數(shù)學(xué)教學(xué)改革中應(yīng)注重數(shù)學(xué)建模思想的滲透[j].科技資訊,20xx(22):188.
數(shù)學(xué)建模論文篇十
對于高職院校的學(xué)生來講,數(shù)學(xué)在其教學(xué)過程中起著基礎(chǔ)性的作用,對于學(xué)生后續(xù)的學(xué)習(xí)相當(dāng)關(guān)鍵。但是從現(xiàn)階段高職院校數(shù)學(xué)教學(xué)的基本情況來看,數(shù)學(xué)教師的教學(xué)方法以及教學(xué)策略都相當(dāng)落后,對于學(xué)生數(shù)學(xué)興趣的提升造成了不同程度的影響。在這樣的背景下,相關(guān)專家提出了數(shù)學(xué)建模的方式,希望以此提升高職院校高等數(shù)學(xué)的教學(xué)效率。本文結(jié)合數(shù)學(xué)建模在高職高專人才培養(yǎng)當(dāng)中的意義和作用入手,對于其中的應(yīng)用策略進行全面的分析,希望為相關(guān)單位提供一個全面的參考。
隨著我國社會的發(fā)展,經(jīng)濟產(chǎn)業(yè)結(jié)構(gòu)日益升級,因此高等院校的人才需求日益擴大,對于高職教育的發(fā)展提供了前所未有的契機。在這樣的背景下,從數(shù)學(xué)建模入手,將其思想融入到高等教育的數(shù)學(xué)教學(xué)當(dāng)中,對于其中的策略和方法進行全面的研究應(yīng)該是一項具有普遍現(xiàn)實意義的工作。
從近些年的發(fā)展來看,參加過數(shù)學(xué)競賽的學(xué)生在科研能力等方面都具有比其他同學(xué)更強的優(yōu)勢,因此數(shù)學(xué)建模在提升學(xué)生創(chuàng)新能力、提高學(xué)生知識水平以及調(diào)動學(xué)生的.學(xué)習(xí)興趣都具有十分重要的意義。比如在解決實際問題的時候,數(shù)學(xué)建模通過利用各種技巧,可以使得學(xué)生分析問題、創(chuàng)造能力得以全面的提升,進而使得學(xué)生在摒棄原始思考問題方式的基礎(chǔ)上,敢于向傳統(tǒng)的知識發(fā)出挑戰(zhàn),對于學(xué)生的綜合能力的全面提升相當(dāng)關(guān)鍵。其次,數(shù)學(xué)知識本就源于生活,因此在建模的基礎(chǔ)上學(xué)生就可以帶著問題去思考,這對于數(shù)學(xué)知識整體性的發(fā)揮以及解決問題能力的提升都具有十分重要的意義。最后,面對傳統(tǒng)數(shù)學(xué)的解決方式,很多學(xué)生望而生畏,因此主動分析問題的欲望就會受到遏制。在這樣的背景下,通過數(shù)學(xué)建模方式,學(xué)生會發(fā)現(xiàn)數(shù)學(xué)方法的靈活性,進而使得他們解決問題的能力得以全面的提升。
3.1制定切實可行的教學(xué)大綱,從而使得教學(xué)進度得以保障。教學(xué)大綱在高職教學(xué)當(dāng)中起著十分重要的作用,這對于教學(xué)內(nèi)容的合理性以及提升學(xué)生學(xué)習(xí)的針對性都具有十分重要的意義[1]。比如在教學(xué)高等數(shù)學(xué)(一)的選修模塊時,教學(xué)大綱的制定應(yīng)該結(jié)合學(xué)生的專業(yè),從而使得學(xué)生的數(shù)學(xué)學(xué)習(xí)真正取得實效。比如可以為理工類的學(xué)生選擇無窮級數(shù)以及傅里葉變換的內(nèi)容;機械類的學(xué)生選擇線性代數(shù)以及解析幾何作為教學(xué)內(nèi)容,從而使得學(xué)生的綜合能力得以全面的提升。3.2開展“三段式”的教學(xué)模式。數(shù)學(xué)建模在以解決實際問題為核心的過程中,使得學(xué)生分析問題以及組織問題的能力得以全面的提升,這種方式的本質(zhì)為素質(zhì)教育,因此不能和現(xiàn)行的其他教學(xué)模式分割開來,這就需要相關(guān)部門開展“三段式”的教學(xué)模式,使得學(xué)生的數(shù)學(xué)興趣得以全面的提升。其中,第一段需要還原數(shù)學(xué)知識的原創(chuàng)過程,使得學(xué)生明確數(shù)學(xué)知識的產(chǎn)生過程,進而讓學(xué)生從生活案例當(dāng)中發(fā)現(xiàn)數(shù)學(xué)的價值,比如知道極限是由人影的長度變化引起的,導(dǎo)數(shù)是由于駕車的速度引入的,使得學(xué)生發(fā)現(xiàn)知識的價值,進而就會大大提升自己的學(xué)習(xí)興趣和探究意識。第二段:講解數(shù)學(xué)知識。數(shù)學(xué)建模是在實際問題當(dāng)中引入的,因此要通過具體數(shù)學(xué)知識的講解使得學(xué)生明確數(shù)學(xué)建模的真正價值,比如在講解微積分的過程中,可以以“極限-微分-積分”為主線,使得學(xué)生對于數(shù)學(xué)的分析能力真正得以提升[2]。然后在為學(xué)生積極引入大量數(shù)學(xué)圖表的基礎(chǔ)上,為增強學(xué)生的感性認識,進而提升學(xué)生的綜合能力奠定堅實的基礎(chǔ)。第三段:數(shù)學(xué)知識的運用。隨著社會的發(fā)展,數(shù)學(xué)的應(yīng)用在各行各業(yè)都發(fā)揮出巨大的作用,因此對于高等數(shù)學(xué)在實際生活當(dāng)中發(fā)揮出來的作用進行全面的探究是實現(xiàn)這種知識價值的真正途徑。在這樣的背景下,高等數(shù)學(xué)教師要將每個知識點的運用真正灌輸給學(xué)生,比如指數(shù)增長在銀行計息當(dāng)中的應(yīng)用、定積分在學(xué)習(xí)曲線當(dāng)中的應(yīng)用、再生資源在數(shù)學(xué)開發(fā)以及管理當(dāng)中的應(yīng)用等等。從而使得學(xué)生數(shù)學(xué)學(xué)習(xí)中的創(chuàng)新意識以及應(yīng)用能力得以全面的提升。3.3開設(shè)數(shù)學(xué)實驗,提升學(xué)生的綜合素質(zhì)。數(shù)學(xué)建模為學(xué)生提供了一種真正的“數(shù)學(xué)實驗”,在這種實驗的過程中,學(xué)生對于數(shù)學(xué)知識的發(fā)展以及由來過程都會得到進行全面的考慮,這對于他們數(shù)學(xué)探索意識的提升具有十分重要的意義。另外,在計算機輔助實驗的過程中,學(xué)生的動腦能力也會得到全面的提升,這對于學(xué)生主動的學(xué)習(xí)數(shù)學(xué)相當(dāng)關(guān)鍵。因此在教學(xué)過程中,教師要積極利用這種方式對于學(xué)生進行全面的培養(yǎng)。
總之,隨著我國經(jīng)濟水平的不斷提升,社會對于高職院校的重視力度日益提升,因此對于高職院校當(dāng)中數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)當(dāng)中的應(yīng)用進行全面的分析是實現(xiàn)學(xué)生綜合素質(zhì)得以全面提升的關(guān)鍵措施,這對于學(xué)生的長遠發(fā)展也相當(dāng)關(guān)鍵,相關(guān)教育工作者要加大在這方面的研究力度,力求將高職院校的學(xué)生培養(yǎng)成為新時代所需要的人才。
[1]吳健輝,黃志堅,汪龍虎.對數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中的探討[j].景德鎮(zhèn)高專學(xué)報,20xx,(4).
[2]張卓飛.將數(shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)教學(xué)的探討[j].湘潭師范學(xué)院學(xué)報(自然科學(xué)版),20xx,(1).
數(shù)學(xué)建模論文篇十一
隨著社會的不斷發(fā)展和科學(xué)技術(shù)的進步,數(shù)學(xué)在現(xiàn)實生活中的應(yīng)用越來越廣泛,尤其是計算機技術(shù)的發(fā)展及廣泛應(yīng)用,使數(shù)學(xué)建模思想在解決社會各個領(lǐng)域中的實際問題的應(yīng)用越來越深入。本文筆者簡要談?wù)剶?shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)類課程的意義和方法。
所謂數(shù)學(xué)建模就是指構(gòu)造數(shù)學(xué)模型的過程,也就是說用公式、符號和圖表等數(shù)學(xué)語言來刻畫和描述一個實際問題,再經(jīng)過計算、迭代等數(shù)學(xué)處理得到定量的結(jié)果,從而供人們分析、預(yù)報、決策與控制。那么數(shù)學(xué)模型就是利用數(shù)學(xué)術(shù)語對一部分現(xiàn)實世界的描述。數(shù)學(xué)建模思想是指理論聯(lián)系實際,將實際的事物抽象成數(shù)學(xué)模型,然后利用所學(xué)的理論來解決問題的一種思想。
在新形勢下,傳統(tǒng)的數(shù)學(xué)教學(xué)方法已經(jīng)無法適應(yīng)現(xiàn)在大學(xué)數(shù)學(xué)教育改革的需求,數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程教育融合成為目前高等院校數(shù)學(xué)教學(xué)改革的突破口。
(1)數(shù)學(xué)知識在各個領(lǐng)域的應(yīng)用越來越廣泛。如今數(shù)學(xué)知識在各個領(lǐng)域的應(yīng)用越來越廣泛,尤其是在經(jīng)濟學(xué)中的應(yīng)用最為顯著。自從1969年創(chuàng)設(shè)諾貝爾經(jīng)濟學(xué)獎以來,就有不少理論成果來自利用數(shù)學(xué)工具分析經(jīng)濟問題。事實上,從1969年到20xx年這35年中,一共產(chǎn)生了53位獲獎?wù)撸渲袚碛袛?shù)學(xué)學(xué)位的共有19人,所占比例為35.8%;其中擁有理工學(xué)位的有9人,所占比例為17%;二者共計占52.8%;其中共有29位諾貝爾經(jīng)濟學(xué)獎的獲得者是以數(shù)學(xué)方法為主要的研究方法,約占總?cè)藬?shù)的63.1%。然而幾乎所有的諾貝爾經(jīng)濟學(xué)獎獲得者都運用了數(shù)學(xué)方法來研究經(jīng)濟學(xué)理論。除了在經(jīng)濟領(lǐng)域,數(shù)學(xué)建模思想也廣泛應(yīng)用于生物醫(yī)學(xué),包括超聲波、電磁診斷等方面。同時數(shù)學(xué)建模還將數(shù)學(xué)與生物學(xué)融合進了基因科學(xué),例如基因表達的定型、基因組測序、基因分類等等,在生物學(xué)領(lǐng)域需要建立大規(guī)模的模擬以及復(fù)雜的數(shù)學(xué)模型??梢姅?shù)學(xué)建模思想的應(yīng)用是非常廣泛的,并對其他領(lǐng)域的發(fā)展起著重要的推動作用。
(2)有利于激發(fā)學(xué)生的學(xué)習(xí)熱情,豐富大學(xué)數(shù)學(xué)課程。一般的數(shù)學(xué)課,通常只是重視理論知識的講解和傳授,對知識點的推理和思想方法的分析較少。而且多數(shù)學(xué)生為了應(yīng)付考試,也只是以“類型題”的方式去復(fù)習(xí)知識點。這樣的方式雖然能夠讓學(xué)生掌握一部分數(shù)學(xué)知識,可是卻不能提高學(xué)生的數(shù)學(xué)素質(zhì),不能提高學(xué)生對大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣。而數(shù)學(xué)建模思想運用數(shù)學(xué)知識來解決生活中的實際問題,這樣就使數(shù)學(xué)活了起來,而不是死的理論知識。運用數(shù)學(xué)建模思想能夠讓學(xué)生在數(shù)學(xué)中感悟生活,在生活中體會數(shù)學(xué)的價值,更容易吸引學(xué)生的學(xué)習(xí)興趣。而興趣是學(xué)習(xí)最有效的動力,讓學(xué)生主動參與學(xué)習(xí)而非被動學(xué)習(xí),取得的教學(xué)效果會更好。
(3)是加強數(shù)學(xué)教學(xué)改革,適應(yīng)時代發(fā)展的需要。在大學(xué)數(shù)學(xué)教學(xué)活動中,許多學(xué)生常常陷入這樣的困惑之中:花費了大量的精力,做了很多習(xí)題,但是卻感受不到數(shù)學(xué)的作用和價值。而教師在教學(xué)中也總是告訴學(xué)生數(shù)學(xué)是一門很有用的課程,但是卻舉不出現(xiàn)實的例子。并且傳統(tǒng)的教學(xué)方式也只是教會學(xué)生掌握簡單的理論知識,并不能提高學(xué)生的數(shù)學(xué)素養(yǎng)和數(shù)學(xué)意識。而將數(shù)學(xué)建模思想融入到大學(xué)的數(shù)學(xué)類課程之中就能很好地解決這些問題。因為將數(shù)學(xué)建模思想運用到數(shù)學(xué)類課程中,就能夠讓學(xué)生在獨立思考和探索中感受到數(shù)學(xué)在現(xiàn)實生活中的實用價值,提高學(xué)生運用數(shù)學(xué)的眼光去觀察、分析以及表示各種事物的空間關(guān)系、數(shù)量關(guān)系和數(shù)學(xué)信息的能力,提高學(xué)生的創(chuàng)造能力和創(chuàng)新意識。
(1)教師在教學(xué)過程中較少滲入數(shù)學(xué)建模思想。目前在高校數(shù)學(xué)教學(xué)中數(shù)學(xué)建模的思想應(yīng)用得仍然較少,重視程度不夠。不少高校的教師在開展大學(xué)數(shù)學(xué)類課程時,仍然只是停留在數(shù)學(xué)知識的教學(xué)方面,并沒有對學(xué)生進行研究性學(xué)習(xí)探索。據(jù)調(diào)查,大多數(shù)高校教師對日常的教學(xué)工作能夠認真完成規(guī)定的教學(xué)任務(wù),但能夠真正創(chuàng)造性地把數(shù)學(xué)建模思想融入到數(shù)學(xué)教學(xué)任務(wù)中的教師較少。大多數(shù)高校數(shù)學(xué)老師都意識到探索式的數(shù)學(xué)建模教學(xué)很重要,但真正將數(shù)學(xué)建模思想與數(shù)學(xué)教學(xué)融合的嘗試和探索卻很少??梢姸鄶?shù)高校教師雖然明白數(shù)學(xué)建模思想的重要性,但是由于缺乏足夠的數(shù)學(xué)建模教學(xué)的相關(guān)知識及經(jīng)驗,在實際教學(xué)中數(shù)學(xué)建模思想仍未得到充分的運用。
(2)開設(shè)的有關(guān)數(shù)學(xué)建模的課程和活動較少。雖然數(shù)學(xué)建模思想得到了越來越廣泛的應(yīng)用,但是在高校中實際開設(shè)的有關(guān)數(shù)學(xué)建模的課程并不多,尤其是應(yīng)用數(shù)學(xué)、數(shù)學(xué)實驗以及計算機應(yīng)用等一些需要滲入數(shù)學(xué)建模思想的課程在實際的教學(xué)過程中并沒有創(chuàng)造性地運用數(shù)學(xué)建模思想。另一方面,校內(nèi)自主開展的有關(guān)數(shù)學(xué)建模競賽和活動并不多,宣傳力度也不夠,無法讓更多的學(xué)生了解數(shù)學(xué)建模的意義和價值,更無法參與到數(shù)學(xué)建?;顒又腥?。
(3)學(xué)生對數(shù)學(xué)的態(tài)度和觀念還未改變,對數(shù)學(xué)建模缺乏深入的了解。大學(xué)數(shù)學(xué)是一門較為抽象的學(xué)科,其概念、定理和性質(zhì)都不容易掌握,由于其具有一定的難度,所以不少學(xué)生對大學(xué)數(shù)學(xué)類課程以及數(shù)學(xué)建模沒有興趣。并且這些學(xué)生在初中和高中階段也學(xué)習(xí)數(shù)學(xué),但是不少學(xué)生是為了應(yīng)付考試,并沒有見識到數(shù)學(xué)的應(yīng)用性,覺得數(shù)學(xué)是一門純理論的課程,沒有實用價值。同時很多學(xué)生對數(shù)學(xué)建模思想的運用并不夠了解,不知道如何將數(shù)學(xué)知識和數(shù)學(xué)方法應(yīng)用到實際的生活中去,覺得數(shù)學(xué)沒有用,也沒有深入學(xué)習(xí)的意義。
(1)提高課堂教學(xué)質(zhì)量,創(chuàng)造性地運用數(shù)學(xué)建模思想。大學(xué)的數(shù)學(xué)類課程主要有“線性代數(shù)”、“高等數(shù)學(xué)”、“運籌學(xué)”、“數(shù)學(xué)建模”、“概率論與數(shù)理統(tǒng)計”等,這些課程的核心部分都跟高等數(shù)學(xué)有關(guān),所以要注重提高數(shù)學(xué)類課程的教學(xué)質(zhì)量關(guān)鍵就在于高等數(shù)學(xué),而要提高高等數(shù)學(xué)的教學(xué)質(zhì)量就必須在教學(xué)過程中創(chuàng)造性地應(yīng)用數(shù)學(xué)建模思想。對于主修數(shù)學(xué)的學(xué)生,要加強對計算機軟件和語言的學(xué)習(xí),系統(tǒng)性地對數(shù)學(xué)原理進行剖解和分析,合理運用數(shù)學(xué)知識和數(shù)學(xué)方法解決社會實際問題。在教學(xué)中多引導(dǎo)、啟發(fā)學(xué)生利用對生活問題和科學(xué)問題的深入研究,主動結(jié)合自己的課程理論知識和數(shù)學(xué)建模,使數(shù)學(xué)建模思想融入到學(xué)生的整個學(xué)習(xí)過程中去。對于非數(shù)學(xué)領(lǐng)域的問題,要啟發(fā)學(xué)生運用計算機軟件建模,從而解決不同領(lǐng)域中的數(shù)學(xué)建模問題。
(2)多開設(shè)跟數(shù)學(xué)建模有關(guān)的數(shù)學(xué)類課程。例如除了開設(shè)跟數(shù)學(xué)建模有關(guān)的必修課,還可以開設(shè)一些跟數(shù)學(xué)建模有關(guān)的選修課,為其他專業(yè)的學(xué)生提供接觸和了解數(shù)學(xué)建模思想的機會,為學(xué)生拓展知識領(lǐng)域,為其解決該領(lǐng)域的問題提供有效的方法。例如,經(jīng)濟學(xué)有關(guān)專業(yè)的學(xué)生就可以通過選修跟數(shù)學(xué)建模有關(guān)的課程,解決其在經(jīng)濟學(xué)中遇到的問題,因為很多跟經(jīng)濟學(xué)有關(guān)的問題僅僅靠經(jīng)濟學(xué)的知識是無法解決的,像貸款計算這樣的問題就要將數(shù)學(xué)與經(jīng)濟學(xué)聯(lián)系起來才能解決實際問題。
(3)廣泛宣傳,讓學(xué)生了解數(shù)學(xué)建模的意義和價值。學(xué)生是教學(xué)過程中的主體,目前,大學(xué)數(shù)學(xué)建模課程開設(shè)效果不佳,學(xué)生參與度低的主要原因就是學(xué)生缺乏對數(shù)學(xué)建模的深入了解。那么,要提高學(xué)生的參與性,促進數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程的融合就必須加強宣傳,讓學(xué)生深入了解什么是數(shù)學(xué)建模。同時,在課堂上就是也要轉(zhuǎn)變傳統(tǒng)枯燥的教學(xué)方式,多使用啟發(fā)式教學(xué)和探索式教學(xué),吸引學(xué)生的學(xué)習(xí)興趣,讓他們發(fā)現(xiàn)數(shù)學(xué)對社會實際生活的重要作用,轉(zhuǎn)變他們對數(shù)學(xué)的態(tài)度,并引導(dǎo)學(xué)生對數(shù)學(xué)建模和數(shù)學(xué)課程感興趣。
(4)轉(zhuǎn)變數(shù)學(xué)教育理念及教育方式。要轉(zhuǎn)變傳統(tǒng)的教育方式,將教學(xué)的重點放在數(shù)學(xué)知識在生活中的應(yīng)用問題上,而不是將知識與實際生活割裂開來。同時在教學(xué)中要注重證明和推理,加強學(xué)生對數(shù)學(xué)方法的掌握注重培養(yǎng)學(xué)生對實際問題的邏輯分析、簡化、抽象并運用數(shù)學(xué)語言表達的能力。也就是說教學(xué)的重點在于提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力和加強數(shù)學(xué)意識和數(shù)學(xué)方法的應(yīng)用,這樣才能夠培養(yǎng)出具有創(chuàng)新能力和創(chuàng)新意識的人才。
(5)多開展數(shù)學(xué)建模活動和競賽,提高學(xué)生參與性。在高校內(nèi)部要多開展跟數(shù)學(xué)有關(guān)的活動和競賽以及專家講座等,一方面加強學(xué)生對數(shù)學(xué)建模的認識,另一方面也提高了學(xué)生的參與性。通過專家講座,不僅可以讓學(xué)生更深入地了解數(shù)學(xué)建模的價值,也加強了學(xué)術(shù)交流,提高學(xué)生的數(shù)學(xué)建模應(yīng)用能力。通過數(shù)學(xué)建模競賽,為學(xué)生提供展示自己智慧、充分發(fā)揮其能力的平臺。同時,競賽也可以讓學(xué)生在競賽中發(fā)現(xiàn)自己的不足,在交流中不斷完善自己的缺陷,拓展學(xué)生的思維。而且,在數(shù)學(xué)建模比賽中,通過讓學(xué)生探究跟生活實際有關(guān)的例子,提高學(xué)生對數(shù)學(xué)建模的興趣,加強學(xué)生對模型應(yīng)用的直觀性認識,促進學(xué)校應(yīng)用型人才的培養(yǎng)。
總之,數(shù)學(xué)建模思想和高校數(shù)學(xué)類課程的融合,對于高等數(shù)學(xué)教學(xué)改革具有非常重要的意義。把數(shù)學(xué)建模思想融入到高等數(shù)學(xué)教學(xué)中,可以更好地提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,提高他們運用數(shù)學(xué)思想和數(shù)學(xué)方法分析問題、解決問題和抽象思維的能力。高校教師要加強數(shù)學(xué)建模思想的應(yīng)用,讓學(xué)生初步掌握從實際問題中總結(jié)數(shù)學(xué)內(nèi)涵的方法,提高學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,為高校學(xué)生專業(yè)課的學(xué)習(xí)奠定堅實的數(shù)學(xué)基礎(chǔ)。
數(shù)學(xué)建模論文篇十二
2.1、建立引導(dǎo)機制,激發(fā)學(xué)習(xí)動力。
2.2、建立轉(zhuǎn)化機制,促進知識向能力的轉(zhuǎn)化。
2.3、建立協(xié)作機制,增強團隊意識。
高校學(xué)生在平時的學(xué)習(xí)過程中,絕大多數(shù)情況下,基本上都是獨自學(xué)習(xí),與他人合作研究和解決問題機會很少.而在各種層次級別的數(shù)學(xué)建模競賽中,參賽學(xué)生要3人一組,以團隊而不是個人身份參賽.在正式比賽之前,要按照學(xué)科、特長等因素尋找隊友,組成隊伍.在比賽期間,由于隊友經(jīng)常是來自不同專業(yè),知識能力水平各有所長,脾氣秉性各有特點,需要在比賽時認真溝通,相互協(xié)調(diào),合理分工,團結(jié)協(xié)作共同完成整個比賽.為了比賽,在發(fā)生矛盾時,要學(xué)會忍耐和妥協(xié),而不能意氣用事.在整個比賽期間,求同存異,取長補短,優(yōu)勢互補,最終合作完成任務(wù).這個過程,無形中就培養(yǎng)了學(xué)生的合作意識和團隊精神,使學(xué)生親身感受到現(xiàn)代社會與人合作是大多數(shù)人成功的必要選擇.依托數(shù)學(xué)建模競賽,培養(yǎng)創(chuàng)新型人才的團隊協(xié)作意識,建立培養(yǎng)人才的.合作交流機制,這是適應(yīng)社會和時代需要的人才培養(yǎng)過程中的重要環(huán)節(jié)之一。
2.4、建立溝通表達機制,提高學(xué)生的語言及文字表達能力。
2.5、建立問題導(dǎo)向機制,培養(yǎng)學(xué)生主動式學(xué)習(xí)的自主學(xué)習(xí)能力。
3.1、促進了學(xué)生全面發(fā)展。
3.2、提高了學(xué)生的就業(yè)質(zhì)量。
數(shù)學(xué)建模論文篇十三
使學(xué)生的綜合應(yīng)用能力、實踐創(chuàng)新能力和綜合應(yīng)用素質(zhì)等多方面均能得到提升和發(fā)展。
對于醫(yī)學(xué)專業(yè)的學(xué)生來說,在校所學(xué)的數(shù)學(xué)基礎(chǔ)理論課程比較有限,并且學(xué)生對純粹的數(shù)學(xué)知識與復(fù)雜的理論推導(dǎo)已經(jīng)極為厭倦,如果數(shù)學(xué)建模還是以傳統(tǒng)的“灌輸式”和教師“主導(dǎo)型”為主、簡單的應(yīng)用案例為主要教學(xué)內(nèi)容的話,其結(jié)果勢必會使學(xué)生有一種再講數(shù)學(xué)課和做應(yīng)用題的感覺,既不能很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,也不能體現(xiàn)數(shù)學(xué)建模的思想方法和本質(zhì)特色。
因此,如何使學(xué)生擺脫這種尷尬的現(xiàn)狀已成為我們教學(xué)的一大難點。針對這種情況,在教學(xué)模式上,我們大膽嘗試研究型教學(xué)模式,即采用“從實踐中來,到實踐中去”的教學(xué)理念。一方面,從最現(xiàn)實、最熱門的醫(yī)學(xué)話題出發(fā),從學(xué)生最感興趣的.問題入手,激發(fā)學(xué)生的學(xué)習(xí)興趣和進一步學(xué)習(xí)的主動性,使他們從一開始就能進入到學(xué)習(xí)的角色中去;另一方面,通過開展多種方式的實踐教學(xué)活動,使學(xué)生在實踐中掌握數(shù)學(xué)建模的常用方法和基本技能,忽略繁瑣的數(shù)學(xué)推導(dǎo)過程,讓學(xué)生體會發(fā)現(xiàn)問題和思考問題的過程,培養(yǎng)學(xué)生解決問題的創(chuàng)新能力。
近些年來,我們開設(shè)的醫(yī)藥數(shù)學(xué)建模課受到了學(xué)生的一致好評,其關(guān)鍵之處在于我們一改傳統(tǒng)的教學(xué)模式,通過組織數(shù)學(xué)建模興趣研討班,讓每位同學(xué)都能充分地參與到研究中去并且使每位學(xué)生都有發(fā)言的機會。這些舉措旨在進一步激發(fā)學(xué)生的創(chuàng)新意識,提高學(xué)生的數(shù)學(xué)建模實踐能力。研討班面向全校各類醫(yī)學(xué)專業(yè)的學(xué)生,并以三人為單位,劃分成若干個組,通過專題研討的形式開展活動。實踐證明:通過這種研討過程,學(xué)生不僅對所學(xué)的醫(yī)學(xué)知識有了更深刻的理解與認識,在文獻資料查閱、計算機編程、語言表達能力等諸多方面也都有了顯著的提高。通過這個過程的學(xué)習(xí),為學(xué)生今后從事醫(yī)學(xué)科研工作打下了良好的基礎(chǔ)。
為了有效的培養(yǎng)學(xué)生綜合應(yīng)用能力和深層次學(xué)習(xí)的習(xí)慣與意識,我們在教學(xué)方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導(dǎo),突出知識的應(yīng)用思想和應(yīng)用意識,讓學(xué)生帶著問題上課,嘗試在解決問題中與教師進行交流,下課帶著問題回去。
在課堂教學(xué)中,重點講解發(fā)現(xiàn)問題和解決問題的方法與技巧。通過課前作業(yè),引導(dǎo)學(xué)生自我發(fā)現(xiàn)問題;通過課堂講解和研討,引導(dǎo)學(xué)生解決問題;通過課后作業(yè),總結(jié)和鞏固所學(xué)知識,學(xué)習(xí)應(yīng)用與拓展知識。這種完全以學(xué)生為主,教師為輔的做法,有利于培養(yǎng)學(xué)生樹立勇于探索求知的信心和探索新知識的能力與意識,提高學(xué)生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學(xué)生的綜合應(yīng)用素質(zhì)。
在現(xiàn)實生活中的實際問題是比較復(fù)雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應(yīng)用方能解決。
因此,以實際問題驅(qū)動的教學(xué)模式,主要是引導(dǎo)學(xué)生如何將復(fù)雜的實際問題分解為一系列簡單的小問題,在解決每一個小問題的過程中,讓學(xué)生學(xué)習(xí)并掌握相關(guān)的數(shù)學(xué)知識與方法。這種在應(yīng)用中學(xué)習(xí)的教學(xué)方法,在很大程度上解決了學(xué)生普遍存在的“學(xué)數(shù)學(xué)有什么用、學(xué)了數(shù)學(xué)不知怎么用”的困惑。
在整個教學(xué)過程中,貫穿以學(xué)生為主體,通過案例分析引導(dǎo)學(xué)生的思維方法,針對一個案例的解決過程和方法,要求實現(xiàn)舉一反三,促使學(xué)生對所掌握的知識進行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學(xué)生在學(xué)習(xí)和問題的解決中學(xué)會不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問題,通過不斷地歸納演繹、對比分析、總結(jié)經(jīng)驗、彌補不足,進一步學(xué)習(xí)相關(guān)知識和方法,再進行實踐,從而不斷增強自身的綜合應(yīng)用能力和素質(zhì)。
隨著醫(yī)學(xué)院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對培養(yǎng)適應(yīng)科學(xué)技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學(xué)人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專業(yè)人才已成為亟待解決的問題之一。本文探討了醫(yī)藥數(shù)學(xué)建模課程的開設(shè)對培養(yǎng)大學(xué)生實踐創(chuàng)新能力的幾點做法。教學(xué)實踐證明:數(shù)學(xué)建模課充分鍛煉了學(xué)生的各項能力,是提高醫(yī)學(xué)專業(yè)學(xué)生綜合應(yīng)用素質(zhì)行之有效的方法。
數(shù)學(xué)建模論文篇十四
摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識解決日常問題的一個重要手段。本文通過簡述數(shù)學(xué)建模的方法與過程,以及應(yīng)用數(shù)學(xué)建模解決實際經(jīng)濟問題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟問題解決中的重要作用。
經(jīng)濟現(xiàn)象具有多變性,隨著經(jīng)濟社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟形勢受到的影響因素越來越復(fù)雜多變。而日常經(jīng)濟生活中所遇到的經(jīng)濟現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對這些難以把控的變量,做好風(fēng)險的預(yù)估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識、應(yīng)用數(shù)學(xué)建模為工具進行較為理性的計算,為經(jīng)濟決策、企業(yè)規(guī)劃提供重要的幫助。
數(shù)學(xué)建模,其實就是建立數(shù)學(xué)模型的簡稱,實際上數(shù)學(xué)建??梢苑Q之為解決問題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進行合理的運算,推導(dǎo)出一種理性的結(jié)果的過程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個中介和橋梁,在工業(yè)設(shè)計、經(jīng)濟領(lǐng)域、工程建設(shè)等各個方面,運用數(shù)學(xué)的語言和方法進行問題的求解和推導(dǎo),實際上,都是一種數(shù)學(xué)建模的過程。數(shù)學(xué)建模的主要過程可以總結(jié)為如下的框圖形式:實際上,數(shù)學(xué)模型的最終建立是一個反復(fù)驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數(shù)學(xué)模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實際對象的特性,對復(fù)雜問題進行簡化,提取主要因素,提煉精確的數(shù)學(xué)語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個量(變量、常量)間的數(shù)學(xué)關(guān)系,化實際問題為數(shù)學(xué)語言;4.模型求解:對上述數(shù)學(xué)關(guān)系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結(jié)果與實際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結(jié)果與實際情況相驗證,檢驗?zāi)P偷暮侠硇院瓦m用性。
二、經(jīng)濟問題數(shù)學(xué)模型的建立。
經(jīng)濟類問題因為其特有的特點,可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機性情況的模型,可以解決類似風(fēng)險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設(shè),精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟問題的建模計算實際上是一個從經(jīng)濟世界進入數(shù)學(xué)世界再回到經(jīng)濟世界的過程。建立經(jīng)濟數(shù)學(xué)模型,需要首先對實際經(jīng)濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應(yīng)用數(shù)學(xué)知識建立完整的數(shù)學(xué)經(jīng)濟模型。
三、建模舉例。
四、結(jié)語。
綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟中的應(yīng)用可以非常廣泛,對很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤、規(guī)避風(fēng)險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。
數(shù)學(xué)建模論文篇十五
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重數(shù)學(xué)建模思想的有效培養(yǎng),促進學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點,提高數(shù)學(xué)建模思想培養(yǎng)的有效性?;诖?,文章將從不同的方面對小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持數(shù)學(xué)課堂教學(xué)的高效性。要實現(xiàn)這樣的發(fā)展目標,增強小學(xué)生數(shù)學(xué)建模思想的實際培養(yǎng)效果,需要加強對學(xué)生動手實踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學(xué)教學(xué)計劃的實施。因此,教師需要利用學(xué)生動手實踐能力的作用,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學(xué)生認為邊越長角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R點有更加正確而全面的認識,教師可以通過在黑板上設(shè)置一些能夠活動的三角板,讓學(xué)生親自動手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學(xué)計劃的實施打下堅實的基礎(chǔ)。通過這種教學(xué)方法的合理運用,可以激發(fā)出學(xué)生們在數(shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。
通過對小學(xué)階段各種數(shù)學(xué)實踐教學(xué)活動實際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點的深入理解,增強其主動參與數(shù)學(xué)建模教學(xué)活動的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達到預(yù)期的效果,教師需要結(jié)合實際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對數(shù)學(xué)建模思想的整體認知水平。比如,在講授“異分母分數(shù)加減法”這部分知識的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當(dāng)學(xué)生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對知識點的理解,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動開展中注重對數(shù)學(xué)思想的靈活運用,增強相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運用各種數(shù)學(xué)知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對角的分類及畫角相關(guān)知識點的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學(xué)設(shè)備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點的過程中,教師應(yīng)通過對學(xué)生的正確引導(dǎo),運用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實際發(fā)展概況,可知靈活運用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標的順利實現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
數(shù)學(xué)建模論文篇十六
隨著我國高等教育的發(fā)展,高校招生規(guī)模越來越大,而生源質(zhì)量較低,特別是獨立學(xué)院院校。就我校而言,絕大多數(shù)專業(yè)都開設(shè)了數(shù)學(xué)類課程。但在教學(xué)中,普遍認為理論性太強,與實際脫節(jié)嚴重,不能引起學(xué)生的學(xué)習(xí)興趣。并且,傳統(tǒng)教學(xué)忽視了學(xué)生用數(shù)學(xué)解決實際問題的能力,所以,進行數(shù)學(xué)教學(xué)改革勢在必行。數(shù)學(xué)建??膳囵B(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力,通過數(shù)模方法對實際問題進行巧妙處理,讓學(xué)生體會到數(shù)學(xué)不僅能傳播理論知識和求解一些數(shù)學(xué)問題,還可將其應(yīng)用到實際問題中,讓學(xué)生看到一些實際模型的來龍去脈,提高學(xué)生的學(xué)習(xí)積極性。數(shù)學(xué)建模是培養(yǎng)學(xué)生綜合科學(xué)素質(zhì)和創(chuàng)新能力的一個極好載體,而且能充分考驗學(xué)生的洞察能力、創(chuàng)新能力、聯(lián)想能力、使用當(dāng)代科技最新成果的能力等。學(xué)生們同舟共濟的團隊合作精神和協(xié)調(diào)組織能力,以及誠信意識和自律精神的塑造,都能得到很好的培養(yǎng)。技能技術(shù)的掌握和團隊合作精神對于獨立學(xué)院學(xué)生將來進入社會十分重要,這也是衡量獨立學(xué)院辦學(xué)成功與否的一個方面。因此,獨立學(xué)院的人才培養(yǎng)目標定位,既要達到本科生應(yīng)具備的理論基礎(chǔ),又要有相對突出的專業(yè)技能,應(yīng)培養(yǎng)“應(yīng)用型本科”人才。因而,獨立學(xué)院的數(shù)學(xué)課堂上應(yīng)該多方面滲透數(shù)學(xué)模型的思想。
(一)人才培養(yǎng)創(chuàng)新的需要。
根據(jù)獨立學(xué)院人才培養(yǎng)目標和實際情況,有針對性的加大基礎(chǔ)課和實踐環(huán)節(jié)教學(xué)的'比重,側(cè)重于實踐能力的培養(yǎng),在專業(yè)課程體系中適當(dāng)增加實驗、實踐教學(xué)內(nèi)容,加強與社會實體的聯(lián)系。力求培養(yǎng)出具有實際操作能力的高素質(zhì)大學(xué)生。數(shù)學(xué)建模是將一個實際問題,對其作出一些必要的簡化與假設(shè),將其轉(zhuǎn)化成一個數(shù)學(xué)問題,借助數(shù)學(xué)工具和數(shù)學(xué)方法精確或近似地解決該問題,并用數(shù)學(xué)結(jié)果解釋客觀現(xiàn)象、回答實際問題并接受客觀實際的檢驗。數(shù)學(xué)建模能彌補傳統(tǒng)數(shù)學(xué)教學(xué)在實際應(yīng)用方面的不足,促進數(shù)學(xué)教師在現(xiàn)代化教學(xué)手段、教學(xué)模式方面的更新。數(shù)學(xué)建模有助于調(diào)動學(xué)生的學(xué)習(xí)興趣,在計算機應(yīng)用能力、實踐能力和創(chuàng)新意識的培養(yǎng)方面都有著非常大的作用,以便學(xué)生將來能更好地適應(yīng)工作崗位。
(二)高校教學(xué)改革的需要。
當(dāng)今社會信息高度發(fā)達,競爭日益激烈,必須具備一定的創(chuàng)新意識和創(chuàng)新能力,否則很難適應(yīng)社會信息時代的要求。傳統(tǒng)的教學(xué)模式是以課堂理論講授為主,學(xué)生絕大部分時間都集中學(xué)習(xí)書本知識,很少有機會接觸社會,也難做到學(xué)以致用。絕大多數(shù)課程都是教師的一言堂,考試也是以教師講課內(nèi)容為主。學(xué)生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學(xué)導(dǎo)致學(xué)生明顯缺乏學(xué)習(xí)的主動性,會聽從而不會質(zhì)疑,更不會形成開創(chuàng)性的觀點,很難適應(yīng)企事業(yè)單位動態(tài)的工作環(huán)境。數(shù)學(xué)作為一門傳統(tǒng)基礎(chǔ)學(xué)科,對獨立學(xué)院的學(xué)生來說,學(xué)習(xí)上有一定的難度。我們的教學(xué)應(yīng)以“必需,夠用”為度。數(shù)學(xué)建模從形式到內(nèi)容,都與畢業(yè)后工作時的條件非常相近,是一次非常好的鍛煉,學(xué)生通過自主的學(xué)習(xí),把實際的問題轉(zhuǎn)化為數(shù)學(xué)理論解決,有助于學(xué)生創(chuàng)新能力的培養(yǎng)動手能力的提高,這也正是獨立學(xué)院院校應(yīng)用型本科人才培養(yǎng)的方向。
(三)學(xué)生參加數(shù)學(xué)建模競賽的需要。
獨立學(xué)院學(xué)生思維活躍,且比較注重個人能力素質(zhì)的提高。很多學(xué)生愿意在學(xué)校參加一些競賽來提高自己。全國大學(xué)生數(shù)學(xué)建模競賽尤其受學(xué)生重視,但仍有很多大學(xué)生不了解這類競賽,因此,在數(shù)學(xué)課堂上引入數(shù)學(xué)建模思想,學(xué)生既了解了數(shù)學(xué)建模,又對數(shù)學(xué)公式提起了興趣,還有助于獨立學(xué)院學(xué)生在全國大學(xué)生數(shù)學(xué)建模競賽中取得優(yōu)異成績。
高等數(shù)學(xué)的作用表現(xiàn)在為各專業(yè)后續(xù)課程的學(xué)習(xí)提供必要的數(shù)學(xué)知識,培養(yǎng)各專業(yè)學(xué)生的數(shù)學(xué)思想與數(shù)學(xué)修養(yǎng),全面提高大學(xué)生創(chuàng)新思維和應(yīng)用能力。只有把數(shù)學(xué)建模思想融入數(shù)學(xué)教學(xué)中,才能調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的創(chuàng)新能力,實現(xiàn)提高學(xué)生綜合分析問題能力的最終目標。
作者:崔瑋王文麗單位:中國地質(zhì)大學(xué)長城學(xué)院信息工程系。
數(shù)學(xué)建模論文篇十七
大學(xué)數(shù)學(xué)具有高度抽象性和概括性等特點,知識本身難度大再加上學(xué)時少、內(nèi)容多等教學(xué)現(xiàn)狀常常造成學(xué)生的學(xué)習(xí)積極性不高、知識掌握不夠透徹、遇到實際問題時束手無策,而數(shù)學(xué)建模思想能激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,提高其解決實際問題的能力。數(shù)學(xué)建模活動為學(xué)生構(gòu)建了一個由數(shù)學(xué)知識通向?qū)嶋H問題的橋梁,是學(xué)生的數(shù)學(xué)知識和應(yīng)用能力共同提高的最佳結(jié)合方式。因此在大學(xué)數(shù)學(xué)教育中應(yīng)加強數(shù)學(xué)建模教育和活動,讓學(xué)生積極主動學(xué)習(xí)建模思想,認真體驗和感知建模過程,以此啟迪創(chuàng)新意識和創(chuàng)新思維,提高其素質(zhì)和創(chuàng)新能力,實現(xiàn)向素質(zhì)教育的轉(zhuǎn)化和深入。
數(shù)學(xué)建模即抓住問題的本質(zhì),抽取影響研究對象的主因素,將其轉(zhuǎn)化為數(shù)學(xué)問題,利用數(shù)學(xué)思維、數(shù)學(xué)邏輯進行分析,借助于數(shù)學(xué)方法及相關(guān)工具進行計算,最后將所得的答案回歸實際問題,即模型的檢驗,這就是數(shù)學(xué)建模的全過程。一般來說",數(shù)學(xué)建模"包含五個階段。
1.準備階段。
主要分析問題背景,已知條件,建模目的等問題。
2.假設(shè)階段。
做出科學(xué)合理的假設(shè),既能簡化問題,又能抓住問題的本質(zhì)。
3.建立階段。
從眾多影響研究對象的因素中適當(dāng)?shù)厝∩幔槿≈饕蛩赜枰钥紤],建立能刻畫實際問題本質(zhì)的數(shù)學(xué)模型。
4.求解階段。
對已建立的數(shù)學(xué)模型,運用數(shù)學(xué)方法、數(shù)學(xué)軟件及相關(guān)的工具進行求解。
5.驗證階段。
用實際數(shù)據(jù)檢驗?zāi)P?,如果偏差較大,就要分析假設(shè)中某些因素的合理性,修改模型,直至吻合或接近現(xiàn)實。如果建立的模型經(jīng)得起實踐的檢驗,那么此模型就是符合實際規(guī)律的,能解決實際問題或有效預(yù)測未來的,這樣的建模就是成功的,得到的模型必被推廣應(yīng)用。
二、加強數(shù)學(xué)建模教育的作用和意義。
(一)加強數(shù)學(xué)建模教育有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高數(shù)學(xué)修養(yǎng)和素質(zhì)。
數(shù)學(xué)建模教育強調(diào)如何把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,進而利用數(shù)學(xué)及其有關(guān)的工具解決這些問題,因此在大學(xué)數(shù)學(xué)的教學(xué)活動中融入數(shù)學(xué)建模思想,鼓勵學(xué)生參與數(shù)學(xué)建模實踐活動,不但可以使學(xué)生學(xué)以致用,做到理論聯(lián)系實際,而且還會使他們感受到數(shù)學(xué)的生機與活力,激發(fā)求知的興趣和探索的欲望,變被動學(xué)習(xí)為主動參與其效率就會大為改善。數(shù)學(xué)修養(yǎng)和素質(zhì)自然而然得以培養(yǎng)并提高。
(二)加強數(shù)學(xué)建模教育有助于提高學(xué)生的分析解決問題能力、綜合應(yīng)用能力。
數(shù)學(xué)建模問題來源于社會生活的眾多領(lǐng)域,在建模過程中,學(xué)生首先需要閱讀相關(guān)的文獻資料,然后應(yīng)用數(shù)學(xué)思維、數(shù)學(xué)邏輯及相關(guān)知識對實際問題進行深入剖析研究并經(jīng)過一系列復(fù)雜計算,得出反映實際問題的最佳數(shù)學(xué)模型及模型最優(yōu)解。因此通過數(shù)學(xué)建?;顒訉W(xué)生的視野將會得以拓寬,應(yīng)用意識、解決復(fù)雜問題的能力也會得到增強和提高。
(三)加強數(shù)學(xué)建模教育有助于培養(yǎng)學(xué)生的創(chuàng)造性思維和創(chuàng)新能力。
所謂創(chuàng)造力是指"對已積累的知識和經(jīng)驗進行科學(xué)地加工和創(chuàng)造,產(chǎn)生新概念、新知識、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構(gòu)成".現(xiàn)今教育界認為,創(chuàng)造力的培養(yǎng)是人才培養(yǎng)的關(guān)鍵,數(shù)學(xué)建?;顒拥母鱾€環(huán)節(jié)無不充滿了創(chuàng)造性思維的挑戰(zhàn)。
很多不同的實際問題,其數(shù)學(xué)模型可以是相同或相似的,這就要求學(xué)生在建模時觸類旁通,挖掘不同事物間的本質(zhì),尋找其內(nèi)在聯(lián)系。而對一個具體的建模問題,能否把握其本質(zhì)轉(zhuǎn)化為數(shù)學(xué)問題,是完成建模過程的關(guān)鍵所在。同時建模題材有較大的靈活性,沒有統(tǒng)一的標準答案,因此數(shù)學(xué)建模過程是培養(yǎng)學(xué)生創(chuàng)造性思維,提高創(chuàng)新能力的過程.
(四)加強數(shù)學(xué)建模教育有助于提高學(xué)生科技論文的撰寫能力。
數(shù)學(xué)建模的結(jié)果是以論文形式呈現(xiàn)的,如何將建模思想、建立的`模型、最優(yōu)解及其關(guān)鍵環(huán)節(jié)的處理在論文中清晰地表述出來,對本科生來說是一個挑戰(zhàn)。經(jīng)歷數(shù)學(xué)建模全過程的磨練,特別是數(shù)模論文的撰寫,學(xué)生的文字語言、數(shù)學(xué)表述能力及論文的撰寫能力無疑會得到前所未有的提高。
(五)加強數(shù)學(xué)建模教育有助于增強學(xué)生的團結(jié)合作精神并提高協(xié)調(diào)組織能力建模問題通常較復(fù)雜,涉及的知識面也很廣,因此數(shù)學(xué)建模實踐活動一般效仿正規(guī)競賽的規(guī)則,三人為一隊在三天內(nèi)以論文形式完成建模題目。要較好地完成任務(wù),離不開良好的組織與管理、分工與協(xié)作.
三、開展數(shù)學(xué)建模教育及活動的具體途徑和有效方法。
即在課堂教學(xué)中,教師以具體的案例作為主要的教學(xué)內(nèi)容,通過具體問題的建模,介紹建模的過程和思想方法及建模中要注意的問題。案例教學(xué)法的關(guān)鍵在于把握兩個重要環(huán)節(jié):
案例的選取和課堂教學(xué)的組織。
教學(xué)案例一定要精心選取,才能達到預(yù)期的教學(xué)效果。其選取一般要遵循以下幾點。
1.代表性:案例的選取要具有科學(xué)性,能拓寬學(xué)生的知識面,突出數(shù)學(xué)建模活動重在培養(yǎng)興趣提高能力等特點。
2.原始性:來自媒體的信息,企事業(yè)單位的報告,現(xiàn)實生活和各學(xué)科中的問題等等,都是數(shù)學(xué)建模問題原始資料的重要來源。
3.創(chuàng)新性:案例應(yīng)注意選取在建模的某些環(huán)節(jié)上具有挑戰(zhàn)性,能激發(fā)學(xué)生的創(chuàng)造性思維,培養(yǎng)學(xué)生的創(chuàng)新精神和提高創(chuàng)造能力。
案例教學(xué)的課堂組織,一部分是教師講授,從實際問題出發(fā),講清問題的背景、建模的要求和已掌握的信息,介紹如何通過合理的假設(shè)和簡化建立優(yōu)化的數(shù)學(xué)模型。還要強調(diào)如何用求解結(jié)果去解釋實際現(xiàn)象即檢驗?zāi)P?。另一部分是課堂討論,讓學(xué)生自由發(fā)言各抒己見并提出新的模型,簡介關(guān)鍵環(huán)節(jié)的處理。最后教師做出點評,提供一些改進的方向,讓學(xué)生自己課外獨立探索和鉆研,這樣既突出了教學(xué)重點,又給學(xué)生留下了進一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學(xué)生的課堂學(xué)習(xí)興趣和積極性,使傳授知識變?yōu)閷W(xué)習(xí)知識、應(yīng)用知識,真正地達到提高素質(zhì)和培養(yǎng)能力的教學(xué)目的.
(二)開展數(shù)模競賽的專題培訓(xùn)指導(dǎo)工作。
建立數(shù)學(xué)建模競賽指導(dǎo)團隊,分專題實行教師負責(zé)制。每位教師根據(jù)自己的專長,負責(zé)講授某一方面的數(shù)學(xué)建模知識與技巧,并選取相應(yīng)地建模案例進行剖析。如離散模型、連續(xù)模型、優(yōu)化模型、微分方程模型、概率模型、統(tǒng)計回歸模型及數(shù)學(xué)軟件的使用等。學(xué)生根據(jù)自己的薄弱點,選擇適合的專題培訓(xùn)班進行學(xué)習(xí),以彌補自己的不足。這種針對性的數(shù)模教學(xué),會極大地提高教學(xué)效率。
以現(xiàn)代網(wǎng)絡(luò)技術(shù)為依托,建立數(shù)學(xué)建模課程網(wǎng)站,內(nèi)容包括:課程介紹,課程大綱,教師教案,電子課件,教學(xué)實驗,教學(xué)錄像,網(wǎng)上答疑等;還可以增加一些有關(guān)欄目,如歷年國內(nèi)外數(shù)模競賽介紹,校內(nèi)競賽,專家點評,獲獎心得交流;同時提供數(shù)模學(xué)習(xí)資源下載如講義,背景材料,歷年國內(nèi)外競賽題,優(yōu)秀論文等。以此為學(xué)生提供良好的自主學(xué)習(xí)網(wǎng)絡(luò)平臺,實現(xiàn)課堂教學(xué)與網(wǎng)絡(luò)教學(xué)的有機結(jié)合,達到有效地提高學(xué)生數(shù)學(xué)建模綜合應(yīng)用能力的目的。
完全模擬全國大學(xué)生數(shù)模競賽的形式規(guī)則:定時公布賽題,三人一組,只能隊內(nèi)討論,按時提交論文,之后指導(dǎo)教師、參賽同學(xué)集中討論,進一步完善。筆者負責(zé)數(shù)學(xué)建模競賽培訓(xùn)近20年,多年的實踐證明,每進行一次這樣的訓(xùn)練,學(xué)生在建模思路、建模水平、使用軟件能力、論文書寫方面就有大幅提高。多次訓(xùn)練之后,學(xué)生的建模水平更是突飛猛進,效果甚佳。
如20xx年我指導(dǎo)的隊榮獲全國高教社杯大學(xué)生數(shù)學(xué)建模競賽的最高獎---高教社杯獎,這是此賽設(shè)置的唯一一個名額,也是當(dāng)年從全國(包括香港)院校的約1萬多個本科參賽隊中脫穎而出的。又如20xx年我校57隊參加全國大學(xué)生數(shù)學(xué)建模競賽,43隊獲獎,獲獎比例達75%,創(chuàng)歷年之最。
(五)鼓勵學(xué)生積極參加全國大學(xué)生數(shù)學(xué)建模競賽、國際數(shù)學(xué)建模競賽。
全國大學(xué)生數(shù)學(xué)建模競賽創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競賽,國際大學(xué)生數(shù)學(xué)建模競賽是世界上影響范圍最大的高水平大學(xué)生學(xué)術(shù)賽事。參加數(shù)學(xué)建模大賽可以激勵學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高運用數(shù)學(xué)及相關(guān)工具分析問題解決問題的綜合能力,開拓知識面,培養(yǎng)創(chuàng)造精神及合作意識。
四、結(jié)束語。
數(shù)學(xué)建模本身是一個創(chuàng)造性的思維過程,它是對數(shù)學(xué)知識的綜合應(yīng)用,具有較強的創(chuàng)新性,而高校數(shù)學(xué)教學(xué)改革的目的之一是要著力培養(yǎng)學(xué)生的創(chuàng)造性思維,提高學(xué)生的創(chuàng)新能力。因此應(yīng)將數(shù)學(xué)建模思想融入教學(xué)活動中,通過不斷的數(shù)學(xué)建模教育和實踐培養(yǎng)學(xué)生的創(chuàng)新能力和應(yīng)用能力從而提高學(xué)生的基本素質(zhì)以適應(yīng)社會發(fā)展的要求。
數(shù)學(xué)建模論文篇十八
摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
一、新課的引入需要發(fā)揮教師的作用。
教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導(dǎo)入會點燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識上來。這對提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時,新課前的導(dǎo)入環(huán)節(jié)是對學(xué)生進行情感教育的最佳時刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會到數(shù)學(xué)建模的價值、增強學(xué)好數(shù)學(xué)建模的信心。俗話說:“好的開始是成功的一半。”數(shù)學(xué)建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。
二、在教學(xué)任務(wù)的設(shè)計上需要發(fā)揮教師的作用。
數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來達到特定的教學(xué)目標和學(xué)習(xí)目標。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計質(zhì)量的高低。教師應(yīng)通過設(shè)計一系列高質(zhì)量的問題把復(fù)雜的數(shù)學(xué)建模問題分解成若干簡單問題來引導(dǎo)學(xué)生更好地發(fā)揮其主動性。學(xué)生也只有在這些問題的正確引導(dǎo)下才能突破難點并向著學(xué)習(xí)目標努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
三、在新舊知識的聯(lián)系點上需要發(fā)揮教師的作用。
建構(gòu)主義強調(diào)新知識是在學(xué)生已有知識的基礎(chǔ)上通過學(xué)生自身有意義的建構(gòu)獲得的。筆者認為,學(xué)生自主建構(gòu)知識應(yīng)在教師的科學(xué)引導(dǎo)下進行。尤其是對于數(shù)學(xué)建模這樣高難度的知識更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識聯(lián)系點上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準確掌握教學(xué)目標、難點的基礎(chǔ)上,充分考慮學(xué)生的認知能力、習(xí)慣、思維方式,通過有針對性的具體問題喚起學(xué)生對舊知識的回憶,再通過啟發(fā)性問題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識,從而實現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識。
四、在教學(xué)重點、難點上需要教師的引導(dǎo)。
教學(xué)的重點、難點是每一節(jié)課的核心和主線,只有準確把握了重點、突破了難點才能更好地掌握本節(jié)課的內(nèi)容。在強調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點、難點學(xué)生往往把握不準、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動去發(fā)現(xiàn)重點、突破難點。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點、突破難點并不是讓教師直接告訴學(xué)生本節(jié)課的重點是什么、怎樣突破難點,而是通過具體問題的引導(dǎo)讓學(xué)生自己找到重點、并通過學(xué)生自己的思考、討論解決疑難問題。學(xué)生在教師的引導(dǎo)下通過自己的努力、討論解決了疑難后,學(xué)生會非常興奮,從而會越來越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。