學(xué)習(xí)需要日復(fù)一日的堅持,想要了解三角函數(shù)誘導(dǎo)公式的小伙伴快來看看吧!下面由出國留學(xué)網(wǎng)小編為你精心準備了“常用的三角函數(shù)誘導(dǎo)公式及三角函數(shù)的概念”,持續(xù)關(guān)注本站將可以持續(xù)獲取更多的考試資訊!
常用的三角函數(shù)誘導(dǎo)公式
三角函數(shù)誘導(dǎo)公式一:
任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
三角函數(shù)誘導(dǎo)公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
三角函數(shù)誘導(dǎo)公式三:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
三角函數(shù)誘導(dǎo)公式四:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
三角函數(shù)誘導(dǎo)公式五:
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
三角函數(shù)誘導(dǎo)公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做題時,將a看成銳角來做會比較好做。
規(guī)律總結(jié)
上面這些誘導(dǎo)公式可以概括為:
對于π/2*k±α(k∈Z)的三角函數(shù)值,
①當k是偶數(shù)時,得到α的同名函數(shù)值,即函數(shù)名不改變;
②當k是奇數(shù)時,得到α相應(yīng)的余函數(shù)值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇變偶不變)
然后在前面加上把α看成銳角時原函數(shù)值的符號。
三角函數(shù)的概念
三角函數(shù)是數(shù)學(xué)中屬于初等函數(shù)中的超越函數(shù)的一類函數(shù)。它們的本質(zhì)是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標系中定義的,其定義域為整個實數(shù)域。另一種定義是在直角三角形中,但并不完全。現(xiàn)代數(shù)學(xué)把它們描述成無窮數(shù)列的極限和微分方程的解,將其定義擴展到復(fù)數(shù)系。它包含六種基本函數(shù):正弦、余弦、正切、余切、正割、余割。由于三角函數(shù)的周期性,它并不具有單值函數(shù)意義上的反函數(shù)。三角函數(shù)在復(fù)數(shù)中有較為重要的應(yīng)用。