復合函數(shù)定義域的含義和求法是什么?不知道的小伙伴看過來,下面由出國留學網(wǎng)小編為你精心準備了“復合函數(shù)定義域的含義及求法”僅供參考,持續(xù)關(guān)注本站將可以持續(xù)獲取更多的資訊!
復合函數(shù)定義域的含義
若函數(shù)=()的定義域是B,=()的定義域是A,則復合函數(shù)=[()]的定義域是
D={|∈A,且()∈B}綜合考慮各部分的x的取值范圍,取他們的交集。
求函數(shù)的定義域主要應考慮以下幾點:
⑴當為整式或奇次根式時,R;
⑵當為偶次根式時,被開方數(shù)不小于0(即≥0);
⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數(shù)大于0;
⑷當為指數(shù)式時,對零指數(shù)冪或負整數(shù)指數(shù)冪,底不為0(如,中)。
⑸當是由一些基本函數(shù)通過四則運算結(jié)合而成的,它的定義域應是使各部分都有意義的自變量的值組成的集合,即求各部分定義域集合的交集。
⑹分段函數(shù)的定義域是各段上自變量的取值集合的并集。
⑺由實際問題建立的函數(shù),除了要考慮使解析式有意義外,還要考慮實際意義對自變量的要求
⑻對于含參數(shù)字母的函數(shù),求定義域時一般要對字母的取值情況進行分類討論,并要注意函數(shù)的定義域為非空集合。
⑼對數(shù)函數(shù)的真數(shù)必須大于零,底數(shù)大于零且不等于1。
⑽三角函數(shù)中的切割函數(shù)要注意對角變量的限制。
復合函數(shù)定義域的求法
復合函數(shù)定義域
若函數(shù)y=f(u)的定義域是B,u=g(x)的定義域是A,則復合函數(shù)y=f[g(x)]的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。
求函數(shù)的定義域主要應考慮以下幾點:
⑴當為整式或奇次根式時,R的值域;
⑵當為偶次根式時,被開方數(shù)不小于0(即≥0);
⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數(shù)大于0;
⑷當為指數(shù)式時,對零指數(shù)冪或負整數(shù)指數(shù)冪,底不為0。
⑸當是由一些基本函數(shù)通過四則運算結(jié)合而成的,它的定義域應是使各部分都有意義的自變量的值組成的集合,即求各部分定義域集合的交集。
⑹分段函數(shù)的定義域是各段上自變量的取值集合的并集。
⑺由實際問題建立的函數(shù),除了要考慮使解析式有意義外,還要考慮實際意義對自變量的要求
⑻對于含參數(shù)字母的函數(shù),求定義域時一般要對字母的取值情況進行分類討論,并要注意函數(shù)的定義域為非空集合。
⑼對數(shù)函數(shù)的真數(shù)必須大于零,底數(shù)大于零且不等于1。
⑽三角函數(shù)中的切割函數(shù)要注意對角變量的限制。
復合函數(shù)常見題型
(ⅰ)已知f(x)定義域為A,求f[g(x)]的定義域:實質(zhì)是已知g(x)的范圍為A,以此求出x的范圍。
(ⅱ)已知f[g(x)]定義域為B,求f(x)的定義域:實質(zhì)是已知x的范圍為B,以此求出g(x)的范圍。
(ⅲ)已知f[g(x)]定義域為C,求f[h(x)]的定義域:實質(zhì)是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然后將其作為h(x)的范圍,以此再求出x的范圍。
拓展閱讀:復合函數(shù)的求導法則
一、復合函數(shù)的求導法則證明
例如:要求f(g(x))對x的導數(shù),且f(g(x))和g(x)均可導。
首先,根據(jù)定義:當h->0時,g'(x)=lim(g(x+h)-g(x))/h,所以,當h->0時,lim(g(x+h)-g(x))/h-g'(x)->0
設v=(g(x+h)-g(x))/h-g'(x)
就有:g(x+h)=g(x)+(g'(x)+v)h
同理:f(y+k)=f(y)+(f'(y)+u)k
所以,f(g(x)+[g'(x) + v]h)=f(g(x))+[f'(g(x))+v]*[g'(x)+v]h (其實就是y=g(x),k=[g'(x) + v]h)
所以,(f(g(x+h))-f(g(x)))/h=(f(g(x))+[f'(g(x))+u]·[g'(x)+v]h?f(g(x)))/h
=[f'(g(x))+u]·[g'(x)+v]
當h->0時,u和v都->0,這個容易看。
所以當h->0時,(f(g(x+h))-f(g(x)))/h=[f'(g(x))+0]·[g'(x)+0]
=f'(g(x))·g'(x)
然后f'(g(x))=f'(g(x))·g'(x)
證畢
不是任何兩個函數(shù)都可以復合成一個復合函數(shù),只有當Mx∩Du≠?時,二者才可以構(gòu)成一個復合函數(shù)。
二、復合函數(shù)的求導法則證明
例如:要求f(g(x))對x的導數(shù),且f(g(x))和g(x)均可導。
首先,根據(jù)定義:當h->0時,g'(x)=lim(g(x+h)-g(x))/h,所以,當h->0時,lim(g(x+h)-g(x))/h-g'(x)->0
設v=(g(x+h)-g(x))/h-g'(x)
就有:g(x+h)=g(x)+(g'(x)+v)h
同理:f(y+k)=f(y)+(f'(y)+u)k
所以,f(g(x)+[g'(x) + v]h)=f(g(x))+[f'(g(x))+v]*[g'(x)+v]h (其實就是y=g(x),k=[g'(x) + v]h)
所以,(f(g(x+h))-f(g(x)))/h=(f(g(x))+[f'(g(x))+u]·[g'(x)+v]h?f(g(x)))/h
=[f'(g(x))+u]·[g'(x)+v]
當h->0時,u和v都->0,這個容易看。
所以當h->0時,(f(g(x+h))-f(g(x)))/h=[f'(g(x))+0]·[g'(x)+0]
=f'(g(x))·g'(x)
然后f'(g(x))=f'(g(x))·g'(x)