初二數(shù)學(xué)上冊(cè)是學(xué)習(xí)哪些內(nèi)容,考生怎么掌握哪些內(nèi)容?想知道的小伙伴看過(guò)來(lái),下面由出國(guó)留學(xué)網(wǎng)小編為你精心準(zhǔn)備了“數(shù)學(xué)初二上冊(cè)知識(shí)點(diǎn)有哪些”僅供參考,持續(xù)關(guān)注本站將可以持續(xù)獲取更多的資訊!
數(shù)學(xué)初二上冊(cè)知識(shí)點(diǎn)有哪些
一、勾股定理
1、探索勾股定理
① 勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2
2、一定是直角三角形嗎
① 如果三角形的三邊長(zhǎng)a b c滿足a2+b2=c2 ,那么這個(gè)三角形一定是直角三角形
3、勾股定理的應(yīng)用
二、實(shí)數(shù)
1、認(rèn)識(shí)無(wú)理數(shù)
① 有理數(shù):總是可以用有限小數(shù)和無(wú)限循環(huán)小數(shù)表示
② 無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)
2、平方根
① 算數(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算數(shù)平方根
② 特別地,我們規(guī)定:0的算數(shù)平方根是0
③ 平方根:一般地,如果一個(gè)數(shù)x的平方等于a,即x2=a。那么這個(gè)數(shù)x就叫做a的平方根,也叫做二次方根
④ 一個(gè)正數(shù)有兩個(gè)平方根;0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒(méi)有平方根
⑤ 正數(shù)有兩個(gè)平方根,一個(gè)是a的算數(shù)平方,另一個(gè)是—,它們互為相反數(shù),這兩個(gè)平方根合起來(lái)可記作±
⑥ 開(kāi)平方:求一個(gè)數(shù)a的平方根的運(yùn)算叫做開(kāi)平方,a叫做被開(kāi)方數(shù)
3、立方根
① 立方根:一般地,如果一個(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a的立方根,也叫三次方根
② 每個(gè)數(shù)都有一個(gè)立方根,正數(shù)的立方根是正數(shù);0立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
③ 開(kāi)立方:求一個(gè)數(shù)a的立方根的運(yùn)算叫做開(kāi)立方,a叫做被開(kāi)方數(shù)
4、估算
① 估算,一般結(jié)果是相對(duì)復(fù)雜的小數(shù),估算有精確位數(shù)
5、用計(jì)算機(jī)開(kāi)平方
6、實(shí)數(shù)
① 實(shí)數(shù):有理數(shù)和無(wú)理數(shù)的統(tǒng)稱
② 實(shí)數(shù)也可以分為正實(shí)數(shù)、0、負(fù)實(shí)數(shù)
③ 每一個(gè)實(shí)數(shù)都可以在數(shù)軸上表示,數(shù)軸上每一個(gè)點(diǎn)都對(duì)應(yīng)一個(gè)實(shí)數(shù),在數(shù)軸上,右邊的點(diǎn)永遠(yuǎn)比左邊的點(diǎn)表示的數(shù)大
7、二次根式
① 含義:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開(kāi)方數(shù)
② =(a≥0,b≥0),=(a≥0,b>0)
③ 最簡(jiǎn)二次根式:一般地,被開(kāi)方數(shù)不含分母,也不含能開(kāi)的盡方的因數(shù)或因式,這樣的二次根式,叫做最簡(jiǎn)二次根式
④ 化簡(jiǎn)時(shí),通常要求最終結(jié)果中分母不含有根號(hào),而且各個(gè)二次根式時(shí)最簡(jiǎn)二次根式
三、位置與坐標(biāo)
1、確定位置
① 在平面內(nèi),確定一個(gè)物體的位置一般需要兩個(gè)數(shù)據(jù)
2、平面直角坐標(biāo)系
① 含義:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系
② 通常地,兩條數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o被稱為直角坐標(biāo)系的原點(diǎn)
③ 建立了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一組有序?qū)崝?shù)對(duì)來(lái)表示
④ 在平面直角坐標(biāo)系中,兩條坐標(biāo)軸將坐標(biāo)平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時(shí)針?lè)较蚪凶龅诙笙?,第三象限,第四象限,坐?biāo)軸上的點(diǎn)不在任何一個(gè)象限
⑤ 在直角坐標(biāo)系中,對(duì)于平面上任意一點(diǎn),都有唯一的一個(gè)有序?qū)崝?shù)對(duì)(即點(diǎn)的坐標(biāo))與它對(duì)應(yīng);反過(guò)來(lái),對(duì)于任意一個(gè)有序?qū)崝?shù)對(duì),都有平面上唯一的一點(diǎn)與它對(duì)應(yīng)
3、軸對(duì)稱與坐標(biāo)變化
① 關(guān)于x軸對(duì)稱的兩個(gè)點(diǎn)的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱的兩個(gè)點(diǎn)的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)。
拓展閱讀:初二提高數(shù)學(xué)分?jǐn)?shù)的技巧
1、養(yǎng)成思考的習(xí)慣,加強(qiáng)知識(shí)的理解記憶
獨(dú)立思考是學(xué)習(xí)數(shù)學(xué)必須具備的能力,同學(xué)們?cè)趯W(xué)習(xí)時(shí),要邊聽(tīng)課邊想,邊看書(shū)邊想,邊做題邊想,通過(guò)自己積極思考,深刻理解數(shù)學(xué)知識(shí),歸納總結(jié)數(shù)學(xué)規(guī)律,靈活解決數(shù)學(xué)問(wèn)題,這樣才能把老師講的、課本上寫(xiě)的變成自己的知識(shí)。該記的記,該背的背,不要以為理解了就行。對(duì)數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,在記憶的基礎(chǔ)上,在應(yīng)用它們解決問(wèn)題時(shí)再加深理解。
2、多做習(xí)題,總結(jié)解題方法
學(xué)數(shù)學(xué)一定要做習(xí)題,并且應(yīng)該適當(dāng)?shù)囟嘧鲂?。做?xí)題的目的首先是熟練和鞏固學(xué)習(xí)的知識(shí);其次是初步啟發(fā)靈活應(yīng)用知識(shí)和培養(yǎng)獨(dú)立思索的能力;第三是融會(huì)貫通,把不同內(nèi)容的數(shù)學(xué)知識(shí)溝通起來(lái)。具體解題時(shí),一定要認(rèn)真審題,緊緊熱反應(yīng)抓住題目的所有條件不放,不要忽略了任何一個(gè)條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方應(yīng)該用什么方法做?能否有簡(jiǎn)便解法?做到邊做邊思考邊總結(jié),通過(guò)練習(xí)加深對(duì)知識(shí)的理解。
3、善于質(zhì)疑,培養(yǎng)能力
在學(xué)習(xí)過(guò)程中要善于發(fā)現(xiàn)和提出疑問(wèn),這是衡量一個(gè)學(xué)生學(xué)習(xí)是否有進(jìn)步的重要標(biāo)志之一。有經(jīng)驗(yàn)的老師認(rèn)為:能夠發(fā)現(xiàn)和提出疑問(wèn)的學(xué)生才更有希望獲得學(xué)習(xí)的成功;反之,那種一問(wèn)三不知,自己又提法出任何問(wèn)題的學(xué)生,是無(wú)法學(xué)好數(shù)學(xué)的。那么,怎樣才能發(fā)現(xiàn)和提出問(wèn)題呢?第一,要深入觀察,逐步培養(yǎng)自己敏銳的觀察能力;第二,要肯動(dòng)腦筋,不愿意動(dòng)腦筋,不去思索,當(dāng)然發(fā)現(xiàn)不了什么問(wèn)題,也提不出疑問(wèn)。發(fā)現(xiàn)問(wèn)題后,經(jīng)過(guò)自己的獨(dú)立思索,問(wèn)題仍得不到解決時(shí),應(yīng)當(dāng)虛心向老師、同學(xué)、家長(zhǎng)請(qǐng)教。只有善于提出來(lái)問(wèn)題、虛心學(xué)習(xí)的人,才有可能成為真正的學(xué)習(xí)上的強(qiáng)者。