亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        高考試卷:安徽2013高考文數(shù)試題

        字號:


            2013年普通高等學(xué)校招生全國統(tǒng)一考試(安徽卷)
            數(shù)學(xué)(文科)
            本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分。第Ⅰ卷1至2頁,第Ⅱ卷3至4頁。全卷滿分150分。考試用時120分鐘。
            考生注意事項(xiàng):
            1. 答題前,務(wù)必在試題卷、答題卡規(guī)定的地方填寫自己的姓名、座位號,并認(rèn)真核對答題卡上所粘帖的條形碼中姓名、座位號與本人姓名、座位號是否一致。務(wù)必在答題卡背面規(guī)定的地方填寫姓名和座位號后兩位。
            2. 答第Ⅰ卷時,每小題選出答案后,用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案標(biāo)號。
            3. 答第Ⅱ卷時,必須用0.5毫米黑色墨水簽字筆在答題卡上書寫,要求字體工整、筆跡清晰。作圖題時可先用鉛筆在答題卡規(guī)定的位置繪出,確認(rèn)后用0.5毫米的黑色墨水簽字筆描清楚。必須在題號所指示的答題區(qū)域作答,超出答題區(qū)域書寫的答案無效,在試題卷、草稿紙上答題無效。
            4. 考試結(jié)束,務(wù)必將試題卷和答題卡一并上交。
            第Ⅰ卷(選擇題 共50分)
            一、 選擇題:本大題共10小題。每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
            

        (1)設(shè)i是虛數(shù)單位,若復(fù)數(shù)a-- (a∈R)是純虛數(shù),則a的值為 ( )
            (A)-3 (B)-1 (C)1 (D)3
             (2)已知A={x|x+1>0},B={-2,-1,0,1},則( RA)∩B= ( )
             (A){-2,-1} (B){-2} (C){-2,0,1} (D){0,1}
            (3)如圖所示,程序據(jù)圖(算法流程圖)的輸出結(jié)果為
            (A) (B)
            (C) (D)
            
            


            


            


            


            (4)“(2x-1)x=0”是“x=0”的
            (A)充分不必要條件 (B)必要補(bǔ)充分條件
            (C)充分必要條件 (D)既不充分也不必要條件
            (5)若某公司從五位大學(xué)畢業(yè)生甲、乙、丙、丁、戌中錄用三人,這無人被錄用的機(jī)會均等,則甲或乙被錄用的概率為
            (A)2/3 (B)2/5
             (C)3/5 (D)9/10
            

        (6)直線x+2y-5+ =0被圓x2+y2-2x-4y=0截得的弦長為
            (A)1 (B)2
            

        (C)4 (D)
            

        (7)設(shè)sn為等差數(shù)列{an}的前n項(xiàng)和,s1=4a3,a2=-2,則a9=
            (A)6 (B)4
            (C)-2 (D)2
            (8)函數(shù)y=f(x)的圖像如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個不同的數(shù)x1,x2,…xn,使得f(x1)/x1=f(x2)/x2=…=f(xn)/xn,則n的取值范圍為
            (A) {2,3} (B){2,3,4}
            (C){3,4} (D){3,4,5}
            
            (9)設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c,若b+c=2a,3sinA=5sinB,則角C=
            (A) π/3 (B)2π/3
            (C)3π/4 (D)5π/6
            (10)已知函數(shù)f(s)=x3+ax2+bx+c有兩個極致點(diǎn)x1,x2,若f(x1)則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實(shí)根個數(shù)為
            (A)3 (B)4
            (C) 5 (D)6
            


            

        第Ⅱ卷(非選擇題 共100分)
            

        考生注意事項(xiàng):
            

        請用0.5毫米黑色墨水簽字筆在答題卡上作答,在試題卷上答題無效。
            

        二.填空題:本大題共5小題,每小題5分,共25分。把答案填在答題卡的相應(yīng)位置。
            

        (11) 函數(shù)y=ln(1+1/x)+ 的定義域?yàn)開____________。
            (12)若非負(fù)數(shù)變量x、y滿足約束條件 ,則x+y的值為__________。
            

        (13)若非零向量a,b滿足|a|=3|b|=|a+2b|,則a與b夾角的余弦值為_______。
            

        (14)定義在R上的函數(shù)f(x)滿足f(x+1)=2f(x).若當(dāng)0≤x≤1時。f(x)=x(1-x),
            

        則當(dāng)-1≤x≤0時,f(x)=________________。
            


            (15)如圖,正方體ABCD-A1B1C1D1的棱長為1,p為BC的中點(diǎn),Q為線段CC1上的動點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的潔面記為S,則下列命題正確的是 (寫出所有正確命題的編號)。
            ①當(dāng)0    ②當(dāng)CQ=1/2時,S為等腰梯形
            ③當(dāng)CQ=3/4時,S與C1D1的交點(diǎn)R滿足C1R=1/3
            ④當(dāng)3/4    ⑤當(dāng)CQ=1時,S的面積為 /2
            
            (16)(本小題滿分12分)
             設(shè)函數(shù)f(x)=sinx+sin(x+π/3)。
             (Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
             (Ⅱ)不畫圖,說明函數(shù)y=f(x)的圖像可由y=sinx的圖象經(jīng)過怎樣的變化的到。
            (17)(本小題滿分12分)
             為調(diào)查甲、乙兩校高三年級學(xué)生某次聯(lián)考數(shù)學(xué)成績情況,用簡單隨機(jī)抽樣,從這兩校中為各抽取30名高三年級學(xué)生,以他們的數(shù)學(xué)成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如下:
             甲 乙
             7 4 5
             5 3 3 2 5 3 3 8
             5 5 4 3 3 3 1 0 0 6 0 6 9 1 1 2 2 3 3 5
             8 6 6 2 2 1 1 0 0 7 0 0 2 2 2 3 3 6 6 9
             7 5 4 4 2 8 1 1 5 5 8
             2 0 9 0
            (Ⅰ)若甲校高三年級每位學(xué)生被抽取的概率為0.05,求甲校高三年級學(xué)生總?cè)藬?shù),并估計(jì)甲校高三年級這次聯(lián)考數(shù)學(xué)成績的及格率(60分及60分以上為及格);
            (Ⅱ)設(shè)甲、乙兩校高三年級學(xué)生這次聯(lián)考數(shù)學(xué)平均成績分別為x1,x2,估計(jì)x1-x2 的值。
            (18)(本小題滿分12分)
             如圖,四棱錐P-ABCD 的地面ABCD是邊長為2的菱形,∠BAD=600
            。已知PB=PD=2,PA= .
            (Ⅰ)證明:PC⊥BD
            (Ⅱ)若E為PA的中點(diǎn),求三菱錐P-BCE的體積。
            
            
            

        (19)(本小題滿分13分)
            

        設(shè)數(shù)列|an|滿足a1=2,a2+a4=8,且對任意n∈N*,函數(shù) f(x)=(an-an+1+an+2)x+a-n+2,cosx-ax-2sinx
            

        滿足fn(π/2)=0
            

        (Ⅰ)求數(shù)列{ax}的通用公式;
            

        (Ⅱ)若bx=2(an+1/2xn)求數(shù)列{bn}的前n項(xiàng)和Snx
            20.設(shè)函數(shù)f(x)=cx-(1+a2)x2,其中a>0,區(qū)間I={X{f (x)da>0
            (Ⅰ)求I的長度(注:區(qū)間(a,β)的長度定義為β-α);
            

        (Ⅱ)給定常數(shù)k ∈(0,1),當(dāng)1-k≤a≤1+k時,求I長度的最小值。(21)(本小題滿分13分)
            

        21.已知橢圓C:x/a+y/b=1(a>b>0)的焦距為4,且過點(diǎn)p( , )。
            

        (Ⅰ)求橢圓C的方程;
            (Ⅱ)設(shè)Q(xa,ya)(xa,ya≠0)為橢圓C上一點(diǎn),過點(diǎn)Q作x軸的垂線,垂足為E。取點(diǎn)A(Q,2 ),連接AE,過點(diǎn)A作AE的垂線交x軸于點(diǎn)D。點(diǎn)C是點(diǎn)D關(guān)于y軸的對稱點(diǎn),作直線QC,問這樣作出的直線QC是否與橢圓C一定有的公共點(diǎn)?并說明理由。