1、兩次擲一枚骰子,兩次出現(xiàn)的數(shù)字之和為偶數(shù)的情況有多少種?
分析與解:兩次的數(shù)字之和是偶數(shù)可以分為兩類(lèi),即兩數(shù)都是奇數(shù),或者兩數(shù)都是偶數(shù)。
因?yàn)轺蛔由嫌腥齻€(gè)奇數(shù),所以?xún)蓴?shù)都是奇數(shù)的有3×3=9(種)情況;同理,兩數(shù)都是偶數(shù)的也有9種情況。根據(jù)加法原理,兩次出現(xiàn)的數(shù)字之和為偶數(shù)的情況有9+9=18(種)。
2、用五種顏色給右圖的五個(gè)區(qū)域染色,每個(gè)區(qū)域染一種顏色,相鄰的區(qū)域染不同的顏色。問(wèn):共有多少種不同的染色方法?
分析與解:本題與上一講的例4表面上十分相似,但解法上卻不相同。因?yàn)樯弦恢v例4中,區(qū)域A與其它區(qū)域都相鄰,所以區(qū)域A與其它區(qū)域的顏色都不相同。本例中沒(méi)有一個(gè)區(qū)域與其它所有區(qū)域都相鄰,如果從區(qū)域A開(kāi)始討論,那么就要分區(qū)域A與區(qū)域E的顏色相同與不同兩種情況。
當(dāng)區(qū)域A與區(qū)域E顏色相同時(shí),A有5種顏色可選;B有4種顏色可選;C有3種顏色可選;D也有3種顏色可選。根據(jù)乘法原理,此時(shí)不同的染色方法有
5×4×3×3=180(種)。
當(dāng)區(qū)域A與區(qū)域E顏色不同時(shí),A有5種顏色可選;E有4種顏色可選;B有3種顏色可選;C有2種顏色可選;D有2種顏色可選。根據(jù)乘法原理,此時(shí)不同的染色方法有
5×4×3×2×2=240(種)。
再根據(jù)加法原理,不同的染色方法共有
180+240=420(種)。
分析與解:兩次的數(shù)字之和是偶數(shù)可以分為兩類(lèi),即兩數(shù)都是奇數(shù),或者兩數(shù)都是偶數(shù)。
因?yàn)轺蛔由嫌腥齻€(gè)奇數(shù),所以?xún)蓴?shù)都是奇數(shù)的有3×3=9(種)情況;同理,兩數(shù)都是偶數(shù)的也有9種情況。根據(jù)加法原理,兩次出現(xiàn)的數(shù)字之和為偶數(shù)的情況有9+9=18(種)。
2、用五種顏色給右圖的五個(gè)區(qū)域染色,每個(gè)區(qū)域染一種顏色,相鄰的區(qū)域染不同的顏色。問(wèn):共有多少種不同的染色方法?
分析與解:本題與上一講的例4表面上十分相似,但解法上卻不相同。因?yàn)樯弦恢v例4中,區(qū)域A與其它區(qū)域都相鄰,所以區(qū)域A與其它區(qū)域的顏色都不相同。本例中沒(méi)有一個(gè)區(qū)域與其它所有區(qū)域都相鄰,如果從區(qū)域A開(kāi)始討論,那么就要分區(qū)域A與區(qū)域E的顏色相同與不同兩種情況。
當(dāng)區(qū)域A與區(qū)域E顏色相同時(shí),A有5種顏色可選;B有4種顏色可選;C有3種顏色可選;D也有3種顏色可選。根據(jù)乘法原理,此時(shí)不同的染色方法有
5×4×3×3=180(種)。
當(dāng)區(qū)域A與區(qū)域E顏色不同時(shí),A有5種顏色可選;E有4種顏色可選;B有3種顏色可選;C有2種顏色可選;D有2種顏色可選。根據(jù)乘法原理,此時(shí)不同的染色方法有
5×4×3×2×2=240(種)。
再根據(jù)加法原理,不同的染色方法共有
180+240=420(種)。