以下是為大家整理的關(guān)于初二數(shù)學(xué)乘法公式教學(xué)案的文章,供大家學(xué)習(xí)參考!
學(xué)習(xí)目標(biāo)
1、通過(guò)運(yùn)算多項(xiàng)式乘法,來(lái)推導(dǎo)平方差公式,學(xué)生的認(rèn)識(shí)由一般法則到特殊法則的能力。
2、通過(guò)親自動(dòng)手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。
3、初步學(xué)會(huì)運(yùn)用平方差公式進(jìn)行計(jì)算。
學(xué)習(xí)重難點(diǎn) 重點(diǎn)是平方差公式的推導(dǎo)及應(yīng)用。
難點(diǎn)是對(duì)公式中a,b的廣泛含義的理解及正確運(yùn)用。
自學(xué)過(guò)程設(shè)計(jì) 教學(xué)過(guò)程設(shè)計(jì)
看一看
認(rèn)真閱讀教材,記住以下知識(shí):
文字?jǐn)⑹銎椒讲罟剑篲________________
用字母表示:________________
做一做:
1、完成下列練習(xí):
①(m+n)(p+q)
②(a+b)(x-y)
③(2x+3y)(a-b)
④(a+2)(a-2)
⑤(3-x)(3+x)
⑥(2m+n)(2m-n)
想一想
你還有哪些地方不是很懂?請(qǐng)寫出來(lái)。
_______________________________
_______________________________
________________________________.
1.下列計(jì)算對(duì)不對(duì)?若不對(duì),請(qǐng)?jiān)跈M線上寫出正確結(jié)果.
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________.
2.(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________.
3.計(jì)算:50×49=_________.
應(yīng)用探究
1.幾何解釋平方差公式
展示:邊長(zhǎng)a的大正方形中有一個(gè)邊長(zhǎng)為b的小正方形。
(1)請(qǐng)計(jì)算圖的陰影部分的面積(讓學(xué)生用正方形的面積公式計(jì)算)。
(2)小明將陰影部分拼成一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形長(zhǎng)與寬是多少?你能表示出它的面積嗎?
圖2
2.用平方差公式計(jì)算
(1)103×93 (2)59.8×60.2
拓展提高
1.閱讀題:
我們?cè)谟?jì)算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時(shí),發(fā)現(xiàn)直接運(yùn)算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個(gè)算式能用乘法公式計(jì)算.解答過(guò)程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請(qǐng)?jiān)囋嚳?
2.仔細(xì)觀察,探索規(guī)律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)試求25+24+23+22+2+1的值;
(2)寫出22006+22005+22004+…+2+1的個(gè)位數(shù).
堂堂清
一、選擇題
1.下列各式中,能用平方差公式計(jì)算的是( )
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b).
A.(1)(2) B.(2)(3)
C.(3)(4) D.(1)(4)
2.計(jì)算(-4x-5y)(5y-4x)的結(jié)果是( )
A.16x2-25y2 B.25y2-16x2 C.-16x2-25y2 D.16x2+25y2
3.下列計(jì)算錯(cuò)誤的是( )
A.(6a+1)(6a-1)=36a2-1
B.(-m-n)(m-n)=n2-m2
C.(a3-8)(-a3+8)=a9-64 D.(-a2+1)(-a2-1)=a4-1
4.下列計(jì)算正確的是( )
A.(a-b)2=a2-b2
B.(a-b)(b-a)=a2-b2
C.(a+b)(-a-b)=a2-b2 D.(-a-b)(-a+b)=a2-b2
5.下列算式能連續(xù)兩次用平方差公式計(jì)算的是( )
A.(x-y)(x2+y2)(x-y) B.(x+1)(x2-1)(x+1)
C.(x+y)(x2-y2)(x-y) D.(x+y)(x2+y2)(x-y)
二、計(jì)算:
(1)(5ab-3x)(-3x-5ab)
(2)(-y2+x)(x+y2)
教后反思 本節(jié)課是運(yùn)算多項(xiàng)式乘法,來(lái)推導(dǎo)平方差公式,使學(xué)生的認(rèn)識(shí)由一般法則到特殊法則的能力,并能歸納總結(jié)出平方差公式的結(jié)構(gòu)特征,利用平方差公式來(lái)進(jìn)行運(yùn)算。
學(xué)習(xí)目標(biāo)
1、通過(guò)運(yùn)算多項(xiàng)式乘法,來(lái)推導(dǎo)平方差公式,學(xué)生的認(rèn)識(shí)由一般法則到特殊法則的能力。
2、通過(guò)親自動(dòng)手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。
3、初步學(xué)會(huì)運(yùn)用平方差公式進(jìn)行計(jì)算。
學(xué)習(xí)重難點(diǎn) 重點(diǎn)是平方差公式的推導(dǎo)及應(yīng)用。
難點(diǎn)是對(duì)公式中a,b的廣泛含義的理解及正確運(yùn)用。
自學(xué)過(guò)程設(shè)計(jì) 教學(xué)過(guò)程設(shè)計(jì)
看一看
認(rèn)真閱讀教材,記住以下知識(shí):
文字?jǐn)⑹銎椒讲罟剑篲________________
用字母表示:________________
做一做:
1、完成下列練習(xí):
①(m+n)(p+q)
②(a+b)(x-y)
③(2x+3y)(a-b)
④(a+2)(a-2)
⑤(3-x)(3+x)
⑥(2m+n)(2m-n)
想一想
你還有哪些地方不是很懂?請(qǐng)寫出來(lái)。
_______________________________
_______________________________
________________________________.
1.下列計(jì)算對(duì)不對(duì)?若不對(duì),請(qǐng)?jiān)跈M線上寫出正確結(jié)果.
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________.
2.(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________.
3.計(jì)算:50×49=_________.
應(yīng)用探究
1.幾何解釋平方差公式
展示:邊長(zhǎng)a的大正方形中有一個(gè)邊長(zhǎng)為b的小正方形。
(1)請(qǐng)計(jì)算圖的陰影部分的面積(讓學(xué)生用正方形的面積公式計(jì)算)。
(2)小明將陰影部分拼成一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形長(zhǎng)與寬是多少?你能表示出它的面積嗎?
圖2
2.用平方差公式計(jì)算
(1)103×93 (2)59.8×60.2
拓展提高
1.閱讀題:
我們?cè)谟?jì)算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時(shí),發(fā)現(xiàn)直接運(yùn)算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個(gè)算式能用乘法公式計(jì)算.解答過(guò)程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請(qǐng)?jiān)囋嚳?
2.仔細(xì)觀察,探索規(guī)律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)試求25+24+23+22+2+1的值;
(2)寫出22006+22005+22004+…+2+1的個(gè)位數(shù).
堂堂清
一、選擇題
1.下列各式中,能用平方差公式計(jì)算的是( )
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b).
A.(1)(2) B.(2)(3)
C.(3)(4) D.(1)(4)
2.計(jì)算(-4x-5y)(5y-4x)的結(jié)果是( )
A.16x2-25y2 B.25y2-16x2 C.-16x2-25y2 D.16x2+25y2
3.下列計(jì)算錯(cuò)誤的是( )
A.(6a+1)(6a-1)=36a2-1
B.(-m-n)(m-n)=n2-m2
C.(a3-8)(-a3+8)=a9-64 D.(-a2+1)(-a2-1)=a4-1
4.下列計(jì)算正確的是( )
A.(a-b)2=a2-b2
B.(a-b)(b-a)=a2-b2
C.(a+b)(-a-b)=a2-b2 D.(-a-b)(-a+b)=a2-b2
5.下列算式能連續(xù)兩次用平方差公式計(jì)算的是( )
A.(x-y)(x2+y2)(x-y) B.(x+1)(x2-1)(x+1)
C.(x+y)(x2-y2)(x-y) D.(x+y)(x2+y2)(x-y)
二、計(jì)算:
(1)(5ab-3x)(-3x-5ab)
(2)(-y2+x)(x+y2)
教后反思 本節(jié)課是運(yùn)算多項(xiàng)式乘法,來(lái)推導(dǎo)平方差公式,使學(xué)生的認(rèn)識(shí)由一般法則到特殊法則的能力,并能歸納總結(jié)出平方差公式的結(jié)構(gòu)特征,利用平方差公式來(lái)進(jìn)行運(yùn)算。