1.有理數(shù):
(1)凡能寫成 形式的數(shù),都是有理數(shù),整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).
注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:① ②
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線.
3.相反數(shù):
(1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
(3)相反數(shù)的和為0a+b=0a、b互為相反數(shù).
(4)相反數(shù)的商為-1.
(5)相反數(shù)的絕對(duì)值相等
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值等于它本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值等于它的相反數(shù);
注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;
(2)絕對(duì)值可表示為: 或 ;
(3) ; ;
(4)|a|是重要的非負(fù)數(shù),即|a|≥0;
5.有理數(shù)比大?。?BR> (1)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;
(2)正數(shù)大于一切負(fù)數(shù);
(3)兩個(gè)負(fù)數(shù)比較,絕對(duì)值大的反而??;
(4)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;
(5)-1,-2,+1,+4,-0.5,以上數(shù)據(jù)表示與標(biāo)準(zhǔn)質(zhì)量的差,絕對(duì)值越小,越接近標(biāo)準(zhǔn)。
6.倒數(shù):
乘積為1的兩個(gè)數(shù)互為倒數(shù);
注意:0沒(méi)有倒數(shù);若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).
等于本身的數(shù)匯總:
相反數(shù)等于本身的數(shù):0
倒數(shù)等于本身的數(shù):1,-1
絕對(duì)值等于本身的數(shù):正數(shù)和0
平方等于本身的數(shù):0,1
立方等于本身的數(shù):0,1,-1.
7.有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).
8.有理數(shù)加法的運(yùn)算律:
(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).
9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b).
10有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定.奇數(shù)個(gè)負(fù)數(shù)為負(fù),偶數(shù)個(gè)負(fù)數(shù)為正。
11有理數(shù)乘法的運(yùn)算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.(簡(jiǎn)便運(yùn)算)
12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù), .
13.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);
14.乘方的定義:
(1)求相同因式積的運(yùn)算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
(3)a2是重要的非負(fù)數(shù),即a2≥0;若a2+|b|=0a=0,b=0;
(4)據(jù)規(guī)律 底數(shù)的小數(shù)點(diǎn)移動(dòng)一位,平方數(shù)的小數(shù)點(diǎn)移動(dòng)二位.
15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.
16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位.
17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字.
18.混合運(yùn)算法則:先乘方,后乘除,最后加減;注意:不省過(guò)程,不跳步驟。
19.特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.常用于填空,選擇。
整式的加減
1.單項(xiàng)式:表示數(shù)字或字母乘積的式子,單獨(dú)的一個(gè)數(shù)字或字母也叫單項(xiàng)式。
2.單項(xiàng)式的系數(shù)與次數(shù):?jiǎn)雾?xiàng)式中的數(shù)字因數(shù),稱單項(xiàng)式的系數(shù);
單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù).
3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式.
4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);
5. .
6.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng).
7.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變.
8.去(添)括號(hào)法則:
去(添)括號(hào)時(shí),若括號(hào)前邊是“+”號(hào),括號(hào)里的各項(xiàng)都不變號(hào);若括號(hào)前邊是“-”號(hào),括號(hào)里的各項(xiàng)都要變號(hào).
9.整式的加減:一找:(劃線);二“+”(務(wù)必用+號(hào)開(kāi)始合并)三合:(合并)
10.多項(xiàng)式的升冪和降冪排列:把一個(gè)多項(xiàng)式的各項(xiàng)按某個(gè)字母的指數(shù)從小到大(或從大到?。┡帕衅饋?lái),叫做按這個(gè)字母的升冪排列(或降冪排列).
一元一次方程
1.等式:用“=”號(hào)連接而成的式子叫等式.
2.等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是等式;
等式性質(zhì)2:等式兩邊都乘以(或除以)同一個(gè)不為零的數(shù),所得結(jié)果仍是等式.
3.方程:含未知數(shù)的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!
5.移項(xiàng):改變符號(hào)后,把方程的項(xiàng)從一邊移到另一邊叫移項(xiàng).移項(xiàng)的依據(jù)是等式性質(zhì)1.
6.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程.
7.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).
8.一元一次方程解法的一般步驟:
化簡(jiǎn)方程----------分?jǐn)?shù)基本性質(zhì)
去分母----------同乘(不漏乘)最簡(jiǎn)公分母
去括號(hào)----------注意符號(hào)變化
移項(xiàng)----------變號(hào)(留下靠前)
合并同類項(xiàng)--------合并后符號(hào)
系數(shù)化為1---------除前面
10.列一元一次方程解應(yīng)用題:
(1)讀題分析法:…………多用于“和,差,倍,分問(wèn)題”
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
(2)畫圖分析法:…………多用于“行程問(wèn)題”
利用圖形分析數(shù)學(xué)問(wèn)題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).
11.列方程解應(yīng)用題的常用公式:
(1)行程問(wèn)題:距離=速度•時(shí)間 ;
(2)工程問(wèn)題:工作量=工效•工時(shí) ;
工程問(wèn)題常用等量關(guān)系:先做的+后做的=完成量
(3)順?biāo)嫠畣?wèn)題:
順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;水流速度=(順?biāo)俣?逆水速度)÷2
順?biāo)嫠畣?wèn)題常用等量關(guān)系:順?biāo)烦?逆水路程
(4)商品利潤(rùn)問(wèn)題:售價(jià)=定價(jià) , ;
利潤(rùn)問(wèn)題常用等量關(guān)系:售價(jià)-進(jìn)價(jià)=利潤(rùn)
(1)凡能寫成 形式的數(shù),都是有理數(shù),整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).
注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:① ②
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線.
3.相反數(shù):
(1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
(3)相反數(shù)的和為0a+b=0a、b互為相反數(shù).
(4)相反數(shù)的商為-1.
(5)相反數(shù)的絕對(duì)值相等
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值等于它本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值等于它的相反數(shù);
注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;
(2)絕對(duì)值可表示為: 或 ;
(3) ; ;
(4)|a|是重要的非負(fù)數(shù),即|a|≥0;
5.有理數(shù)比大?。?BR> (1)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;
(2)正數(shù)大于一切負(fù)數(shù);
(3)兩個(gè)負(fù)數(shù)比較,絕對(duì)值大的反而??;
(4)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;
(5)-1,-2,+1,+4,-0.5,以上數(shù)據(jù)表示與標(biāo)準(zhǔn)質(zhì)量的差,絕對(duì)值越小,越接近標(biāo)準(zhǔn)。
6.倒數(shù):
乘積為1的兩個(gè)數(shù)互為倒數(shù);
注意:0沒(méi)有倒數(shù);若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).
等于本身的數(shù)匯總:
相反數(shù)等于本身的數(shù):0
倒數(shù)等于本身的數(shù):1,-1
絕對(duì)值等于本身的數(shù):正數(shù)和0
平方等于本身的數(shù):0,1
立方等于本身的數(shù):0,1,-1.
7.有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).
8.有理數(shù)加法的運(yùn)算律:
(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).
9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b).
10有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定.奇數(shù)個(gè)負(fù)數(shù)為負(fù),偶數(shù)個(gè)負(fù)數(shù)為正。
11有理數(shù)乘法的運(yùn)算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.(簡(jiǎn)便運(yùn)算)
12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù), .
13.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);
14.乘方的定義:
(1)求相同因式積的運(yùn)算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
(3)a2是重要的非負(fù)數(shù),即a2≥0;若a2+|b|=0a=0,b=0;
(4)據(jù)規(guī)律 底數(shù)的小數(shù)點(diǎn)移動(dòng)一位,平方數(shù)的小數(shù)點(diǎn)移動(dòng)二位.
15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.
16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位.
17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字.
18.混合運(yùn)算法則:先乘方,后乘除,最后加減;注意:不省過(guò)程,不跳步驟。
19.特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.常用于填空,選擇。
整式的加減
1.單項(xiàng)式:表示數(shù)字或字母乘積的式子,單獨(dú)的一個(gè)數(shù)字或字母也叫單項(xiàng)式。
2.單項(xiàng)式的系數(shù)與次數(shù):?jiǎn)雾?xiàng)式中的數(shù)字因數(shù),稱單項(xiàng)式的系數(shù);
單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù).
3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式.
4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);
5. .
6.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng).
7.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變.
8.去(添)括號(hào)法則:
去(添)括號(hào)時(shí),若括號(hào)前邊是“+”號(hào),括號(hào)里的各項(xiàng)都不變號(hào);若括號(hào)前邊是“-”號(hào),括號(hào)里的各項(xiàng)都要變號(hào).
9.整式的加減:一找:(劃線);二“+”(務(wù)必用+號(hào)開(kāi)始合并)三合:(合并)
10.多項(xiàng)式的升冪和降冪排列:把一個(gè)多項(xiàng)式的各項(xiàng)按某個(gè)字母的指數(shù)從小到大(或從大到?。┡帕衅饋?lái),叫做按這個(gè)字母的升冪排列(或降冪排列).
一元一次方程
1.等式:用“=”號(hào)連接而成的式子叫等式.
2.等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是等式;
等式性質(zhì)2:等式兩邊都乘以(或除以)同一個(gè)不為零的數(shù),所得結(jié)果仍是等式.
3.方程:含未知數(shù)的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!
5.移項(xiàng):改變符號(hào)后,把方程的項(xiàng)從一邊移到另一邊叫移項(xiàng).移項(xiàng)的依據(jù)是等式性質(zhì)1.
6.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程.
7.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).
8.一元一次方程解法的一般步驟:
化簡(jiǎn)方程----------分?jǐn)?shù)基本性質(zhì)
去分母----------同乘(不漏乘)最簡(jiǎn)公分母
去括號(hào)----------注意符號(hào)變化
移項(xiàng)----------變號(hào)(留下靠前)
合并同類項(xiàng)--------合并后符號(hào)
系數(shù)化為1---------除前面
10.列一元一次方程解應(yīng)用題:
(1)讀題分析法:…………多用于“和,差,倍,分問(wèn)題”
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
(2)畫圖分析法:…………多用于“行程問(wèn)題”
利用圖形分析數(shù)學(xué)問(wèn)題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).
11.列方程解應(yīng)用題的常用公式:
(1)行程問(wèn)題:距離=速度•時(shí)間 ;
(2)工程問(wèn)題:工作量=工效•工時(shí) ;
工程問(wèn)題常用等量關(guān)系:先做的+后做的=完成量
(3)順?biāo)嫠畣?wèn)題:
順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;水流速度=(順?biāo)俣?逆水速度)÷2
順?biāo)嫠畣?wèn)題常用等量關(guān)系:順?biāo)烦?逆水路程
(4)商品利潤(rùn)問(wèn)題:售價(jià)=定價(jià) , ;
利潤(rùn)問(wèn)題常用等量關(guān)系:售價(jià)-進(jìn)價(jià)=利潤(rùn)