tanθ=sinθ/cosθ,cotθ=cosθ/sinθ
secθ=1/cosθ,cscθ=1/sinθ
分別用cos 2θ與sin 2θ來除cos 2θ+sin 2θ=1,可得:
sec 2θ–tan 2θ=1 及 csc 2θ–cot 2θ=1
對于負(fù)角度,六個三角函數(shù)分別為:
sin(–θ)= –sinθ csc(–θ)= –cscθ
cos(–θ)= cosθ sec(–θ)= secθ
tan(–θ)= –tanθ cot(–θ)= –cotθ
當(dāng)兩角度相加時,運用和角公式:
sin(α+β)= sinαcosβ+cosαsinβ
cos(α+β)= cosαcosβ–sinαsinβ
tan(α+β)= tanα+tanβ/1–tanαtanβ
若遇到兩倍角或三倍角,運用倍角公式:
sin2α= 2sinαcosα sin3α= 3sinαcos2α–sin3
αcos2α= cos 2α–sin 2α cos3α= cos 3α–3sin 2αcosα
tan 2α= 2tanα/1–tan 2α tan3α= 3tanα–tan 3α/1–3tan 2α
secθ=1/cosθ,cscθ=1/sinθ
分別用cos 2θ與sin 2θ來除cos 2θ+sin 2θ=1,可得:
sec 2θ–tan 2θ=1 及 csc 2θ–cot 2θ=1
對于負(fù)角度,六個三角函數(shù)分別為:
sin(–θ)= –sinθ csc(–θ)= –cscθ
cos(–θ)= cosθ sec(–θ)= secθ
tan(–θ)= –tanθ cot(–θ)= –cotθ
當(dāng)兩角度相加時,運用和角公式:
sin(α+β)= sinαcosβ+cosαsinβ
cos(α+β)= cosαcosβ–sinαsinβ
tan(α+β)= tanα+tanβ/1–tanαtanβ
若遇到兩倍角或三倍角,運用倍角公式:
sin2α= 2sinαcosα sin3α= 3sinαcos2α–sin3
αcos2α= cos 2α–sin 2α cos3α= cos 3α–3sin 2αcosα
tan 2α= 2tanα/1–tan 2α tan3α= 3tanα–tan 3α/1–3tan 2α