既然人生的幕布已經(jīng)拉開(kāi),就必須要用心的演出;既然腳步已經(jīng)跨出,風(fēng)雨坎坷也不能退步;既然我已把希望播在那里,就必須要堅(jiān)持到勝利的謝幕……高二頻道為你整理了以下文章,希望可以幫到你!
【篇一】
加法乘法兩原理,貫穿始終的法則。與序無(wú)關(guān)是組合,要求有序是排列。
兩個(gè)公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問(wèn)題須轉(zhuǎn)化。
排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。
關(guān)于二項(xiàng)式定理,中國(guó)楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。
【篇二】
虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。一個(gè)復(fù)數(shù)一對(duì)數(shù),橫縱坐標(biāo)實(shí)虛部。
對(duì)應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長(zhǎng)即是模,常將數(shù)形來(lái)結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。
代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)。
一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來(lái)轉(zhuǎn)化。
利用方程思想解,注意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年模長(zhǎng)短。
三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開(kāi)方極方便。
輻角運(yùn)算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,
兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別。
【篇三】
第一、基本公式用錯(cuò)等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;
等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。
在數(shù)列的基礎(chǔ)題中,等差、等比數(shù)列公式是解題的根本,一旦用錯(cuò)了公式,解題也失去了方向。
第二、an,Sn關(guān)系不清致誤在數(shù)列題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在著關(guān)系。這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是關(guān)系式分段。在n=1和n≥2時(shí),關(guān)系式具有完全不同的表現(xiàn)形式,這也是考生答題過(guò)程中經(jīng)常出錯(cuò)的點(diǎn),在使用關(guān)系式時(shí),要牢牢記住其“分段”的特點(diǎn)。
當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式,就可以通過(guò)數(shù)列求和的方法求出Sn;知道了Sn,也可以求出an。在答題時(shí),一定要體會(huì)這種轉(zhuǎn)換的相互性。
第三、等差、等比數(shù)列性質(zhì)理解錯(cuò)誤等差數(shù)列的前n項(xiàng)和在公差不為0時(shí)是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。一般來(lái)說(shuō),有結(jié)論“若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。
解答此類題時(shí),要求考生全面考慮問(wèn)題,考慮各種可能性,認(rèn)為正確的就給予證明,不正確就舉出反例駁斥。等比數(shù)列中,公比等于-1是特殊情況,在解決相關(guān)題型問(wèn)題時(shí)值得注意。
第四、數(shù)列中最值錯(cuò)誤數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)的函數(shù),考生要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問(wèn)題。但是很多同學(xué)在答題時(shí)容易忽視n為正整數(shù)的特點(diǎn),或即使考慮了n為正整數(shù),但對(duì)于n取何值能夠取到最值求解時(shí)出錯(cuò)。
在正整數(shù)n的二次函數(shù)中,其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸遠(yuǎn)近而定。
第五、錯(cuò)位相減求和時(shí)項(xiàng)數(shù)處理不當(dāng)錯(cuò)位相減求和法適用于“數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和”的題型。設(shè)和式為Sn,在和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,兩個(gè)和式錯(cuò)一位相減,得到的和式要分成三部分:原來(lái)數(shù)列的第一項(xiàng);一個(gè)等比數(shù)列的前(n-1)項(xiàng)的和以及原來(lái)數(shù)列的第n項(xiàng)乘以公比后在作差時(shí)出現(xiàn)的。
考生在用錯(cuò)位相減法求數(shù)列的和時(shí),一定要注意處理好這三個(gè)部分,否則很容易就會(huì)出錯(cuò)。
加法乘法兩原理,貫穿始終的法則。與序無(wú)關(guān)是組合,要求有序是排列。
兩個(gè)公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問(wèn)題須轉(zhuǎn)化。
排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。
關(guān)于二項(xiàng)式定理,中國(guó)楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。
虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。一個(gè)復(fù)數(shù)一對(duì)數(shù),橫縱坐標(biāo)實(shí)虛部。
對(duì)應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長(zhǎng)即是模,常將數(shù)形來(lái)結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。
代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)。
一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來(lái)轉(zhuǎn)化。
利用方程思想解,注意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年模長(zhǎng)短。
三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開(kāi)方極方便。
輻角運(yùn)算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,
兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別。
第一、基本公式用錯(cuò)等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;
等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。
在數(shù)列的基礎(chǔ)題中,等差、等比數(shù)列公式是解題的根本,一旦用錯(cuò)了公式,解題也失去了方向。
第二、an,Sn關(guān)系不清致誤在數(shù)列題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在著關(guān)系。這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是關(guān)系式分段。在n=1和n≥2時(shí),關(guān)系式具有完全不同的表現(xiàn)形式,這也是考生答題過(guò)程中經(jīng)常出錯(cuò)的點(diǎn),在使用關(guān)系式時(shí),要牢牢記住其“分段”的特點(diǎn)。
當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式,就可以通過(guò)數(shù)列求和的方法求出Sn;知道了Sn,也可以求出an。在答題時(shí),一定要體會(huì)這種轉(zhuǎn)換的相互性。
第三、等差、等比數(shù)列性質(zhì)理解錯(cuò)誤等差數(shù)列的前n項(xiàng)和在公差不為0時(shí)是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。一般來(lái)說(shuō),有結(jié)論“若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。
解答此類題時(shí),要求考生全面考慮問(wèn)題,考慮各種可能性,認(rèn)為正確的就給予證明,不正確就舉出反例駁斥。等比數(shù)列中,公比等于-1是特殊情況,在解決相關(guān)題型問(wèn)題時(shí)值得注意。
第四、數(shù)列中最值錯(cuò)誤數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)的函數(shù),考生要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問(wèn)題。但是很多同學(xué)在答題時(shí)容易忽視n為正整數(shù)的特點(diǎn),或即使考慮了n為正整數(shù),但對(duì)于n取何值能夠取到最值求解時(shí)出錯(cuò)。
在正整數(shù)n的二次函數(shù)中,其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸遠(yuǎn)近而定。
第五、錯(cuò)位相減求和時(shí)項(xiàng)數(shù)處理不當(dāng)錯(cuò)位相減求和法適用于“數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和”的題型。設(shè)和式為Sn,在和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,兩個(gè)和式錯(cuò)一位相減,得到的和式要分成三部分:原來(lái)數(shù)列的第一項(xiàng);一個(gè)等比數(shù)列的前(n-1)項(xiàng)的和以及原來(lái)數(shù)列的第n項(xiàng)乘以公比后在作差時(shí)出現(xiàn)的。
考生在用錯(cuò)位相減法求數(shù)列的和時(shí),一定要注意處理好這三個(gè)部分,否則很容易就會(huì)出錯(cuò)。