亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        2023年定理教學(xué)設(shè)計(jì)(匯總13篇)

        字號(hào):

            總結(jié)可以幫助我們更好地規(guī)劃未來(lái)的目標(biāo)和計(jì)劃,為下一步的發(fā)展做好準(zhǔn)備。列出要點(diǎn)和重點(diǎn),然后逐一展開(kāi),可以幫助我們更好地寫一篇完美的總結(jié)。接下來(lái)是一些總結(jié)范文的選錄,希望對(duì)大家寫作時(shí)有所啟發(fā)和指導(dǎo)。
            定理教學(xué)設(shè)計(jì)篇一
            勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!?0xx版數(shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)勾股定理教學(xué)內(nèi)容的要求是:
            1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過(guò)程中,進(jìn)一步發(fā)展空間觀念;
            2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;
            3、經(jīng)歷從不同角度分析問(wèn)題和解決問(wèn)題的方法的過(guò)程,體驗(yàn)解決問(wèn)題方法的多樣性;
            4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
            本節(jié)《勾股定理的應(yīng)用》是北師大版八年級(jí)數(shù)學(xué)上冊(cè)第一章《勾股定理》第3節(jié)、具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題、在這些具體問(wèn)題的解決過(guò)程中,需要經(jīng)歷幾何圖形的抽象過(guò)程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問(wèn)題、解決問(wèn)題能力和應(yīng)用意識(shí);有些探究活動(dòng)具有一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力。
            本節(jié)課的教學(xué)目標(biāo)是:
            1、能正確運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。
            2、經(jīng)歷實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題的過(guò)程,學(xué)會(huì)選擇適當(dāng)?shù)臄?shù)學(xué)模型解決實(shí)際問(wèn)題,提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力并體會(huì)數(shù)學(xué)建模的思想。
            教學(xué)重點(diǎn)和難點(diǎn):
            應(yīng)用勾股定理及其逆定理解決實(shí)際問(wèn)題是重點(diǎn)。
            把實(shí)際問(wèn)題化歸成數(shù)學(xué)模型是難點(diǎn)。
            二、教學(xué)設(shè)想
            根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的.實(shí)際問(wèn)題情境,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們?cè)谧灾魈骄?,合作交流中分析?wèn)題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問(wèn)題。在教學(xué)過(guò)程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。
            在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
            三、教學(xué)過(guò)程分析
            本節(jié)課設(shè)計(jì)了七個(gè)環(huán)教學(xué)設(shè)計(jì)節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓(xùn)練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
            第一環(huán)節(jié):情境引入
            情景1:復(fù)習(xí)提問(wèn):勾股定理的語(yǔ)言表述以及幾何語(yǔ)言表達(dá)?
            設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語(yǔ)言及數(shù)學(xué)表達(dá),體現(xiàn)數(shù)學(xué)的嚴(yán)謹(jǐn)性和規(guī)范性。《勾股定理的應(yīng)用》。
            情景2:腦筋急轉(zhuǎn)彎一個(gè)三角形的兩條邊是3和4,第三邊是多少?
            設(shè)計(jì)意圖:既靈活考察學(xué)生對(duì)勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
            第二環(huán)節(jié):合作探究(圓柱體表面路程最短問(wèn)題)
            情景3:課本引例(螞蟻怎樣走最近)
            第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問(wèn)題逐步變?yōu)殚L(zhǎng)方體表面的距離最短問(wèn)題)
            設(shè)計(jì)意圖:將問(wèn)題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對(duì)知識(shí)的理解和鞏固。再將圓柱問(wèn)題變?yōu)檎襟w長(zhǎng)方體問(wèn)題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長(zhǎng)方體問(wèn)題中學(xué)生會(huì)有不同的做法,正好透分類討論思想。
            第四環(huán)節(jié):議一議
            內(nèi)容:李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺,《勾股定理的應(yīng)用》教。
            你能替他想辦法完成任務(wù)嗎?
            設(shè)計(jì)意圖:
            第五環(huán)節(jié):方程與勾股定理
            在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多少尺?《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)意圖:學(xué)生可以進(jìn)一步了解勾股定理的悠久歷史和廣泛應(yīng)用,了解我國(guó)古代人民的聰明才智;學(xué)會(huì)運(yùn)用方程的思想借助勾股定理解決實(shí)際問(wèn)題。
            第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
            1、解決實(shí)際問(wèn)題的方法是建立數(shù)學(xué)模型求解。
            2、在尋求最短路徑時(shí),往往把空間問(wèn)題平面化,利用勾股定理及其逆定理解決實(shí)際問(wèn)題。
            3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
            意圖:鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史。
            定理教學(xué)設(shè)計(jì)篇二
            一、教學(xué)設(shè)計(jì)思想
            正因?yàn)槎?xiàng)式定理在初等數(shù)學(xué)中與其他內(nèi)容聯(lián)系較少,所以教材上教法就顯得呆板,單調(diào),怎樣使二項(xiàng)式定理的教學(xué)生動(dòng)有趣?使得在這節(jié)課上學(xué)生獲得主動(dòng)?我采用啟發(fā)探究式教學(xué)方式,遵循“興趣與能力的同步發(fā)展規(guī)律”和“教,學(xué),研互相促進(jìn)的規(guī)律”,在教學(xué)中追求簡(jiǎn)易,重視直觀,并巧妙地在應(yīng)用抽象使問(wèn)題變得十分有趣,學(xué)生學(xué)得生動(dòng)主動(dòng),充分發(fā)揮其課堂上的主體作用.具體為:
            一是從名人、問(wèn)題引入課題。采用“問(wèn)題――探究”的教學(xué)模式,把整個(gè)課堂分為呈現(xiàn)問(wèn)題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個(gè)階段.這里體現(xiàn)了新課程的數(shù)學(xué)應(yīng)用意識(shí)的理念.
            讓學(xué)生體會(huì)研究問(wèn)題的方式方法,培養(yǎng)學(xué)生觀察、分析、概括的能力,以及化歸意識(shí)與方法遷移的能力,體會(huì)從特殊到一般的思維方式,也讓學(xué)生體會(huì)數(shù)學(xué)語(yǔ)言的簡(jiǎn)潔和嚴(yán)謹(jǐn)。
            二、學(xué)生情況分析
            學(xué)生有過(guò)探究、交流的課堂教學(xué)的嘗試.
            三、教學(xué)診斷分析
            容易產(chǎn)生誤解的內(nèi)容是:通項(xiàng)指的是第r+1項(xiàng);通項(xiàng)的二項(xiàng)式系數(shù)是,與該項(xiàng)的系數(shù)是不同的概念。
            四、教學(xué)方式及預(yù)期效果分析
            1.教學(xué)方式:
            探究?jī)?nèi)容為二項(xiàng)式定理的內(nèi)涵,包括項(xiàng)數(shù)、指數(shù)、系數(shù)等方面的規(guī)律內(nèi)容.
            2.預(yù)期效果分析:
            在知識(shí)層面上,期望學(xué)生能夠理解二項(xiàng)式定理及其推導(dǎo)方法,識(shí)記二項(xiàng)展開(kāi)式的有關(guān)特征,能對(duì)二項(xiàng)式定理進(jìn)行簡(jiǎn)單應(yīng)用;在方法層面上,期望通過(guò)教師指導(dǎo)下的探究活動(dòng),使學(xué)生經(jīng)歷數(shù)學(xué)思維過(guò)程,熟悉理解“觀察—?dú)w納—猜想—證明”的思維方法,培養(yǎng)合作的意識(shí),獲得學(xué)習(xí)和成功的體驗(yàn);通過(guò)對(duì)二項(xiàng)式定理內(nèi)容的研究,使學(xué)生體驗(yàn)特殊到一般發(fā)現(xiàn)規(guī)律,一般到特殊指導(dǎo)實(shí)踐的認(rèn)識(shí)事物過(guò)程,通過(guò)對(duì)二項(xiàng)展開(kāi)式結(jié)構(gòu)特點(diǎn)的觀察,探求過(guò)程將歸納推理與演繹推理有機(jī)結(jié)合起來(lái),是培養(yǎng)學(xué)生數(shù)學(xué)探究能力的極好載體,教學(xué)過(guò)程中,要讓學(xué)生充分體驗(yàn)到歸納推理不僅可以猜想到一般性的結(jié)果,而且可以啟發(fā)我們發(fā)現(xiàn)一般性問(wèn)題的解決方法。
            五、教學(xué)目標(biāo)與教學(xué)內(nèi)容
            本節(jié)課的學(xué)生起點(diǎn):學(xué)生已經(jīng)學(xué)習(xí)了組合的基本知識(shí),初中學(xué)習(xí)了多項(xiàng)式乘法法則.
            本節(jié)課是在組合和多項(xiàng)式乘法的基礎(chǔ)上,進(jìn)一步研究學(xué)習(xí)二項(xiàng)式定理的內(nèi)容.
            1.教材分析:
            重點(diǎn):用計(jì)數(shù)原理分析、與的展開(kāi)式,歸納得出二項(xiàng)式定理。
            2.內(nèi)容分析:
            3.教學(xué)目標(biāo):
            知識(shí)技能:
            (2)理解并掌握二項(xiàng)式定理,能利用計(jì)數(shù)原理證明二項(xiàng)式定理.
            過(guò)程方法:
            4.教學(xué)過(guò)程
            (1)課堂熱身,前置作業(yè)
            (2)直提問(wèn)題,引入課題
            (3)引導(dǎo)探究,發(fā)現(xiàn)規(guī)律
            (4)形成定理,說(shuō)理證明
            (5)定理剖析,簡(jiǎn)單應(yīng)用
            (6)例題點(diǎn)評(píng),初步體驗(yàn)
            (7)課堂小結(jié),課后作業(yè)(習(xí)題為重組題)
            定理教學(xué)設(shè)計(jì)篇三
            一、教材分析
            教材所處的地位與作用
            “探索勾股定理”是人教版八年級(jí)《數(shù)學(xué)》下冊(cè)內(nèi)容。“勾股定理”是安排在學(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識(shí)之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來(lái),在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。
            二、教學(xué)目標(biāo)
            綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標(biāo)制定如下:
            1、知識(shí)目標(biāo)
            知道勾股定理的由來(lái),初步理解割補(bǔ)拼接的面積證法。
            掌握勾股定理,通過(guò)動(dòng)手操作利用等積法理解勾股定理的證明過(guò)程。
            2、能力目標(biāo)
            在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問(wèn)題的能力。
            3、情感目標(biāo)
            通過(guò)觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過(guò)程。
            介紹“趙爽弦圖”,讓學(xué)生感受到中國(guó)古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛(ài)國(guó)情感。
            三、教學(xué)重難點(diǎn)
            本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級(jí)學(xué)生構(gòu)造能力較低以及對(duì)面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。
            四、教學(xué)問(wèn)題診斷
            本節(jié)主要攻克的問(wèn)題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來(lái)講解,但這種借助于圖形的面積來(lái)探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對(duì)于學(xué)生來(lái)說(shuō),有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時(shí),沒(méi)有文科那么深動(dòng)形象,所以針對(duì)這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。
            五、教法與學(xué)法分析
            [教學(xué)方法與手段]針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。
            [學(xué)法分析]在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗(yàn),自己獲取知識(shí),并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動(dòng)感和責(zé)任感,這樣對(duì)掌握新知會(huì)事半功倍。
            六、教學(xué)流程設(shè)計(jì)
            1、創(chuàng)設(shè)情境,引入新課
            本節(jié)課開(kāi)始利用多媒體介紹了在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)?!昂玫拈_(kāi)始是成功的一半”,在課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開(kāi)啟學(xué)生思維的閘門,激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識(shí)。
            2、觀察發(fā)現(xiàn),類比猜想
            讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測(cè):是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié)論。最后對(duì)此結(jié)論通過(guò)在網(wǎng)格中數(shù)格子進(jìn)行驗(yàn)證,讓學(xué)生經(jīng)歷了“觀察——合理猜測(cè)——?dú)w納——驗(yàn)證”的這一數(shù)學(xué)思想。在數(shù)格子的驗(yàn)證過(guò)程中,發(fā)現(xiàn)任意直角三角形(圖2)斜邊上長(zhǎng)出的正方形中網(wǎng)格不規(guī)則,沒(méi)法數(shù)出。通過(guò)同學(xué)們的.討論,發(fā)現(xiàn)數(shù)不出來(lái)的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計(jì)算,其原則就是由不規(guī)則經(jīng)過(guò)割補(bǔ)變?yōu)橐?guī)則。
            3、實(shí)驗(yàn)探究,證明結(jié)論
            因?yàn)楣垂啥ɡ淼某霈F(xiàn),使數(shù)學(xué)從單一的純計(jì)算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2=c2,也因此引入了“等積法”證明勾股定理。
            4、練兵之際
            這是“總統(tǒng)證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒(méi)有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。
            5、自己動(dòng)手,拼出弦圖
            讓同學(xué)們拿出了提前準(zhǔn)備好的四個(gè)全等的邊長(zhǎng)為a、b、c的直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛(ài)的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們?cè)跀?shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開(kāi)闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。
            6、總結(jié)反思
            通過(guò)這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng)造與體驗(yàn)的方法來(lái)學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過(guò)讓學(xué)生自主探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實(shí)驗(yàn)室”,學(xué)生通過(guò)自己活動(dòng)得出結(jié)論,使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。
            七、設(shè)計(jì)說(shuō)明
            1、根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實(shí)驗(yàn)探究證明結(jié)論——自己動(dòng)手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識(shí)的發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗(yàn)證的思想和數(shù)形結(jié)合的思想。
            2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般的數(shù)學(xué)思想對(duì)直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好的思維品質(zhì)的形成有重要作用,對(duì)學(xué)生終身發(fā)展也有很大作用。
            定理教學(xué)設(shè)計(jì)篇四
            首先講下這節(jié)課,我的一些思路:
            在教學(xué)方法與教材處理方面,根據(jù)現(xiàn)在的教材特點(diǎn),教學(xué)內(nèi)容以及在新課標(biāo)理念的指導(dǎo)下,最后決定讓學(xué)生在課堂上多動(dòng)手、多觀察、多交流,最后得出定理,這個(gè)方法符合新課程理念觀點(diǎn),也符合教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一的原則。
            同時(shí),在教學(xué)中,我充分利用教具和投影儀,提高教學(xué)效率。在實(shí)驗(yàn),演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)生,培養(yǎng)學(xué)生直覺(jué)思維能力,結(jié)合學(xué)生實(shí)際情況作適當(dāng)?shù)耐貜V。
            我參加這次教學(xué)技能大賽,獲益良多主要體現(xiàn)在以下幾個(gè)方面:
            (1)在數(shù)學(xué)教學(xué)中,一些結(jié)論的表述是很重要的,而我在這節(jié)課上有些表述確實(shí)不是很正確;而且我在課堂上,尤其是知識(shí)點(diǎn)的聯(lián)系方面的引導(dǎo)詞,更加需要再努力鉆研。今后我將在這方面下工夫,在去聽(tīng)其他數(shù)學(xué)老師的課時(shí),要注意其他老師在知識(shí)點(diǎn)同知識(shí)點(diǎn)之間的過(guò)渡語(yǔ)句。
            (2)一些該讓學(xué)生知道的知識(shí)點(diǎn),講得不夠透徹。如cd是直徑,其實(shí)應(yīng)該可以拓展為過(guò)圓心的直線(要多強(qiáng)調(diào),而不是一筆帶過(guò));不能夠用數(shù)量關(guān)系求的,應(yīng)該要適當(dāng)?shù)匾龑?dǎo)學(xué)生設(shè)未知數(shù)。而不是直接告訴學(xué)生這種題目就是要設(shè)未知數(shù)。同樣在已知一條邊,不夠條件求解時(shí),也要引導(dǎo)學(xué)生利用未知數(shù)來(lái)解題的這種題目,引導(dǎo)得不夠,或者話引導(dǎo)得不夠深刻,學(xué)生就會(huì)覺(jué)得是老師直接將知識(shí)倒向他,而他不一定能接受。
            (3)在學(xué)案設(shè)計(jì)方面,在時(shí)間上把握得不夠準(zhǔn)確,設(shè)計(jì)的學(xué)案內(nèi)容太多,在這節(jié)課上如果估計(jì)過(guò)量已經(jīng)足夠的話,垂徑定理的推論其實(shí)可以放在下節(jié)課。這樣就不會(huì)使得后面講推論的時(shí)間太短,太倉(cāng)促。前面復(fù)習(xí)用的時(shí)間太長(zhǎng),在復(fù)習(xí)的部分應(yīng)該多加些關(guān)于勾股定理的計(jì)算的題目,使學(xué)生在后面解直角三角形時(shí)能夠更加快,更熟練;而學(xué)案中練習(xí)題的量太少,而且是題型太單一,可以再做多些找相等的量的基礎(chǔ)訓(xùn)練,對(duì)b班的學(xué)生更加熟悉垂徑定理,基礎(chǔ)題目的掌握對(duì)b班大有好處。
            (4)其實(shí)這節(jié)課還有個(gè)作圖思想要灌輸比學(xué)生,即是教學(xué)生如果見(jiàn)到弦心距,弦,那么直接連半徑構(gòu)成直角三角形;如果就是只知道一條弦的題目,就要邊弦心距都要作出來(lái),而這兩種題目我的訓(xùn)練都不到位。
            最后,這些失誤給了我一個(gè)今后的努力的方向。在今后的學(xué)習(xí)中,我努力鉆研教材改正自己缺點(diǎn)。
            定理教學(xué)設(shè)計(jì)篇五
            勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!?0xx版數(shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)勾股定理教學(xué)內(nèi)容的要求是:
            1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過(guò)程中,進(jìn)一步發(fā)展空間觀念;
            2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;
            3、經(jīng)歷從不同角度分析問(wèn)題和解決問(wèn)題的方法的過(guò)程,體驗(yàn)解決問(wèn)題方法的多樣性;
            4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
            本節(jié)課的教學(xué)目標(biāo)是:
            1、能正確運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。
            教學(xué)重點(diǎn)和難點(diǎn):
            應(yīng)用勾股定理及其逆定理解決實(shí)際問(wèn)題是重點(diǎn)。
            把實(shí)際問(wèn)題化歸成數(shù)學(xué)模型是難點(diǎn)。
            根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問(wèn)題情境,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們?cè)谧灾魈骄?,合作交流中分析?wèn)題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問(wèn)題。在教學(xué)過(guò)程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。
            在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
            第一環(huán)節(jié):情境引入。
            情景1:復(fù)習(xí)提問(wèn):勾股定理的語(yǔ)言表述以及幾何語(yǔ)言表達(dá)?
            設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語(yǔ)言及數(shù)學(xué)表達(dá),體現(xiàn)。
            設(shè)計(jì)意圖:既靈活考察學(xué)生對(duì)勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
            第二環(huán)節(jié):合作探究(圓柱體表面路程最短問(wèn)題)。
            情景3:課本引例(螞蟻怎樣走最近)。
            第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問(wèn)題逐步變?yōu)殚L(zhǎng)方體表面的距離最短問(wèn)題)。
            設(shè)計(jì)意圖:將問(wèn)題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對(duì)知識(shí)的理解和鞏固。再將圓柱問(wèn)題變?yōu)檎襟w長(zhǎng)方體問(wèn)題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長(zhǎng)方體問(wèn)題中學(xué)生會(huì)有不同的做法,正好透分類討論思想。
            第四環(huán)節(jié):議一議。
            設(shè)計(jì)意圖:
            第五環(huán)節(jié):方程與勾股定理。
            第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
            1、解決實(shí)際問(wèn)題的方法是建立數(shù)學(xué)模型求解、
            2、在尋求最短路徑時(shí),往往把空間問(wèn)題平面化,利用勾股定理及其逆定理解決實(shí)際問(wèn)題、
            3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
            意圖:鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史、《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)第七環(huán)作業(yè)設(shè)計(jì):
            第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。
            定理教學(xué)設(shè)計(jì)篇六
            本節(jié)課夏老師先復(fù)習(xí)了上節(jié)課學(xué)習(xí)的圓的概念及弧、弦等概念。然后比較三幅圖,找出共同點(diǎn)---軸對(duì)稱圖形。這節(jié)課的目的性很強(qiáng),圍繞一個(gè)知識(shí)系統(tǒng)“垂徑定理及其逆定理”展開(kāi)。首先,夏老師讓學(xué)生畫圓折紙,設(shè)計(jì)的問(wèn)題都是典型問(wèn)題,而且巧妙開(kāi)放,層層遞進(jìn),有效的調(diào)動(dòng)學(xué)生學(xué)習(xí)興趣,喚起學(xué)生的求知欲,激起了學(xué)生的積極思考。整節(jié)課抓住相關(guān)的基本圖形、基本輔助線、基本幾何結(jié)論的應(yīng)用,使學(xué)生的思維得到訓(xùn)練和提升。
            夏教師的課堂調(diào)控能力很強(qiáng),課堂中問(wèn)題的處理過(guò)程,大都是學(xué)生先有一定的時(shí)間自己思考,提出想法并向大家展示交流,然后共同解決問(wèn)題,教師絕不包辦,很好地體現(xiàn)了以學(xué)為主體的課標(biāo)要求。教師肯花時(shí)間讓學(xué)生大膽說(shuō)出自己在思考過(guò)程中遇到的困難和障礙,呈現(xiàn)學(xué)生的思維盲點(diǎn),然后通過(guò)學(xué)生之間的合作交流和教師的點(diǎn)撥啟發(fā)幫助學(xué)生理清思路。
            在教學(xué)方法與教材處理方面,夏老師能根據(jù)現(xiàn)在的教材特點(diǎn)及學(xué)情,在新課標(biāo)理念的指導(dǎo)下,讓學(xué)生在課堂上多動(dòng)手、多觀察、多交流,最后得出定理,這個(gè)方法符合新課程理念觀點(diǎn),也符合教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一的原則。
            定理教學(xué)設(shè)計(jì)篇七
            各位專家、評(píng)委:
            你們好!很高興能有機(jī)會(huì)參加這次活動(dòng),并得到您的指導(dǎo)。
            我說(shuō)課的題目是:圓的軸對(duì)稱性——垂徑定理及其推論。它是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》九年級(jí)上冊(cè)第二十四章第一節(jié)的第二部分《垂直于弦的直徑》的內(nèi)容。。
            這部分內(nèi)容教材安排了兩課時(shí),其中第一課時(shí)講圓的軸對(duì)稱性,第二課時(shí)講圓的旋轉(zhuǎn)不變性。
            結(jié)合我對(duì)教材的理解和我所任教班級(jí)學(xué)生的實(shí)際情況,我將圓的軸對(duì)稱性一課時(shí)內(nèi)容調(diào)整為兩課時(shí),今天我所講的是第一課時(shí)——垂徑定理及其推論。
            下面,我就從教學(xué)內(nèi)容,教學(xué)目標(biāo)、教學(xué)方法與手段、教學(xué)過(guò)程設(shè)計(jì)等四個(gè)方面進(jìn)行說(shuō)明。
            一、教學(xué)內(nèi)容的說(shuō)明。
            教師只有對(duì)教材有較為準(zhǔn)確、深刻、本質(zhì)的理解,并從“假如我是學(xué)生”的角度審視學(xué)生的可接受性,才能處理好教材。
            垂徑定理及其推論反映了圓的重要性質(zhì),是證明線段相等、弧相等、垂直關(guān)系的重要依據(jù),為進(jìn)行圓的計(jì)算和作圖提供了重要依據(jù),因此這部分內(nèi)容是學(xué)習(xí)的重點(diǎn),垂徑定理及其推論的題設(shè)和結(jié)論較為復(fù)雜,容易混淆,因此也是學(xué)習(xí)的難點(diǎn)。
            鑒于這種理解,通覽教材,我確定出如下教學(xué)內(nèi)容:
            (1)了解圓的軸對(duì)稱性。
            (2)弄清垂徑定理及其推論的題設(shè)和結(jié)論。(3)運(yùn)用垂徑定理及其推論進(jìn)行有關(guān)的計(jì)算和證明。
            (4)學(xué)會(huì)與垂徑定理有關(guān)的添加輔助線的方法。
            定理教學(xué)設(shè)計(jì)篇八
            教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問(wèn)題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說(shuō)明勾股定理的正確性。
            學(xué)生分析:
            1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過(guò)三角尺的同學(xué)并不多,通過(guò)這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
            2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開(kāi)對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
            設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開(kāi),以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過(guò)程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過(guò)向?qū)W生介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的`民族自豪感和探究創(chuàng)新的精神。
            教學(xué)目標(biāo):
            1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過(guò)程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
            2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過(guò)程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語(yǔ)言表達(dá)能力等,感受勾股定理的文化價(jià)值。
            3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛(ài)國(guó)熱情。
            4、欣賞設(shè)計(jì)圖形美。
            教學(xué)準(zhǔn)備階段:
            學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
            老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
            (一)引入。
            同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過(guò):他們的邊有什么關(guān)系呢?今天我們來(lái)探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)。
            (二)實(shí)驗(yàn)探究。
            1、取方格紙片,在上面先設(shè)計(jì)任意格點(diǎn)直角三角形,再以它們的每一邊分別向三角形外作正方形,設(shè)網(wǎng)格正方形的邊長(zhǎng)為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫下表:
            (討論難點(diǎn):以斜邊為邊的正方形的面積找法)。
            交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。
            (三)探索所得結(jié)論的正確性。
            當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時(shí),是否一定成立?
            1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)。
            在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來(lái)交流講解,并引導(dǎo)學(xué)生進(jìn)行說(shuō)理:
            如圖2(用補(bǔ)的方法說(shuō)明)。
            師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來(lái)尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來(lái)西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見(jiàn)課本52頁(yè)彩圖2—1,欣賞圖片)。
            如圖3(用割的方法去探索)。
            師介紹:(出示圖片)中國(guó)古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過(guò)此方法測(cè)量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來(lái)證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國(guó)古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹(shù)立了一個(gè)典范。他是我國(guó)有記載以來(lái)第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國(guó)數(shù)學(xué)家們?yōu)榱思o(jì)念我國(guó)在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。
            20xx年,世界數(shù)學(xué)家大會(huì)在中國(guó)北京召開(kāi),當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國(guó)古代數(shù)學(xué)的輝煌成就。
            本節(jié)課學(xué)習(xí)的勾股定理用語(yǔ)言敘說(shuō)為:
            1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問(wèn)題并交流。
            定理教學(xué)設(shè)計(jì)篇九
            本節(jié)課是高中數(shù)學(xué)教材北師大版必修5第二章《解三角形》余弦定理的第一課時(shí)內(nèi)容,《課程標(biāo)準(zhǔn)》和教材把解三角形這部分內(nèi)容安排在必修5,位置相對(duì)靠后,在此前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,使得這部分知識(shí)的處理有了比較多的工具,某些內(nèi)容處理的更加簡(jiǎn)潔。學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),可是比較突出的是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力弱,往往不能把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,不能把所學(xué)的知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,盡管對(duì)一些常見(jiàn)數(shù)學(xué)問(wèn)題解法的能力較強(qiáng),但當(dāng)面臨一種新的問(wèn)題時(shí)卻辦法不多,對(duì)于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的思維方法了解不夠,針對(duì)這些情況,教學(xué)中要重視從實(shí)際問(wèn)題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問(wèn)題。
            余弦定理是關(guān)于任意三角形邊角之間的另一定理,是解決有關(guān)三角形問(wèn)題與實(shí)際問(wèn)題(如測(cè)量等)的重要定理,它將三角形的邊角有機(jī)的結(jié)合起來(lái),實(shí)現(xiàn)了邊與角的互化,從而使三角和幾何有機(jī)的結(jié)合起來(lái),為求與三角形有關(guān)的問(wèn)題提供了理論依據(jù)。
            教科書直接從三角形三邊的向量出發(fā),將向量等式轉(zhuǎn)化為數(shù)量關(guān)系,得到余弦定理,言簡(jiǎn)意賅,簡(jiǎn)潔明快,但給人感覺(jué)似乎跳躍較大,不夠自然,因此在創(chuàng)設(shè)問(wèn)題情境中加了一個(gè)鋪墊,即讓學(xué)生想用向量方法證明勾股定理,再由特殊到一般,將直角三角形推廣為任意三角形,余弦定理水到渠成,并與勾股定理統(tǒng)一起來(lái),這一嘗試是想回答:一個(gè)結(jié)論源自何處,是怎樣想到的。正弦定理和余弦定理源于向量的加減法運(yùn)算,其實(shí)向量的加減法的三角法則和平行四四邊形法則從形上揭示了三角形的邊角關(guān)系,而正弦定理與余弦定理是從數(shù)量關(guān)系上揭示了三角形的邊角關(guān)系,向量的數(shù)量積則打通了三角形邊角的數(shù)形聯(lián)系,因此用向量方法證明正、余弦定理比較簡(jiǎn)潔,在證明余弦定理時(shí),讓學(xué)生自主探究,尋找新的證法,拓展思維,打通余弦定理與正弦定理、向量、解析幾何、平面幾何的聯(lián)系,在比較各種證法后體會(huì)到向量證法的優(yōu)美簡(jiǎn)潔,使知識(shí)交融、方法熟練、能力提升。
            數(shù)學(xué)教學(xué)的主要目標(biāo)是激發(fā)學(xué)生的潛能,教會(huì)學(xué)生思考,讓學(xué)生變得聰明,學(xué)會(huì)數(shù)學(xué)的發(fā)現(xiàn)問(wèn)題,具有創(chuàng)新品質(zhì),具備數(shù)學(xué)文化素養(yǎng)是題中之義,想一想,成人工作以后,有多少人會(huì)再用到余弦定理,但圍繞余弦定理學(xué)生學(xué)到的發(fā)現(xiàn)方法、思維方式、探究創(chuàng)造與數(shù)學(xué)精神則會(huì)受用不盡。數(shù)學(xué)教學(xué)活動(dòng)首先應(yīng)圍繞培養(yǎng)學(xué)生興趣、激發(fā)原動(dòng)力,讓學(xué)生想學(xué)數(shù)學(xué)這門課,同時(shí)指導(dǎo)學(xué)生掌握數(shù)學(xué)學(xué)習(xí)的一般方法,具備終身學(xué)習(xí)的基礎(chǔ)。教師要不斷提出好的數(shù)學(xué)問(wèn)題,還要教會(huì)學(xué)生提出問(wèn)題,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題的意識(shí)和方法,并逐步將發(fā)現(xiàn)問(wèn)題的意識(shí)變成直覺(jué)和習(xí)慣,在本節(jié)課中,通過(guò)余弦定理的發(fā)現(xiàn)過(guò)程,培養(yǎng)學(xué)生觀察、類比、發(fā)現(xiàn)、推理的能力,學(xué)生在教師引導(dǎo)下,自主思考、探究、小組合作相互交流啟發(fā)、思維碰撞,尋找不同的證明方法,既培養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,同時(shí)掌握了學(xué)習(xí)概念、定理的基本方法,增強(qiáng)了學(xué)生的問(wèn)題意識(shí)。其次,掌握正確的學(xué)習(xí)方法,沒(méi)有正確的'學(xué)習(xí)方法,興趣不可能持久,概念、定理、公式、法則的學(xué)習(xí)方法是學(xué)習(xí)數(shù)學(xué)的主要方法,學(xué)習(xí)的過(guò)程就是知其然,知其所以然、舉一反三的過(guò)程,學(xué)習(xí)余弦定理的過(guò)程正是指導(dǎo)學(xué)生掌握學(xué)習(xí)數(shù)學(xué)的良好學(xué)習(xí)方法的范例,引導(dǎo)學(xué)生發(fā)現(xiàn)余弦定理的來(lái)龍去脈,掌握余弦定理證明方法,理解余弦定理與其他知識(shí)的密切聯(lián)系,應(yīng)用余弦定理解決其他問(wèn)題。在余弦定理教學(xué)中,尋求一題多解,探究證明余弦定理的多種方法,指導(dǎo)一題多變,改變余弦定理的形式,如已知兩邊夾角求第三邊的公式、已知三邊求角的余弦值的公式,啟發(fā)學(xué)生一題多想,引導(dǎo)學(xué)生思考余弦定理與正弦定理的聯(lián)系,與勾股定理的聯(lián)系、與向量的聯(lián)系、與三角知識(shí)的聯(lián)系以及與其他知識(shí)方法的聯(lián)系,通過(guò)不斷改變方法、改變形式、改變思維方式,夯實(shí)了數(shù)學(xué)基礎(chǔ),打通了知識(shí)聯(lián)系,掌握了數(shù)學(xué)的基本方法,豐富了數(shù)學(xué)基本活動(dòng)經(jīng)驗(yàn),激發(fā)了數(shù)學(xué)創(chuàng)造思維和潛能。
            教學(xué)中也會(huì)有很多遺憾,有許多的漏洞,在創(chuàng)設(shè)情境,引導(dǎo)學(xué)生發(fā)現(xiàn)推導(dǎo)方法、鼓勵(lì)學(xué)生質(zhì)疑提問(wèn)、猜想等方面有很多遺憾,比如:如何引入向量,解釋的不夠。最后,希望各位同仁批評(píng)指正。
            定理教學(xué)設(shè)計(jì)篇十
            1、知識(shí)目標(biāo):
            (1)掌握勾股定理;
            (2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;
            (3)了解有關(guān)勾股定理的歷史.
            2、能力目標(biāo):
            (1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
            (2)通過(guò)問(wèn)題的解決,提高學(xué)生的運(yùn)算能力
            3、情感目標(biāo):
            (1)通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
            (2)通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育.
            教學(xué)重點(diǎn):勾股定理及其應(yīng)用
            教學(xué)難點(diǎn):通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育
            教學(xué)用具:直尺,微機(jī)
            教學(xué)方法:以學(xué)生為主體的討論探索法
            定理教學(xué)設(shè)計(jì)篇十一
            導(dǎo)學(xué)案前置,學(xué)生是復(fù)習(xí)的引領(lǐng)者。通過(guò)及時(shí)批改導(dǎo)學(xué)案,發(fā)現(xiàn)學(xué)生在復(fù)習(xí)過(guò)程中的對(duì)知識(shí)理解的薄弱之處,對(duì)知識(shí)應(yīng)用的欠缺之處。主要存在的問(wèn)題:對(duì)瞬時(shí)功率的定義式應(yīng)用不熟練;書寫動(dòng)能定理公式不是很熟練,主要表現(xiàn)在對(duì)變力做功束手無(wú)策。另外,學(xué)生剛參加完運(yùn)動(dòng)會(huì),興奮之余,學(xué)習(xí)狀態(tài)還需要調(diào)整。
            1.鞏固強(qiáng)化瞬時(shí)功率的計(jì)算公式,會(huì)運(yùn)用瞬時(shí)功率的公式準(zhǔn)確解決問(wèn)題;
            2.鞏固強(qiáng)化摩擦力做功的特點(diǎn),熟練書寫動(dòng)能定理公式。
            1.精心設(shè)計(jì)問(wèn)題,引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律。
            通過(guò)設(shè)計(jì)問(wèn)題:物體沿粗糙斜面下滑,求物體下滑過(guò)程中摩擦力做的功?讓學(xué)生運(yùn)用功的公式計(jì)算出物體下滑過(guò)程中摩擦力做的功。教師引導(dǎo)學(xué)生對(duì)計(jì)算結(jié)果進(jìn)行分析,讓學(xué)生發(fā)現(xiàn)一個(gè)重要規(guī)律,物體沿斜面下滑摩擦力做的功與物體在相應(yīng)的水平面上滑動(dòng)摩擦力做的功是相等的。通過(guò)變式訓(xùn)練題,鞏固這個(gè)規(guī)律的應(yīng)用,學(xué)生收獲很大。
            2.精心設(shè)計(jì)問(wèn)題,提升學(xué)生對(duì)新舊知識(shí)的辨析能力。
            初中學(xué)生學(xué)過(guò)功率,但是不對(duì)功率進(jìn)行分類,并且力和速度的方向始終同向。高中階段,根據(jù)時(shí)間長(zhǎng)短,把功率分為平均功率和瞬時(shí)功率,并且力和速度的方向不在同一直線上。因此,計(jì)算瞬時(shí)功率時(shí),一定要考慮力和速度的方向夾角。學(xué)生受已有知識(shí)的影響頗深,很難意識(shí)到這個(gè)問(wèn)題。由此我精心設(shè)計(jì)問(wèn)題:飛行員抓住秋千桿在豎直面內(nèi)從高處擺下,求飛行員所受重力的瞬時(shí)功率的變化情況?要求學(xué)生嚴(yán)格按照瞬時(shí)功率的定義,計(jì)算出各個(gè)關(guān)鍵位置的重力的瞬時(shí)功率。通過(guò)計(jì)算發(fā)現(xiàn)重力的瞬時(shí)功率是從零變到不是零,最后再變到零。因此,重力的瞬時(shí)功率是先增大后減小,學(xué)生感到茅塞頓開(kāi)。
            1.復(fù)習(xí)課就要放手,讓學(xué)生去發(fā)現(xiàn)。
            導(dǎo)學(xué)案前置,讓學(xué)生發(fā)現(xiàn)問(wèn)題,展示問(wèn)題,討論問(wèn)題,最后解決問(wèn)題。這樣極大的提高了課堂效率,學(xué)生的學(xué)習(xí)困惑得到了解決,學(xué)生對(duì)物理學(xué)習(xí)的自信心有了很大的提升,學(xué)生學(xué)習(xí)物理的積極性更強(qiáng)了。
            2.精益求精,不斷改善。
            通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生能夠正確使用瞬時(shí)功率的公式,摩擦力做功的計(jì)算更加熟練,題目正確率大幅上升。像這種復(fù)習(xí)課堂怎么設(shè)計(jì),怎么上,我和老教師經(jīng)常交流,老教師的建議是根據(jù)學(xué)情,精心設(shè)計(jì)導(dǎo)學(xué)案,調(diào)動(dòng)學(xué)生對(duì)物理問(wèn)題的探究欲。響應(yīng)學(xué)校號(hào)召,做好導(dǎo)學(xué)案,多讓學(xué)生講解,真正讓學(xué)生做課堂的主人。
            定理教學(xué)設(shè)計(jì)篇十二
            1、體驗(yàn)勾股定理的探索過(guò)程,由特例猜想勾股定理,再由特例驗(yàn)證勾股定理。
            2、會(huì)利用勾股定理解釋生活中的簡(jiǎn)單現(xiàn)象。
            (二)能力訓(xùn)練要求。
            1、在學(xué)生充分觀察、歸納、猜想、探索勾股定理的過(guò)程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想。
            2、在探索勾股定理的過(guò)程中,發(fā)展學(xué)生歸納、概括和有條理地表達(dá)活動(dòng)過(guò)程及結(jié)論的能力。
            (三)情感與價(jià)值觀要求。
            1、培養(yǎng)學(xué)生積極參與、合作交流的意識(shí)。
            2、在探索勾股定理的過(guò)程中,體驗(yàn)獲得成功的快樂(lè),鍛煉學(xué)生克服困難的勇氣。
            重點(diǎn):探索和驗(yàn)證勾股定理。
            難點(diǎn):在方格紙上通過(guò)計(jì)算面積的方法探索勾股定理。
            交流探索猜想。
            在方格紙上,同學(xué)們通過(guò)計(jì)算以直角三角形的三邊為邊長(zhǎng)的三個(gè)正方形的面積,在合作交流的過(guò)程中,比較這三個(gè)正方形的面積,由此猜想出直角三角形的三邊關(guān)系。
            1、學(xué)生每人課前準(zhǔn)備若干張方格紙。
            2、投影片三張:
            第一張:填空(記作1.1.1a);。
            第二張:?jiǎn)栴}串(記作1.1.1b);。
            第三張:做一做(記作1.1.1c)。
            創(chuàng)設(shè)問(wèn)題情境,引入新課。
            出示投影片(1.1.1a)。
            (1)三角形按角分類,可分為xx。
            (2)對(duì)于一般的三角形來(lái)說(shuō),判斷它們?nèi)鹊臈l件有哪些?對(duì)于直角三角形呢?
            (3)有兩個(gè)直角三角形,如果有兩條邊對(duì)應(yīng)相等,那么這兩個(gè)直角三角形一定全等嗎?
            定理教學(xué)設(shè)計(jì)篇十三
            本節(jié)課是在上節(jié)課學(xué)習(xí)了圓的概念及弧、弦等概念的基礎(chǔ)上的一節(jié)課。在上節(jié)課結(jié)束時(shí)留給學(xué)生這樣一個(gè)問(wèn)題“你還想進(jìn)一步研究什么?”通過(guò)學(xué)習(xí),學(xué)生很容易聯(lián)系到上節(jié)課學(xué)習(xí)了圓、弧、弦、直徑、半徑等有關(guān)知識(shí)。那么圓內(nèi)這些元素還具有哪些性質(zhì)呢?學(xué)生自然地從上節(jié)課過(guò)渡到這節(jié)課的學(xué)習(xí),同時(shí)培養(yǎng)了學(xué)生勤于動(dòng)腦,勤于思考的好習(xí)慣,激發(fā)了學(xué)生學(xué)習(xí)的興趣與熱情。
            本節(jié)課主要有兩方面的內(nèi)容:一是圓的軸對(duì)稱性,二是垂徑定理及其推論。開(kāi)始以趙州橋的問(wèn)題引入課題,帶著問(wèn)題進(jìn)行學(xué)習(xí)。圓的軸對(duì)稱性主要是通過(guò)動(dòng)手操作得出結(jié)論,圓是軸對(duì)稱圖形,根據(jù)軸對(duì)稱性進(jìn)一步研究圓中相等的弦、弧得出垂徑定理及其推論。利用此定理再去解決趙州橋問(wèn)題,每一個(gè)環(huán)節(jié)都是環(huán)環(huán)相扣,不是孤立存在的。
            教學(xué)目標(biāo)。
            經(jīng)歷探索圓的軸對(duì)稱性及相關(guān)性質(zhì)的過(guò)程,進(jìn)一步體會(huì)和理解研究幾何圖形的各種方法。理解并應(yīng)用垂徑定理進(jìn)行有關(guān)的計(jì)算。
            重點(diǎn)難點(diǎn)。
            掌握垂徑定理及其推論,學(xué)會(huì)運(yùn)用垂徑定理等結(jié)論解決一些有關(guān)證明、計(jì)算和作圖問(wèn)題。
            反思之一:實(shí)際問(wèn)題的意義的看法。
            數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活。在實(shí)際生活中,數(shù)、形隨處可見(jiàn),無(wú)處不在。好的實(shí)際問(wèn)題容易引起學(xué)生的興趣,激發(fā)學(xué)生探索和發(fā)現(xiàn)問(wèn)題的欲望,使學(xué)生感到數(shù)學(xué)課很熟悉,數(shù)學(xué)知識(shí)離我們很近。學(xué)生在解決實(shí)際問(wèn)題的過(guò)程中,主要困難有兩點(diǎn),一是學(xué)生一見(jiàn)到實(shí)際問(wèn)題就畏懼,根本不去讀題,二是學(xué)生對(duì)實(shí)際背景不熟悉。為此,本節(jié)課設(shè)計(jì)了一個(gè)實(shí)際問(wèn)題,這樣做的好處,一是具有非常實(shí)際的用途,二是與本節(jié)課的內(nèi)容具有直接關(guān)系。這個(gè)問(wèn)題解決了,以后學(xué)生再講到類似的實(shí)際問(wèn)題時(shí),就不會(huì)感到陌生。
            每種教學(xué)模式都有其優(yōu)劣,如果一味地按一種教學(xué)模式貫穿于整個(gè)教學(xué)過(guò)程,并不能達(dá)到最好的教學(xué)效果。對(duì)于我們教師來(lái)說(shuō),應(yīng)根據(jù)不同的教學(xué)內(nèi)容,選擇不同的教學(xué)模式來(lái)教學(xué),這樣效果會(huì)更好。本節(jié)課,由于學(xué)生的差異較大,所以選擇了小組合作這種教學(xué)模式,發(fā)揮小組合作學(xué)習(xí)的優(yōu)勢(shì),給學(xué)生創(chuàng)造一個(gè)寬松的學(xué)習(xí)環(huán)境,使學(xué)生消除畏懼怕錯(cuò)的心理壓力,激發(fā)學(xué)生的創(chuàng)新精神,幫助學(xué)生樹(shù)立學(xué)好知識(shí)的信心和勇氣。
            反思之二:需要更加關(guān)注學(xué)生。
            教學(xué)中,把尊重學(xué)生,關(guān)注學(xué)生的發(fā)展動(dòng)態(tài)始終放在第一位。在這節(jié)課中,注重學(xué)生間的合作交流,給學(xué)生多次展示自己的機(jī)會(huì),鍛煉學(xué)生的膽量,培養(yǎng)學(xué)生語(yǔ)言表達(dá)能力及邏輯推理能力,并給予適當(dāng)?shù)墓膭?lì)和表?yè)P(yáng),使學(xué)生有成功感,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心。
            在知識(shí)發(fā)生發(fā)展與應(yīng)用過(guò)程中注重教學(xué)思想方法的滲透,如本節(jié)課從特殊到一般的數(shù)學(xué)思想,交給學(xué)生解決問(wèn)題的辦法,使學(xué)生學(xué)會(huì)學(xué)習(xí)。