教案是教師備課的重要組成部分,它是教學(xué)計(jì)劃的具體體現(xiàn)。在教案中適當(dāng)運(yùn)用多媒體教學(xué)手段,提高學(xué)生的學(xué)習(xí)興趣和參與度。通過閱讀教案范文,教師可以了解教學(xué)活動(dòng)的設(shè)計(jì)原理和實(shí)施過程。
中職高一數(shù)學(xué)教案篇一
三維目標(biāo)的具體內(nèi)容和層次劃分
請(qǐng)闡述數(shù)學(xué)課堂教學(xué)三維目標(biāo)的具體內(nèi)容和層次劃分
所謂三維目標(biāo)是是指:“知識(shí)與技能”,“過程和方法”、“情感、態(tài)度、價(jià)值觀”。
知識(shí)與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們?cè)诮虒W(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點(diǎn)掌握,哪些只需簡單理解;技能是會(huì)與不會(huì)的問題。屬顯性范疇,具有可測(cè)性,大都采用定量分析與評(píng)價(jià)、知識(shí)與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國傳統(tǒng)教育教學(xué)的優(yōu)勢(shì),應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的過程的體驗(yàn)、方法的選擇,是在知識(shí)與能力目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個(gè)體驗(yàn)的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)?!扒楦?、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識(shí)與能力、過程與方法目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識(shí)到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報(bào)社會(huì)。
三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
中職高一數(shù)學(xué)教案篇二
(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
(3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。
(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。 難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀 四、教學(xué)思路
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個(gè)面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?
6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、課本p8,習(xí)題1.1 a組第1題。
5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)
課本p8 練習(xí)題1.1 b組第1題
課外練習(xí) 課本p8 習(xí)題1.1 b組第2題
中職高一數(shù)學(xué)教案篇三
《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教a版)第44頁。-----《實(shí)習(xí)作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學(xué)文化的特色,學(xué)生通過了解函數(shù)的發(fā)展歷史進(jìn)一步感受數(shù)學(xué)的魅力。學(xué)生在自己動(dòng)手收集、整理資料信息的過程中,對(duì)函數(shù)的概念有更深刻的理解;感受新的學(xué)習(xí)方式帶給他們的學(xué)習(xí)數(shù)學(xué)的樂趣。
該內(nèi)容在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教a版)第44頁。學(xué)生第一次完成《實(shí)習(xí)作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗(yàn),所以需要教師精心設(shè)計(jì),做好準(zhǔn)備工作,充分體現(xiàn)教師的“導(dǎo)演”角色。特別在分組時(shí)注意學(xué)生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達(dá)能力等),選題時(shí),各組之間盡量不要重復(fù),盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習(xí)共享的過程中受到更多的數(shù)學(xué)文化的熏陶。
《標(biāo)準(zhǔn)》強(qiáng)調(diào)數(shù)學(xué)文化的重要作用,體現(xiàn)數(shù)學(xué)的文化的價(jià)值。數(shù)學(xué)教育不僅應(yīng)該幫助學(xué)生學(xué)習(xí)和掌握數(shù)學(xué)知識(shí)和技能,還應(yīng)該有助于學(xué)生了解數(shù)學(xué)的價(jià)值。讓學(xué)生逐步了解數(shù)學(xué)的思想方法、理性精神,體會(huì)數(shù)學(xué)家的創(chuàng)新精神,以及數(shù)學(xué)文明的深刻內(nèi)涵。
2.體驗(yàn)合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識(shí)的快樂;
3.在合作形式的小組學(xué)習(xí)活動(dòng)中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識(shí)、社會(huì)實(shí)踐技能和民主價(jià)值觀。
重點(diǎn):了解函數(shù)在數(shù)學(xué)中的核心地位,以及在生活里的廣泛應(yīng)用;
難點(diǎn):培養(yǎng)學(xué)生合作交流的能力以及收集和處理信息的能力。
【課堂準(zhǔn)備】。
1.分組:4~6人為一個(gè)實(shí)習(xí)小組,確定一人為組長。教師需要做好協(xié)調(diào)工作,確保每位學(xué)生都參加。
2.選題:根據(jù)個(gè)人興趣初步確定實(shí)習(xí)作業(yè)的題目。教師應(yīng)該到各組中去了解選題情況,盡量多地選擇不同的題目。
3.分配任務(wù):根據(jù)個(gè)人情況和優(yōu)勢(shì),經(jīng)小組共同商議,由組長確定每人的具體任務(wù)。
4.搜集資料:針對(duì)所選題目,通過各種方式(相關(guān)書籍----《函數(shù)在你身邊》、《世界函數(shù)通史》、《世界著名科學(xué)家傳記》等;搜集素材,包括文字、圖片、數(shù)據(jù)以及音像資料等,并記錄相關(guān)資料,寫出實(shí)習(xí)報(bào)告。
6.把各組的實(shí)習(xí)報(bào)告,貼在班級(jí)的學(xué)習(xí)欄內(nèi),讓學(xué)生學(xué)習(xí)交流。
【教學(xué)過程】。
1.出示課題:交流、分享實(shí)習(xí)報(bào)告。
2.交流、分享:(由數(shù)學(xué)科代表主持。小組推薦中心發(fā)言人;以下記錄均為發(fā)言概述)。
(1)學(xué)生1:函數(shù)小史。
數(shù)學(xué)史表明,重要的數(shù)學(xué)概念的產(chǎn)生和發(fā)展,對(duì)數(shù)學(xué)發(fā)展起著不可估量的作用。有些重要的數(shù)學(xué)概念對(duì)數(shù)學(xué)分支的產(chǎn)生起著奠定性的作用。我們剛學(xué)過的函數(shù)就是這樣的重要概念。在笛卡爾引入變量以后,變量和函數(shù)等概念日益滲透到科學(xué)技術(shù)的各個(gè)領(lǐng)域。最早提出函數(shù)(function)概念的,是17世紀(jì)德國數(shù)學(xué)家萊布尼茨。最初萊布尼茨用“函數(shù)”一詞表示冪。1755年,瑞士數(shù)學(xué)家歐拉把給出了不同的函數(shù)定義。中文數(shù)學(xué)書上使用的“函數(shù)”一詞是轉(zhuǎn)譯詞。是我國清代數(shù)學(xué)家李善蘭在翻譯《代數(shù)學(xué)》(1895年)一書時(shí),把“function”譯成“函數(shù)”的。我們可以預(yù)計(jì)到,關(guān)于函數(shù)的爭論、研究、發(fā)展、拓廣將不會(huì)完結(jié),也正是這些影響著數(shù)學(xué)及其相鄰學(xué)科的發(fā)展。
(2)教師帶頭鼓掌并簡單評(píng)價(jià)。
(3)學(xué)生2:函數(shù)概念的縱向發(fā)展:
變革,形成了函數(shù)的現(xiàn)代定義形式。
(4)教師帶頭鼓掌并簡單評(píng)價(jià)。
(5)學(xué)生3:我國數(shù)學(xué)家李國平與函數(shù)。
學(xué)生3描述了數(shù)學(xué)家中國科學(xué)院數(shù)學(xué)物理學(xué)部委員.李國平(1910—1996),的身世和他的成長歷程。李國平1933年畢業(yè)于中山大學(xué)數(shù)學(xué)天文系。后歷任中國科學(xué)院數(shù)學(xué)計(jì)算技術(shù)研究所所長,中國科學(xué)院武漢數(shù)學(xué)物理研究所所長,中國數(shù)學(xué)會(huì)理事,中國科學(xué)院學(xué)部委員等職務(wù)。學(xué)生還通俗地講述了李國平先生在微分方程復(fù)變函數(shù)論領(lǐng)域的卓越貢獻(xiàn)。
(6)教師帶頭鼓掌并簡單評(píng)價(jià)。
(7)學(xué)生4:函數(shù)概念對(duì)數(shù)學(xué)發(fā)展的影響。
(8)教師帶頭鼓掌并簡單評(píng)價(jià)。
(9)學(xué)生5:函數(shù)概念的歷史演變過程。
上述函數(shù)概念的歷史演變過程,就是一系列弱抽象的過程.學(xué)生展示了下表:早期函數(shù)概念。
代數(shù)函數(shù)。
函數(shù)是這樣一個(gè)量,它是通過其它一些量的代數(shù)運(yùn)算得到的。
近代函數(shù)概念。
映射函數(shù)。
18世紀(jì)函數(shù)概念。
解析函數(shù)。
函數(shù)是指由一個(gè)變量與一些常量通過任何方式形成的解析表達(dá)式。
19世紀(jì)函數(shù)概念。
變量函數(shù)。
對(duì)于給定區(qū)間上的每一個(gè)x值,y總有唯一確定的值與之對(duì)應(yīng),則稱y是x的函數(shù).。
(10)教師帶頭鼓掌并簡單評(píng)價(jià)。
3.課堂小結(jié):
4.實(shí)習(xí)作業(yè)的評(píng)定:
中職高一數(shù)學(xué)教案篇四
1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系
2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想
3、了解集合元素個(gè)數(shù)問題的討論說明
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維
[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實(shí)物投影儀
[教學(xué)方法]:講練結(jié)合法
[授課類型]:復(fù)習(xí)課
[課時(shí)安排]:1課時(shí)
[教學(xué)過程]:集合部分匯總
本單元主要介紹了以下三個(gè)問題:
1,集合的含義與特征
2,集合的表示與轉(zhuǎn)化
3,集合的基本運(yùn)算
一,集合的含義與表示(含分類)
1,具有共同特征的對(duì)象的全體,稱一個(gè)集合
2,集合按元素的個(gè)數(shù)分為:有限集和無窮集兩類
中職高一數(shù)學(xué)教案篇五
:
設(shè)計(jì)
.
突出重點(diǎn).培養(yǎng)能力.
三、課堂練習(xí)
教材第13頁練習(xí)1、2、3、4.
【助練習(xí)】第13頁練習(xí)4(1)中用一個(gè)方向的斜平行線段表示,用另一方向的平行線段表示如圖:
凡有陰影部分即為所求.
四、小結(jié)
提綱式(略).再一次突出交集和并集兩個(gè)概念中“且”,“或”的含義的不同.
五、作業(yè)
習(xí)題1至8.
筆練結(jié)合板書.
傾聽.修改練習(xí).掌握方法.
觀察.思考.傾聽.理解.記憶.
傾聽.理解.記憶.
回憶、再現(xiàn)內(nèi)容.
落實(shí)
介紹解題技能技巧.
內(nèi)容條理化.
課堂教學(xué)設(shè)計(jì)說明
2.反演律可根據(jù)學(xué)生實(shí)際酌情使用.
中職高一數(shù)學(xué)教案篇六
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問題、物理問題等;
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問題、物理問題等;
一、知識(shí)歸納
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測(cè)量角度問題
例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)e正北55海里處有一個(gè)雷達(dá)觀測(cè)站a.某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)a北偏東。
中職高一數(shù)學(xué)教案篇七
學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學(xué)教案:數(shù)列,希望對(duì)您有所幫助!
教學(xué)目標(biāo)。
1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的。
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式。
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng)。
2、通過對(duì)一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。
教學(xué)建議。
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等。
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助。
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。
(5)對(duì)每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況。
(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的。
上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實(shí)際需要!
中職高一數(shù)學(xué)教案篇八
一、準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題
概念抽象、符號(hào)術(shù)語多是集合單元的一個(gè)顯著特點(diǎn),例如交集、并集、補(bǔ)集的概念及其表示方法,集合與元素的關(guān)系及其表示方法,集合與集合的關(guān)系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關(guān)系和表示方法,都可以作為求解集合問題的依據(jù)、出發(fā)點(diǎn)甚至是突破口。因此,要想學(xué)好集合的內(nèi)容,就必須在準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題上下功夫。
二、注意弄清集合元素的性質(zhì),學(xué)會(huì)運(yùn)用元素分析法審視集合的有關(guān)問題
眾所周知,集合可以看成是一些對(duì)象的全體,其中的每一個(gè)對(duì)象叫做這個(gè)集合的元素。集合中的元素具有“三性”:
(1)、確定性:集合中的元素應(yīng)該是確定的,不能模棱兩可。
(2)、互異性:集合中的元素應(yīng)該是互不相同的,相同的元素在集合中只能算作一個(gè)。
(3)、無序性:集合中的元素是無次序關(guān)系的。
集合的關(guān)系、集合的運(yùn)算等等都是從元素的角度予以定義的。因此,求解集合問題時(shí),抓住元素的特征進(jìn)行分析,就相當(dāng)于牽牛抓住了牛鼻子。
三、體會(huì)集合問題中蘊(yùn)含的數(shù)學(xué)思想方法,掌握解決集合問題的基本規(guī)律
布魯納說過,掌握數(shù)學(xué)思想可使得數(shù)學(xué)更容易理解和記憶,領(lǐng)會(huì)數(shù)學(xué)思想是通向遷移大道的“光明之路”。集合單元中,含有豐富的數(shù)學(xué)思想內(nèi)容,例如數(shù)形結(jié)合的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想、正難則反的思想等等,顯得十分活躍。在學(xué)習(xí)過程中,注意對(duì)這些數(shù)學(xué)思想進(jìn)行挖掘、提煉和滲透,不僅可以有效地掌握集合的知識(shí),駕馭集合問題的求解,而且對(duì)于開發(fā)智力、培養(yǎng)能力、優(yōu)化思維品質(zhì),都具有十分重要的意義。
四、重視空集的特殊性,防止由于忽視空集這一特殊情況導(dǎo)致的解題失誤
空集是一個(gè)十分重要的特殊集合,它具備“空集雖空,但空有所為”的功能。在解題的過程中,要時(shí)刻注意有無可能存在空集的情況,否則極易導(dǎo)致解題失誤。這一點(diǎn),必須引起我們的高度重視。
高一數(shù)學(xué)習(xí)數(shù)學(xué)的技巧
一、轉(zhuǎn)變觀念,化被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí)
初中階段,特別是初中三年級(jí),老師會(huì)通過大量的練習(xí),學(xué)生自己也會(huì)查找很多資料,這樣就會(huì)把自己的數(shù)學(xué)成績得到明顯的提高,這樣的學(xué)習(xí)方式是一種被動(dòng)式的學(xué)習(xí)也叫題海戰(zhàn)術(shù),學(xué)生只是簡單的接受數(shù)學(xué)知識(shí),并且初中數(shù)學(xué)的知識(shí)相對(duì)比較淺顯,學(xué)生很快就能掌握知識(shí)??墒堑搅烁咧幸院笸ㄟ^題海戰(zhàn)術(shù)是能提高一些對(duì)數(shù)學(xué)知識(shí)的掌握,可是對(duì)于這個(gè)知識(shí)中的為什么就不能說出其所以然,就不能對(duì)相關(guān)的知識(shí)進(jìn)行創(chuàng)新。所以高中數(shù)學(xué)的學(xué)習(xí)不只是單純的做題就可以掌握其知識(shí),而是要弄得其所以然才行,這樣就需要學(xué)生自己去主動(dòng)發(fā)掘知識(shí)的內(nèi)涵,在老師的指導(dǎo)下把數(shù)學(xué)知識(shí)進(jìn)行擴(kuò)展,達(dá)到觸類旁通。要做到這樣就需要學(xué)生本身更加主動(dòng)的學(xué)習(xí),這樣才能更加的發(fā)現(xiàn)數(shù)學(xué)中的樂趣。
二、學(xué)會(huì)聽課,盡可能掌握更多的知識(shí)
數(shù)學(xué)的學(xué)習(xí)是需要老師的引導(dǎo),在引導(dǎo)下,學(xué)生根據(jù)自己的情況做一些相應(yīng)的練習(xí)來掌握知識(shí),鞏固知識(shí),要想提高學(xué)習(xí)效率,就需要學(xué)生做到以下一些:
1、做好預(yù)習(xí),提出問題,進(jìn)行多次閱讀課本,查閱相關(guān)資料,回答自己提出的問題,力爭在老師講新課前盡可能的掌握更多的知識(shí),如果不能回答的問題可以在老師講課中去解決。
2、學(xué)會(huì)聽課,在初中的教學(xué)中老師經(jīng)常會(huì)把一個(gè)知識(shí)點(diǎn)進(jìn)行多次的講解和通過大量的練習(xí)讓學(xué)生去掌握,可是到高中以后,老師對(duì)于一個(gè)知識(shí)點(diǎn)就不會(huì)再通過大量的練習(xí)來讓學(xué)生去掌握,而是通過一些相關(guān)知識(shí)的講解去引導(dǎo)學(xué)生明白這個(gè)知識(shí)是怎么來的,又如何用這個(gè)知識(shí)解答一些相關(guān)的疑惑,如果學(xué)生能明白的話就能在自己的知識(shí)下通過課后的練習(xí)去鞏固這些知識(shí),同時(shí)學(xué)生也可以根據(jù)老師的引導(dǎo)去擴(kuò)展知識(shí)。
當(dāng)然,對(duì)于自己在聽課過程中一下子不能明白的知識(shí),可以通過舉手讓老師再進(jìn)行一次分析講解,也同時(shí)做好相關(guān)的記錄,以備在課后去進(jìn)一步弄明白;對(duì)于自己在預(yù)習(xí)中提出的問題,如果老師沒有解決的話,可以利用課余時(shí)間請(qǐng)教老師解答,這樣學(xué)習(xí)就可能學(xué)習(xí)到更多的知識(shí)。
3、敢于發(fā)表自己的想法,在高中數(shù)學(xué)學(xué)習(xí)中,學(xué)生會(huì)遇到很多解題技巧,可能這種方法你知道,另外的人不是很熟悉。那么就需要學(xué)生敢于發(fā)表自己的想法,這樣就能讓大家掌握更多的技巧。也同樣能激發(fā)同學(xué)學(xué)習(xí)的興趣,如果一節(jié)課都是老師講的話,課堂氣氛也是很悶的,學(xué)生學(xué)習(xí)的效率也是很低的。
4、聽好每一分鐘,尤其是老師講課的開頭和結(jié)束
老師講課開頭,一般是概括前節(jié)課的要點(diǎn)指出本節(jié)課要講的內(nèi)容,是把舊知識(shí)和新知識(shí)聯(lián)系起來的環(huán)節(jié),結(jié)尾常常是對(duì)一節(jié)課所講知識(shí)的歸納總結(jié),具有高度的概括性,是在理解的基礎(chǔ)上掌握本節(jié)知識(shí)方法的綱要。
三、課后鞏固
很多學(xué)生在學(xué)習(xí)過程中沒有重視課后的鞏固,只是覺得在課堂上掌握一些知識(shí)就夠了,其實(shí)這是錯(cuò)誤的。高中數(shù)學(xué)的知識(shí)很多,并且不像初中數(shù)學(xué)那么淺顯,而是有很多的內(nèi)涵,如果不能進(jìn)一步挖掘其內(nèi)涵,那么只是掌握這個(gè)知識(shí)的表面,于是在自己做練習(xí)時(shí)就不知道如何去解了,也不能運(yùn)用這個(gè)知識(shí)的。
做練習(xí)是需要的,可是有些學(xué)生只是為了練習(xí)去做練習(xí),而不是為了鞏固這個(gè)知識(shí),擴(kuò)展這個(gè)知識(shí)去做練習(xí),經(jīng)常是做完這個(gè)練習(xí)后算做完了,這樣跟初中的做題是沒有區(qū)別的。其實(shí),我們還應(yīng)該把這個(gè)練習(xí)中使用到的知識(shí)串起來,這樣我們就能明白那些知識(shí)在運(yùn)用,也能掌握更多的知識(shí)。也同樣能發(fā)現(xiàn)那個(gè)知識(shí)點(diǎn)是重點(diǎn),也能發(fā)現(xiàn)難題是如何把相關(guān)知識(shí)串起來的。
四、學(xué)會(huì)看題、學(xué)會(huì)選做題
高中的相關(guān)資料比初中更多,高考是全社會(huì)都關(guān)注的問題,所以高中的練習(xí)也特別多,有些學(xué)生買的資料也多,于是如何利用題目來掌握我們學(xué)習(xí)的知識(shí),擴(kuò)展我們學(xué)習(xí)的知識(shí)就成為學(xué)習(xí)的關(guān)鍵。我覺得題目要多看,多想,看資料中的解題方法,想方法中的為什么,這樣就可以借鑒更多的方法。方法多了,可以也要消化。于是我們要會(huì)有選擇的做題,達(dá)到事半功倍。我建議每天一小練,每周做一套完整的考題,看2~3套考題,從中去發(fā)現(xiàn)那些是這段時(shí)間數(shù)學(xué)學(xué)習(xí)的重點(diǎn)知識(shí),那些是我們常用的解題方法以及使用什么方法能優(yōu)化解題。
五、重視每一次測(cè)試,認(rèn)真分析考試中丟分的原因,并對(duì)丟分的地方做出相關(guān)的措施。
數(shù)學(xué)的學(xué)習(xí)技巧有很多,每一個(gè)人都有自己的不同技巧,我自己根據(jù)自己讀書時(shí)期的一些體會(huì)和現(xiàn)在教學(xué)過程中的體會(huì),歸納出幾點(diǎn)技巧與大家共勉。
高一理數(shù)數(shù)學(xué)記筆記的方法
一記內(nèi)容提綱
老師講課大多有提綱,并且講課時(shí)老師會(huì)將一堂課的線索脈絡(luò)、重點(diǎn)難點(diǎn)等,簡明清晰地呈現(xiàn)在黑板上。同時(shí),教師會(huì)使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識(shí)框架,對(duì)所學(xué)知識(shí)做到胸有成竹、清晰完整。
二記疑難問題
將課堂上未聽懂的問題及時(shí)記下來,便于課后請(qǐng)教同學(xué)或老師,把問題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問題對(duì)部分學(xué)生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識(shí)的斷層、方法的缺陷。
三記思路方法
對(duì)老師在課堂上介紹的解題方法和分析思路也應(yīng)及時(shí)記下,課后加以消化,若有疑惑,先作獨(dú)立分析,因?yàn)橛锌赡苁亲约豪斫忮e(cuò)誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對(duì)于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對(duì)提高解題水平大有益處。在這基礎(chǔ)上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。
四記歸納總結(jié)
注意記下老師的課后總結(jié),這對(duì)于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會(huì)貫通課堂內(nèi)容都很有作用。同時(shí),很多有經(jīng)驗(yàn)的老師在課后小結(jié)時(shí),一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點(diǎn)明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動(dòng)權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。
五記體會(huì)感受
數(shù)學(xué)學(xué)習(xí)是智、情、意、行的綜合。數(shù)學(xué)學(xué)習(xí)過程伴隨著積極的情感體驗(yàn)、意志體驗(yàn)過程,記下自己學(xué)習(xí)過程的感受,可以用來更好地調(diào)控自己的學(xué)習(xí)行為。譬如,一道運(yùn)算很繁雜的習(xí)題,依靠堅(jiān)強(qiáng)的意志獲得解題成功后,可在旁邊寫上“功夫不負(fù)有心人”等自勉的語句,用來激勵(lì)自己。
六記錯(cuò)誤反思
學(xué)習(xí)過程中不可避免地會(huì)犯這樣或那樣的錯(cuò)誤,“聰明人不犯或少犯相同的錯(cuò)誤”,記下自己所犯的錯(cuò)誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時(shí)也應(yīng)注明錯(cuò)誤成因,正確思路及方法,在反思中成熟,在反思中提高。
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點(diǎn)擊下載文檔
搜索文檔
中職高一數(shù)學(xué)教案篇九
1.知識(shí)與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。
2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。
二、教學(xué)重點(diǎn):畫出簡單幾何體、簡單組合體的三視圖;
難點(diǎn):識(shí)別三視圖所表示的空間幾何體。
三、學(xué)法指導(dǎo):觀察、動(dòng)手實(shí)踐、討論、類比。
四、教學(xué)過程。
(一)創(chuàng)設(shè)情景,揭開課題。
展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。
(二)講授新課。
1、中心投影與平行投影:
中心投影:光由一點(diǎn)向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對(duì)著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對(duì)正,高平齊,寬相等。
長對(duì)正:正視圖與俯視圖的長相等,且相互對(duì)正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
(三)鞏固練習(xí)。
課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。
(四)歸納整理。
請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖。
(五)布置作業(yè)。
課本p20習(xí)題1.2[a組]1。
中職高一數(shù)學(xué)教案篇十
掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。
(一)主要知識(shí):
1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略。
四、小結(jié):
1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的`知識(shí)解決有關(guān)應(yīng)用問題,
2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。
中職高一數(shù)學(xué)教案篇十一
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計(jì)一下每部分應(yīng)該分配的時(shí)間。對(duì)于能夠很快做出來的.題目,一定要拿到應(yīng)得的分?jǐn)?shù)。
二、確定每部分的答題時(shí)間。
1、考試時(shí)占用了很多時(shí)間卻一點(diǎn)也沒有做出來的題目。對(duì)于這類題目,你以后考試時(shí)就應(yīng)該盡量減少時(shí)間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再嘗試著做。
2、考試時(shí)花了過多的時(shí)間才做出來的題目。對(duì)于這類題目,你以后平時(shí)做題時(shí)要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時(shí)能用較少的時(shí)間做出來。
三、碰到難題時(shí)。
1、你可以先用“直覺”最快的找到解題思路;。
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。
3、如果這樣也不行,你可以猜測(cè)一下這道題目可能涉及到的知識(shí)點(diǎn)和解題技巧。
4、對(duì)于花了一定時(shí)間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)。
做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號(hào)、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。
中職高一數(shù)學(xué)教案篇十二
復(fù)習(xí)要求】熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。
方法規(guī)律】應(yīng)用數(shù)列知識(shí)界實(shí)際應(yīng)用問題的關(guān)鍵是通過對(duì)實(shí)際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差或公比等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。
一、基礎(chǔ)訓(xùn)練。
a、511b、512c、1023d、1024。
2、若一工廠的生產(chǎn)總值的月平均增長率為p,則年平均增長率為。
a、b、
c、d、
二、典型例題。
例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。
中職高一數(shù)學(xué)教案篇十三
1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系。
2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的`一般思想。
3、了解集合元素個(gè)數(shù)問題的討論說明。
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法。
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維。
[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實(shí)物投影儀。
[教學(xué)方法]:講練結(jié)合法。
[授課類型]:復(fù)習(xí)課。
[課時(shí)安排]:1課時(shí)。
[教學(xué)過程]:集合部分匯總。
本單元主要介紹了以下三個(gè)問題:
1,集合的含義與特征。
2,集合的表示與轉(zhuǎn)化。
3,集合的基本運(yùn)算。
一,集合的含義與表示(含分類)。
1,具有共同特征的對(duì)象的全體,稱一個(gè)集合。
2,集合按元素的個(gè)數(shù)分為:有限集和無窮集兩類。
中職高一數(shù)學(xué)教案篇十四
1、掌握雙曲線的范圍、對(duì)稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)。
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點(diǎn),離心率、
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
中職高一數(shù)學(xué)教案篇十五
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點(diǎn),離心率、
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、
中職高一數(shù)學(xué)教案篇十六
學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數(shù)列,希望對(duì)您有所幫助!
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式.
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng).
2.通過對(duì)一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的.計(jì)算等.
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助.
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
(5)對(duì)每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.
上述提供的:數(shù)列希望能夠符合大家的實(shí)際需要!
中職高一數(shù)學(xué)教案篇十七
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號(hào)及術(shù)語。
教學(xué)過程:
一、閱讀下列語句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式.
3)拋物線上所有的點(diǎn)
4)今年本校高一(1)(或(2))班的全體學(xué)生
5)本校實(shí)驗(yàn)室的所有天平
6)本班級(jí)全體高個(gè)子同學(xué)
7)著名的科學(xué)家
上述每組語句所描述的對(duì)象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個(gè)數(shù)分,可分為1)__________2)_________
三、集合中元素的'三個(gè)性質(zhì):
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號(hào):
4)有理數(shù)集______5)實(shí)數(shù)集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長,那么此三角形一定不是()
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑希缓笳f出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù)的全體值的集合;
3)函數(shù)的全體自變量的集合;
4)方程組解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號(hào)或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)設(shè),,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合
課堂練習(xí):
例7、已知:,若中元素至多只有一個(gè),求的取值范圍。
思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個(gè)元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級(jí)姓名學(xué)號(hào)
1.下列集合中,表示同一個(gè)集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.則()
a.b.c.d.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號(hào)是________________.
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個(gè)數(shù)是____________.
6.設(shè),則集合中所有元素的和為
7.設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,試用列舉法表示集合b=
9.把下列集合用另一種方法表示出來:
(1)(2)
(3)(4)
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=
(1)若a中只有一個(gè)元素,求a的值,并求出這個(gè)元素;
(2)若a中至多只有一個(gè)元素,求a的取值集合。
12.若-3,求實(shí)數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
中職高一數(shù)學(xué)教案篇一
三維目標(biāo)的具體內(nèi)容和層次劃分
請(qǐng)闡述數(shù)學(xué)課堂教學(xué)三維目標(biāo)的具體內(nèi)容和層次劃分
所謂三維目標(biāo)是是指:“知識(shí)與技能”,“過程和方法”、“情感、態(tài)度、價(jià)值觀”。
知識(shí)與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們?cè)诮虒W(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點(diǎn)掌握,哪些只需簡單理解;技能是會(huì)與不會(huì)的問題。屬顯性范疇,具有可測(cè)性,大都采用定量分析與評(píng)價(jià)、知識(shí)與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國傳統(tǒng)教育教學(xué)的優(yōu)勢(shì),應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的過程的體驗(yàn)、方法的選擇,是在知識(shí)與能力目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個(gè)體驗(yàn)的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)?!扒楦?、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識(shí)與能力、過程與方法目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識(shí)到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報(bào)社會(huì)。
三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
中職高一數(shù)學(xué)教案篇二
(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
(3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。
(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。 難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀 四、教學(xué)思路
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個(gè)面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?
6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、課本p8,習(xí)題1.1 a組第1題。
5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)
課本p8 練習(xí)題1.1 b組第1題
課外練習(xí) 課本p8 習(xí)題1.1 b組第2題
中職高一數(shù)學(xué)教案篇三
《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教a版)第44頁。-----《實(shí)習(xí)作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學(xué)文化的特色,學(xué)生通過了解函數(shù)的發(fā)展歷史進(jìn)一步感受數(shù)學(xué)的魅力。學(xué)生在自己動(dòng)手收集、整理資料信息的過程中,對(duì)函數(shù)的概念有更深刻的理解;感受新的學(xué)習(xí)方式帶給他們的學(xué)習(xí)數(shù)學(xué)的樂趣。
該內(nèi)容在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教a版)第44頁。學(xué)生第一次完成《實(shí)習(xí)作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗(yàn),所以需要教師精心設(shè)計(jì),做好準(zhǔn)備工作,充分體現(xiàn)教師的“導(dǎo)演”角色。特別在分組時(shí)注意學(xué)生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達(dá)能力等),選題時(shí),各組之間盡量不要重復(fù),盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習(xí)共享的過程中受到更多的數(shù)學(xué)文化的熏陶。
《標(biāo)準(zhǔn)》強(qiáng)調(diào)數(shù)學(xué)文化的重要作用,體現(xiàn)數(shù)學(xué)的文化的價(jià)值。數(shù)學(xué)教育不僅應(yīng)該幫助學(xué)生學(xué)習(xí)和掌握數(shù)學(xué)知識(shí)和技能,還應(yīng)該有助于學(xué)生了解數(shù)學(xué)的價(jià)值。讓學(xué)生逐步了解數(shù)學(xué)的思想方法、理性精神,體會(huì)數(shù)學(xué)家的創(chuàng)新精神,以及數(shù)學(xué)文明的深刻內(nèi)涵。
2.體驗(yàn)合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識(shí)的快樂;
3.在合作形式的小組學(xué)習(xí)活動(dòng)中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識(shí)、社會(huì)實(shí)踐技能和民主價(jià)值觀。
重點(diǎn):了解函數(shù)在數(shù)學(xué)中的核心地位,以及在生活里的廣泛應(yīng)用;
難點(diǎn):培養(yǎng)學(xué)生合作交流的能力以及收集和處理信息的能力。
【課堂準(zhǔn)備】。
1.分組:4~6人為一個(gè)實(shí)習(xí)小組,確定一人為組長。教師需要做好協(xié)調(diào)工作,確保每位學(xué)生都參加。
2.選題:根據(jù)個(gè)人興趣初步確定實(shí)習(xí)作業(yè)的題目。教師應(yīng)該到各組中去了解選題情況,盡量多地選擇不同的題目。
3.分配任務(wù):根據(jù)個(gè)人情況和優(yōu)勢(shì),經(jīng)小組共同商議,由組長確定每人的具體任務(wù)。
4.搜集資料:針對(duì)所選題目,通過各種方式(相關(guān)書籍----《函數(shù)在你身邊》、《世界函數(shù)通史》、《世界著名科學(xué)家傳記》等;搜集素材,包括文字、圖片、數(shù)據(jù)以及音像資料等,并記錄相關(guān)資料,寫出實(shí)習(xí)報(bào)告。
6.把各組的實(shí)習(xí)報(bào)告,貼在班級(jí)的學(xué)習(xí)欄內(nèi),讓學(xué)生學(xué)習(xí)交流。
【教學(xué)過程】。
1.出示課題:交流、分享實(shí)習(xí)報(bào)告。
2.交流、分享:(由數(shù)學(xué)科代表主持。小組推薦中心發(fā)言人;以下記錄均為發(fā)言概述)。
(1)學(xué)生1:函數(shù)小史。
數(shù)學(xué)史表明,重要的數(shù)學(xué)概念的產(chǎn)生和發(fā)展,對(duì)數(shù)學(xué)發(fā)展起著不可估量的作用。有些重要的數(shù)學(xué)概念對(duì)數(shù)學(xué)分支的產(chǎn)生起著奠定性的作用。我們剛學(xué)過的函數(shù)就是這樣的重要概念。在笛卡爾引入變量以后,變量和函數(shù)等概念日益滲透到科學(xué)技術(shù)的各個(gè)領(lǐng)域。最早提出函數(shù)(function)概念的,是17世紀(jì)德國數(shù)學(xué)家萊布尼茨。最初萊布尼茨用“函數(shù)”一詞表示冪。1755年,瑞士數(shù)學(xué)家歐拉把給出了不同的函數(shù)定義。中文數(shù)學(xué)書上使用的“函數(shù)”一詞是轉(zhuǎn)譯詞。是我國清代數(shù)學(xué)家李善蘭在翻譯《代數(shù)學(xué)》(1895年)一書時(shí),把“function”譯成“函數(shù)”的。我們可以預(yù)計(jì)到,關(guān)于函數(shù)的爭論、研究、發(fā)展、拓廣將不會(huì)完結(jié),也正是這些影響著數(shù)學(xué)及其相鄰學(xué)科的發(fā)展。
(2)教師帶頭鼓掌并簡單評(píng)價(jià)。
(3)學(xué)生2:函數(shù)概念的縱向發(fā)展:
變革,形成了函數(shù)的現(xiàn)代定義形式。
(4)教師帶頭鼓掌并簡單評(píng)價(jià)。
(5)學(xué)生3:我國數(shù)學(xué)家李國平與函數(shù)。
學(xué)生3描述了數(shù)學(xué)家中國科學(xué)院數(shù)學(xué)物理學(xué)部委員.李國平(1910—1996),的身世和他的成長歷程。李國平1933年畢業(yè)于中山大學(xué)數(shù)學(xué)天文系。后歷任中國科學(xué)院數(shù)學(xué)計(jì)算技術(shù)研究所所長,中國科學(xué)院武漢數(shù)學(xué)物理研究所所長,中國數(shù)學(xué)會(huì)理事,中國科學(xué)院學(xué)部委員等職務(wù)。學(xué)生還通俗地講述了李國平先生在微分方程復(fù)變函數(shù)論領(lǐng)域的卓越貢獻(xiàn)。
(6)教師帶頭鼓掌并簡單評(píng)價(jià)。
(7)學(xué)生4:函數(shù)概念對(duì)數(shù)學(xué)發(fā)展的影響。
(8)教師帶頭鼓掌并簡單評(píng)價(jià)。
(9)學(xué)生5:函數(shù)概念的歷史演變過程。
上述函數(shù)概念的歷史演變過程,就是一系列弱抽象的過程.學(xué)生展示了下表:早期函數(shù)概念。
代數(shù)函數(shù)。
函數(shù)是這樣一個(gè)量,它是通過其它一些量的代數(shù)運(yùn)算得到的。
近代函數(shù)概念。
映射函數(shù)。
18世紀(jì)函數(shù)概念。
解析函數(shù)。
函數(shù)是指由一個(gè)變量與一些常量通過任何方式形成的解析表達(dá)式。
19世紀(jì)函數(shù)概念。
變量函數(shù)。
對(duì)于給定區(qū)間上的每一個(gè)x值,y總有唯一確定的值與之對(duì)應(yīng),則稱y是x的函數(shù).。
(10)教師帶頭鼓掌并簡單評(píng)價(jià)。
3.課堂小結(jié):
4.實(shí)習(xí)作業(yè)的評(píng)定:
中職高一數(shù)學(xué)教案篇四
1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系
2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想
3、了解集合元素個(gè)數(shù)問題的討論說明
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維
[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實(shí)物投影儀
[教學(xué)方法]:講練結(jié)合法
[授課類型]:復(fù)習(xí)課
[課時(shí)安排]:1課時(shí)
[教學(xué)過程]:集合部分匯總
本單元主要介紹了以下三個(gè)問題:
1,集合的含義與特征
2,集合的表示與轉(zhuǎn)化
3,集合的基本運(yùn)算
一,集合的含義與表示(含分類)
1,具有共同特征的對(duì)象的全體,稱一個(gè)集合
2,集合按元素的個(gè)數(shù)分為:有限集和無窮集兩類
中職高一數(shù)學(xué)教案篇五
:
設(shè)計(jì)
.
突出重點(diǎn).培養(yǎng)能力.
三、課堂練習(xí)
教材第13頁練習(xí)1、2、3、4.
【助練習(xí)】第13頁練習(xí)4(1)中用一個(gè)方向的斜平行線段表示,用另一方向的平行線段表示如圖:
凡有陰影部分即為所求.
四、小結(jié)
提綱式(略).再一次突出交集和并集兩個(gè)概念中“且”,“或”的含義的不同.
五、作業(yè)
習(xí)題1至8.
筆練結(jié)合板書.
傾聽.修改練習(xí).掌握方法.
觀察.思考.傾聽.理解.記憶.
傾聽.理解.記憶.
回憶、再現(xiàn)內(nèi)容.
落實(shí)
介紹解題技能技巧.
內(nèi)容條理化.
課堂教學(xué)設(shè)計(jì)說明
2.反演律可根據(jù)學(xué)生實(shí)際酌情使用.
中職高一數(shù)學(xué)教案篇六
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問題、物理問題等;
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問題、物理問題等;
一、知識(shí)歸納
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測(cè)量角度問題
例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)e正北55海里處有一個(gè)雷達(dá)觀測(cè)站a.某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)a北偏東。
中職高一數(shù)學(xué)教案篇七
學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學(xué)教案:數(shù)列,希望對(duì)您有所幫助!
教學(xué)目標(biāo)。
1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的。
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式。
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng)。
2、通過對(duì)一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。
教學(xué)建議。
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等。
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助。
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。
(5)對(duì)每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況。
(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的。
上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實(shí)際需要!
中職高一數(shù)學(xué)教案篇八
一、準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題
概念抽象、符號(hào)術(shù)語多是集合單元的一個(gè)顯著特點(diǎn),例如交集、并集、補(bǔ)集的概念及其表示方法,集合與元素的關(guān)系及其表示方法,集合與集合的關(guān)系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關(guān)系和表示方法,都可以作為求解集合問題的依據(jù)、出發(fā)點(diǎn)甚至是突破口。因此,要想學(xué)好集合的內(nèi)容,就必須在準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題上下功夫。
二、注意弄清集合元素的性質(zhì),學(xué)會(huì)運(yùn)用元素分析法審視集合的有關(guān)問題
眾所周知,集合可以看成是一些對(duì)象的全體,其中的每一個(gè)對(duì)象叫做這個(gè)集合的元素。集合中的元素具有“三性”:
(1)、確定性:集合中的元素應(yīng)該是確定的,不能模棱兩可。
(2)、互異性:集合中的元素應(yīng)該是互不相同的,相同的元素在集合中只能算作一個(gè)。
(3)、無序性:集合中的元素是無次序關(guān)系的。
集合的關(guān)系、集合的運(yùn)算等等都是從元素的角度予以定義的。因此,求解集合問題時(shí),抓住元素的特征進(jìn)行分析,就相當(dāng)于牽牛抓住了牛鼻子。
三、體會(huì)集合問題中蘊(yùn)含的數(shù)學(xué)思想方法,掌握解決集合問題的基本規(guī)律
布魯納說過,掌握數(shù)學(xué)思想可使得數(shù)學(xué)更容易理解和記憶,領(lǐng)會(huì)數(shù)學(xué)思想是通向遷移大道的“光明之路”。集合單元中,含有豐富的數(shù)學(xué)思想內(nèi)容,例如數(shù)形結(jié)合的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想、正難則反的思想等等,顯得十分活躍。在學(xué)習(xí)過程中,注意對(duì)這些數(shù)學(xué)思想進(jìn)行挖掘、提煉和滲透,不僅可以有效地掌握集合的知識(shí),駕馭集合問題的求解,而且對(duì)于開發(fā)智力、培養(yǎng)能力、優(yōu)化思維品質(zhì),都具有十分重要的意義。
四、重視空集的特殊性,防止由于忽視空集這一特殊情況導(dǎo)致的解題失誤
空集是一個(gè)十分重要的特殊集合,它具備“空集雖空,但空有所為”的功能。在解題的過程中,要時(shí)刻注意有無可能存在空集的情況,否則極易導(dǎo)致解題失誤。這一點(diǎn),必須引起我們的高度重視。
高一數(shù)學(xué)習(xí)數(shù)學(xué)的技巧
一、轉(zhuǎn)變觀念,化被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí)
初中階段,特別是初中三年級(jí),老師會(huì)通過大量的練習(xí),學(xué)生自己也會(huì)查找很多資料,這樣就會(huì)把自己的數(shù)學(xué)成績得到明顯的提高,這樣的學(xué)習(xí)方式是一種被動(dòng)式的學(xué)習(xí)也叫題海戰(zhàn)術(shù),學(xué)生只是簡單的接受數(shù)學(xué)知識(shí),并且初中數(shù)學(xué)的知識(shí)相對(duì)比較淺顯,學(xué)生很快就能掌握知識(shí)??墒堑搅烁咧幸院笸ㄟ^題海戰(zhàn)術(shù)是能提高一些對(duì)數(shù)學(xué)知識(shí)的掌握,可是對(duì)于這個(gè)知識(shí)中的為什么就不能說出其所以然,就不能對(duì)相關(guān)的知識(shí)進(jìn)行創(chuàng)新。所以高中數(shù)學(xué)的學(xué)習(xí)不只是單純的做題就可以掌握其知識(shí),而是要弄得其所以然才行,這樣就需要學(xué)生自己去主動(dòng)發(fā)掘知識(shí)的內(nèi)涵,在老師的指導(dǎo)下把數(shù)學(xué)知識(shí)進(jìn)行擴(kuò)展,達(dá)到觸類旁通。要做到這樣就需要學(xué)生本身更加主動(dòng)的學(xué)習(xí),這樣才能更加的發(fā)現(xiàn)數(shù)學(xué)中的樂趣。
二、學(xué)會(huì)聽課,盡可能掌握更多的知識(shí)
數(shù)學(xué)的學(xué)習(xí)是需要老師的引導(dǎo),在引導(dǎo)下,學(xué)生根據(jù)自己的情況做一些相應(yīng)的練習(xí)來掌握知識(shí),鞏固知識(shí),要想提高學(xué)習(xí)效率,就需要學(xué)生做到以下一些:
1、做好預(yù)習(xí),提出問題,進(jìn)行多次閱讀課本,查閱相關(guān)資料,回答自己提出的問題,力爭在老師講新課前盡可能的掌握更多的知識(shí),如果不能回答的問題可以在老師講課中去解決。
2、學(xué)會(huì)聽課,在初中的教學(xué)中老師經(jīng)常會(huì)把一個(gè)知識(shí)點(diǎn)進(jìn)行多次的講解和通過大量的練習(xí)讓學(xué)生去掌握,可是到高中以后,老師對(duì)于一個(gè)知識(shí)點(diǎn)就不會(huì)再通過大量的練習(xí)來讓學(xué)生去掌握,而是通過一些相關(guān)知識(shí)的講解去引導(dǎo)學(xué)生明白這個(gè)知識(shí)是怎么來的,又如何用這個(gè)知識(shí)解答一些相關(guān)的疑惑,如果學(xué)生能明白的話就能在自己的知識(shí)下通過課后的練習(xí)去鞏固這些知識(shí),同時(shí)學(xué)生也可以根據(jù)老師的引導(dǎo)去擴(kuò)展知識(shí)。
當(dāng)然,對(duì)于自己在聽課過程中一下子不能明白的知識(shí),可以通過舉手讓老師再進(jìn)行一次分析講解,也同時(shí)做好相關(guān)的記錄,以備在課后去進(jìn)一步弄明白;對(duì)于自己在預(yù)習(xí)中提出的問題,如果老師沒有解決的話,可以利用課余時(shí)間請(qǐng)教老師解答,這樣學(xué)習(xí)就可能學(xué)習(xí)到更多的知識(shí)。
3、敢于發(fā)表自己的想法,在高中數(shù)學(xué)學(xué)習(xí)中,學(xué)生會(huì)遇到很多解題技巧,可能這種方法你知道,另外的人不是很熟悉。那么就需要學(xué)生敢于發(fā)表自己的想法,這樣就能讓大家掌握更多的技巧。也同樣能激發(fā)同學(xué)學(xué)習(xí)的興趣,如果一節(jié)課都是老師講的話,課堂氣氛也是很悶的,學(xué)生學(xué)習(xí)的效率也是很低的。
4、聽好每一分鐘,尤其是老師講課的開頭和結(jié)束
老師講課開頭,一般是概括前節(jié)課的要點(diǎn)指出本節(jié)課要講的內(nèi)容,是把舊知識(shí)和新知識(shí)聯(lián)系起來的環(huán)節(jié),結(jié)尾常常是對(duì)一節(jié)課所講知識(shí)的歸納總結(jié),具有高度的概括性,是在理解的基礎(chǔ)上掌握本節(jié)知識(shí)方法的綱要。
三、課后鞏固
很多學(xué)生在學(xué)習(xí)過程中沒有重視課后的鞏固,只是覺得在課堂上掌握一些知識(shí)就夠了,其實(shí)這是錯(cuò)誤的。高中數(shù)學(xué)的知識(shí)很多,并且不像初中數(shù)學(xué)那么淺顯,而是有很多的內(nèi)涵,如果不能進(jìn)一步挖掘其內(nèi)涵,那么只是掌握這個(gè)知識(shí)的表面,于是在自己做練習(xí)時(shí)就不知道如何去解了,也不能運(yùn)用這個(gè)知識(shí)的。
做練習(xí)是需要的,可是有些學(xué)生只是為了練習(xí)去做練習(xí),而不是為了鞏固這個(gè)知識(shí),擴(kuò)展這個(gè)知識(shí)去做練習(xí),經(jīng)常是做完這個(gè)練習(xí)后算做完了,這樣跟初中的做題是沒有區(qū)別的。其實(shí),我們還應(yīng)該把這個(gè)練習(xí)中使用到的知識(shí)串起來,這樣我們就能明白那些知識(shí)在運(yùn)用,也能掌握更多的知識(shí)。也同樣能發(fā)現(xiàn)那個(gè)知識(shí)點(diǎn)是重點(diǎn),也能發(fā)現(xiàn)難題是如何把相關(guān)知識(shí)串起來的。
四、學(xué)會(huì)看題、學(xué)會(huì)選做題
高中的相關(guān)資料比初中更多,高考是全社會(huì)都關(guān)注的問題,所以高中的練習(xí)也特別多,有些學(xué)生買的資料也多,于是如何利用題目來掌握我們學(xué)習(xí)的知識(shí),擴(kuò)展我們學(xué)習(xí)的知識(shí)就成為學(xué)習(xí)的關(guān)鍵。我覺得題目要多看,多想,看資料中的解題方法,想方法中的為什么,這樣就可以借鑒更多的方法。方法多了,可以也要消化。于是我們要會(huì)有選擇的做題,達(dá)到事半功倍。我建議每天一小練,每周做一套完整的考題,看2~3套考題,從中去發(fā)現(xiàn)那些是這段時(shí)間數(shù)學(xué)學(xué)習(xí)的重點(diǎn)知識(shí),那些是我們常用的解題方法以及使用什么方法能優(yōu)化解題。
五、重視每一次測(cè)試,認(rèn)真分析考試中丟分的原因,并對(duì)丟分的地方做出相關(guān)的措施。
數(shù)學(xué)的學(xué)習(xí)技巧有很多,每一個(gè)人都有自己的不同技巧,我自己根據(jù)自己讀書時(shí)期的一些體會(huì)和現(xiàn)在教學(xué)過程中的體會(huì),歸納出幾點(diǎn)技巧與大家共勉。
高一理數(shù)數(shù)學(xué)記筆記的方法
一記內(nèi)容提綱
老師講課大多有提綱,并且講課時(shí)老師會(huì)將一堂課的線索脈絡(luò)、重點(diǎn)難點(diǎn)等,簡明清晰地呈現(xiàn)在黑板上。同時(shí),教師會(huì)使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識(shí)框架,對(duì)所學(xué)知識(shí)做到胸有成竹、清晰完整。
二記疑難問題
將課堂上未聽懂的問題及時(shí)記下來,便于課后請(qǐng)教同學(xué)或老師,把問題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問題對(duì)部分學(xué)生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識(shí)的斷層、方法的缺陷。
三記思路方法
對(duì)老師在課堂上介紹的解題方法和分析思路也應(yīng)及時(shí)記下,課后加以消化,若有疑惑,先作獨(dú)立分析,因?yàn)橛锌赡苁亲约豪斫忮e(cuò)誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對(duì)于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對(duì)提高解題水平大有益處。在這基礎(chǔ)上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。
四記歸納總結(jié)
注意記下老師的課后總結(jié),這對(duì)于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會(huì)貫通課堂內(nèi)容都很有作用。同時(shí),很多有經(jīng)驗(yàn)的老師在課后小結(jié)時(shí),一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點(diǎn)明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動(dòng)權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。
五記體會(huì)感受
數(shù)學(xué)學(xué)習(xí)是智、情、意、行的綜合。數(shù)學(xué)學(xué)習(xí)過程伴隨著積極的情感體驗(yàn)、意志體驗(yàn)過程,記下自己學(xué)習(xí)過程的感受,可以用來更好地調(diào)控自己的學(xué)習(xí)行為。譬如,一道運(yùn)算很繁雜的習(xí)題,依靠堅(jiān)強(qiáng)的意志獲得解題成功后,可在旁邊寫上“功夫不負(fù)有心人”等自勉的語句,用來激勵(lì)自己。
六記錯(cuò)誤反思
學(xué)習(xí)過程中不可避免地會(huì)犯這樣或那樣的錯(cuò)誤,“聰明人不犯或少犯相同的錯(cuò)誤”,記下自己所犯的錯(cuò)誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時(shí)也應(yīng)注明錯(cuò)誤成因,正確思路及方法,在反思中成熟,在反思中提高。
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點(diǎn)擊下載文檔
搜索文檔
中職高一數(shù)學(xué)教案篇九
1.知識(shí)與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。
2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。
二、教學(xué)重點(diǎn):畫出簡單幾何體、簡單組合體的三視圖;
難點(diǎn):識(shí)別三視圖所表示的空間幾何體。
三、學(xué)法指導(dǎo):觀察、動(dòng)手實(shí)踐、討論、類比。
四、教學(xué)過程。
(一)創(chuàng)設(shè)情景,揭開課題。
展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。
(二)講授新課。
1、中心投影與平行投影:
中心投影:光由一點(diǎn)向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對(duì)著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對(duì)正,高平齊,寬相等。
長對(duì)正:正視圖與俯視圖的長相等,且相互對(duì)正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
(三)鞏固練習(xí)。
課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。
(四)歸納整理。
請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖。
(五)布置作業(yè)。
課本p20習(xí)題1.2[a組]1。
中職高一數(shù)學(xué)教案篇十
掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。
(一)主要知識(shí):
1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略。
四、小結(jié):
1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的`知識(shí)解決有關(guān)應(yīng)用問題,
2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。
中職高一數(shù)學(xué)教案篇十一
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計(jì)一下每部分應(yīng)該分配的時(shí)間。對(duì)于能夠很快做出來的.題目,一定要拿到應(yīng)得的分?jǐn)?shù)。
二、確定每部分的答題時(shí)間。
1、考試時(shí)占用了很多時(shí)間卻一點(diǎn)也沒有做出來的題目。對(duì)于這類題目,你以后考試時(shí)就應(yīng)該盡量減少時(shí)間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再嘗試著做。
2、考試時(shí)花了過多的時(shí)間才做出來的題目。對(duì)于這類題目,你以后平時(shí)做題時(shí)要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時(shí)能用較少的時(shí)間做出來。
三、碰到難題時(shí)。
1、你可以先用“直覺”最快的找到解題思路;。
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。
3、如果這樣也不行,你可以猜測(cè)一下這道題目可能涉及到的知識(shí)點(diǎn)和解題技巧。
4、對(duì)于花了一定時(shí)間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)。
做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號(hào)、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。
中職高一數(shù)學(xué)教案篇十二
復(fù)習(xí)要求】熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。
方法規(guī)律】應(yīng)用數(shù)列知識(shí)界實(shí)際應(yīng)用問題的關(guān)鍵是通過對(duì)實(shí)際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差或公比等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。
一、基礎(chǔ)訓(xùn)練。
a、511b、512c、1023d、1024。
2、若一工廠的生產(chǎn)總值的月平均增長率為p,則年平均增長率為。
a、b、
c、d、
二、典型例題。
例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。
中職高一數(shù)學(xué)教案篇十三
1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系。
2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的`一般思想。
3、了解集合元素個(gè)數(shù)問題的討論說明。
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法。
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維。
[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實(shí)物投影儀。
[教學(xué)方法]:講練結(jié)合法。
[授課類型]:復(fù)習(xí)課。
[課時(shí)安排]:1課時(shí)。
[教學(xué)過程]:集合部分匯總。
本單元主要介紹了以下三個(gè)問題:
1,集合的含義與特征。
2,集合的表示與轉(zhuǎn)化。
3,集合的基本運(yùn)算。
一,集合的含義與表示(含分類)。
1,具有共同特征的對(duì)象的全體,稱一個(gè)集合。
2,集合按元素的個(gè)數(shù)分為:有限集和無窮集兩類。
中職高一數(shù)學(xué)教案篇十四
1、掌握雙曲線的范圍、對(duì)稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)。
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點(diǎn),離心率、
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
中職高一數(shù)學(xué)教案篇十五
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點(diǎn),離心率、
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、
中職高一數(shù)學(xué)教案篇十六
學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數(shù)列,希望對(duì)您有所幫助!
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式.
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng).
2.通過對(duì)一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的.計(jì)算等.
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助.
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
(5)對(duì)每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.
上述提供的:數(shù)列希望能夠符合大家的實(shí)際需要!
中職高一數(shù)學(xué)教案篇十七
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號(hào)及術(shù)語。
教學(xué)過程:
一、閱讀下列語句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式.
3)拋物線上所有的點(diǎn)
4)今年本校高一(1)(或(2))班的全體學(xué)生
5)本校實(shí)驗(yàn)室的所有天平
6)本班級(jí)全體高個(gè)子同學(xué)
7)著名的科學(xué)家
上述每組語句所描述的對(duì)象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個(gè)數(shù)分,可分為1)__________2)_________
三、集合中元素的'三個(gè)性質(zhì):
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號(hào):
4)有理數(shù)集______5)實(shí)數(shù)集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長,那么此三角形一定不是()
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑希缓笳f出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù)的全體值的集合;
3)函數(shù)的全體自變量的集合;
4)方程組解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號(hào)或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)設(shè),,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合
課堂練習(xí):
例7、已知:,若中元素至多只有一個(gè),求的取值范圍。
思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個(gè)元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級(jí)姓名學(xué)號(hào)
1.下列集合中,表示同一個(gè)集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.則()
a.b.c.d.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號(hào)是________________.
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個(gè)數(shù)是____________.
6.設(shè),則集合中所有元素的和為
7.設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,試用列舉法表示集合b=
9.把下列集合用另一種方法表示出來:
(1)(2)
(3)(4)
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=
(1)若a中只有一個(gè)元素,求a的值,并求出這個(gè)元素;
(2)若a中至多只有一個(gè)元素,求a的取值集合。
12.若-3,求實(shí)數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!