作為一名老師,常常要根據(jù)教學(xué)需要編寫(xiě)教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。那么問(wèn)題來(lái)了,教案應(yīng)該怎么寫(xiě)?以下我給大家整理了一些優(yōu)質(zhì)的教案范文,希望對(duì)大家能夠有所幫助。
高中數(shù)學(xué)不等式教案篇一
1、知識(shí)與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡(jiǎn)單的求最值問(wèn)題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問(wèn)題解決問(wèn)題的能力。
2、過(guò)程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問(wèn)題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問(wèn)題的解決)的過(guò)程呈現(xiàn)。啟動(dòng)觀(guān)察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過(guò)運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂(lè)趣。
3、情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
1、基本不等式成立時(shí)的三個(gè)限制條件(簡(jiǎn)稱(chēng)一正、二定、三相等);
2、利用基本不等式求解實(shí)際問(wèn)題中的最大值和最小值。
一、創(chuàng)設(shè)情景,提出問(wèn)題;
設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問(wèn)題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:
上圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客。
[問(wèn)]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?
本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式
在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。
三、理解升華:
1、文字語(yǔ)言敘述:
兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2、聯(lián)想數(shù)列的知識(shí)理解基本不等式
已知a,b是正數(shù),a是a,b的等差中項(xiàng),g是a,b的正的等比中項(xiàng),a與g有無(wú)確定的大小關(guān)系?
兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的等比中項(xiàng)。
3、符號(hào)語(yǔ)言敘述:
4、探究基本不等式證明方法:
[問(wèn)]如何證明基本不等式?
(意圖在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。)
方法一:作差比較或由
展開(kāi)證明。
方法二:分析法(完成課本填空)
設(shè)計(jì)依據(jù):課本是學(xué)生了解世界的窗口和工具,所以,課本必須成為學(xué)生賴(lài)以學(xué)會(huì)學(xué)習(xí)的文本.在教學(xué)中要讓學(xué)生學(xué)會(huì)認(rèn)真看書(shū)、用心思考,養(yǎng)成講講議議、
動(dòng)手動(dòng)筆、仔細(xì)觀(guān)察、用心體會(huì)的好習(xí)慣,真正學(xué)會(huì)讀“數(shù)學(xué)書(shū)”。
點(diǎn)評(píng):證明方法叫做分析法,實(shí)際上是尋找結(jié)論的充分條件,執(zhí)果索因的一種思維方法.
5、探究基本不等式的幾何意義:
借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生
幾何解釋實(shí)質(zhì)可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長(zhǎng)的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高。
四、探究歸納
下列命題中正確的是
結(jié)論:
若兩正數(shù)的乘積為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的和有最小值;
若兩正數(shù)的和為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的乘積有最大值。
簡(jiǎn)記為:“一正、二定、三相等”。
五、領(lǐng)悟練習(xí):
公式應(yīng)用之二:(最優(yōu)化問(wèn)題)
設(shè)計(jì)意圖:新穎有趣、簡(jiǎn)單易懂、貼近生活的問(wèn)題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中
(1)在學(xué)農(nóng)期間,生態(tài)園中有一塊面積為100m2的矩形茶地,為了保護(hù)茶葉的健康生長(zhǎng),學(xué)校決定用籬笆圍起來(lái),問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用籬笆最短。最短的籬笆是多少?
(2)現(xiàn)在學(xué)校倉(cāng)庫(kù)有一段長(zhǎng)為36m的籬笆,要圍成一個(gè)矩形菜園,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),菜園的面積最大。最大面積是多少?
六、反思總結(jié),整合新知:
通過(guò)本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問(wèn)題需要
請(qǐng)教?
設(shè)計(jì)意圖:通過(guò)反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平.
老師根據(jù)情況完善如下:
兩種思想:數(shù)形結(jié)合思想、歸納類(lèi)比思想。
三個(gè)注意:基本不等式求函數(shù)的最大(小)值是注意:“一正二定三相等”
高中數(shù)學(xué)不等式教案篇二
本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開(kāi)的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ)。要進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問(wèn)題,此時(shí)基本不等式是必不可缺的?;静坏仁皆谥R(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,因此它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀(guān)教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。
教學(xué)中注意用新課程理念處理教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過(guò)程。通過(guò)本節(jié)學(xué)習(xí)體會(huì)數(shù)學(xué)來(lái)源于生活,提高學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。
依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):
1、知識(shí)與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡(jiǎn)單的求最值問(wèn)題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問(wèn)題解決問(wèn)題的能力。
2、過(guò)程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問(wèn)題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問(wèn)題的解決)的過(guò)程呈現(xiàn)。啟動(dòng)觀(guān)察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過(guò)運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂(lè)趣。
3、情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
重點(diǎn):應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式的證明過(guò)程及應(yīng)用。
難點(diǎn):1、基本不等式成立時(shí)的三個(gè)限制條件(簡(jiǎn)稱(chēng)一正、二定、三相等);
2、利用基本不等式求解實(shí)際問(wèn)題中的最大值和最小值。
本節(jié)課采用觀(guān)察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線(xiàn),從實(shí)際問(wèn)題出發(fā),放手讓學(xué)生探究思索。以現(xiàn)代信息技術(shù)多媒體課件作為教學(xué)輔助手段,加深學(xué)生對(duì)基本不等式的理解。
多媒體課件、板書(shū)
教學(xué)過(guò)程設(shè)計(jì)以問(wèn)題為中心,以探究解決問(wèn)題的方法為主線(xiàn)展開(kāi)。這種安排強(qiáng)調(diào)過(guò)程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過(guò)程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過(guò)程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
具體過(guò)程安排如下:
創(chuàng)設(shè)情景,提出問(wèn)題;
設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問(wèn)題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:
上圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客。
[問(wèn)]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?
本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。
二、抽象歸納:
一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
[問(wèn)]你能給出它的證明嗎?
學(xué)生在黑板上板書(shū)。
特別地,當(dāng)a>0,b>0時(shí),在不等式中,以、分別代替a、b,得到什么?
設(shè)計(jì)依據(jù):類(lèi)比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式不等式的來(lái)源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).
答案:。
【歸納總結(jié)】
如果a,b都是正數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
我們稱(chēng)此不等式為基本不等式。其中稱(chēng)為a,b的算術(shù)平均數(shù),稱(chēng)為a,b的幾何平均數(shù)。
三、理解升華:
1、文字語(yǔ)言敘述:
兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2、聯(lián)想數(shù)列的知識(shí)理解基本不等式
已知a,b是正數(shù),a是a,b的等差中項(xiàng),g是a,b的正的等比中項(xiàng),a與g有無(wú)確定的大小關(guān)系?
兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的等比中項(xiàng)。
3、符號(hào)語(yǔ)言敘述:
若,則有,當(dāng)且僅當(dāng)a=b時(shí),。
[問(wèn)]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))
“當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:
高中數(shù)學(xué)不等式教案篇三
【知識(shí)與技能】
掌握求解一元二次不等式的簡(jiǎn)單方法,能正確求解一元二次不等式的解集。
【過(guò)程與方法】
在探究一元二次不等式的解法的過(guò)程中,提升邏輯推理能力。
【情感、態(tài)度與價(jià)值觀(guān)】
感受數(shù)學(xué)知識(shí)的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。
【重點(diǎn)】一元二次不等式的解法。
【難點(diǎn)】一元二次不等式的解法的探究過(guò)程。
(一)導(dǎo)入新課
回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡(jiǎn)單的一元二次不等式。
提問(wèn):如何求解?引出課題。
(二)講解新知
結(jié)合課前回顧的一元二次不等式的一般形式,對(duì)比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點(diǎn)。
高中數(shù)學(xué)不等式教案篇四
各位評(píng)委、各位專(zhuān)家,大家好!今天,我說(shuō)課的內(nèi)容是人民教育出版社全日制普通高級(jí)中學(xué)教科書(shū)(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。
下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評(píng)價(jià)六方面進(jìn)行說(shuō)課。
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀(guān)察能力、概括能力、探究能力及創(chuàng)新意識(shí)。
(二)教學(xué)內(nèi)容
本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過(guò)二次函數(shù)的圖象探索一元二次不等式的解集。通過(guò)復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫(huà)、看、說(shuō)、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂(lè)趣。
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過(guò)看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——?jiǎng)?chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生觀(guān)察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問(wèn)題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。
要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒(méi)有專(zhuān)門(mén)研究過(guò)這類(lèi)問(wèn)題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問(wèn)題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫(huà)、看、說(shuō)、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計(jì)
本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀(guān)察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。
(一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系
本節(jié)課開(kāi)始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問(wèn)開(kāi)始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計(jì)了以下幾個(gè)問(wèn)題:
1、請(qǐng)同學(xué)們解以下方程和不等式:
①2x-7=0;②2x-70;③2x-70
學(xué)生回答,我板書(shū)。
2、我指出:2x-70和2x-70的解實(shí)際上只需利用不等式基本性質(zhì)就容易得到。
3、接著我提出:我們能否利用不等式的基本性質(zhì)來(lái)解一元二次不等式呢?學(xué)生可能感到很困惑。
4、為此,我引入一次函數(shù)y=2x-7,借助動(dòng)畫(huà)從圖象上直觀(guān)認(rèn)識(shí)方程和不等式的解,得出以下三組重要關(guān)系:
①2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸
交點(diǎn)的橫坐標(biāo)。
②2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的上方的點(diǎn)的橫坐標(biāo)的集合。
③2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的下方的點(diǎn)的橫坐標(biāo)的集合。
三組關(guān)系的得出,實(shí)際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來(lái)解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問(wèn)題的興趣。此時(shí),學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來(lái)求不等式x2-x-60的解集。
(二)比舊悟新,引出“三個(gè)二次”的關(guān)系
為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說(shuō)一說(shuō) 問(wèn)一問(wèn)”的思路進(jìn)行探究。
看函數(shù)y=x2-x-6的圖象并說(shuō)出:
①方程x2-x-6=0的解是
x=-2或x=3 ;
②不等式x2-x-60的解集是
{x|x-2,或x3};
③不等式x2-x-60的解集是
{x|-23}。
此時(shí),學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來(lái)解一元二次不等式的方法。
學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問(wèn)一問(wèn):如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時(shí),圖象與x軸有兩個(gè)交點(diǎn);△=0時(shí),圖象與x軸只有一個(gè)交點(diǎn);△0時(shí),圖象與x輛沒(méi)有交點(diǎn)。)請(qǐng)同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?
(三)歸納提煉,得出“三個(gè)二次”的關(guān)系
1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對(duì)位置關(guān)系,寫(xiě)出相關(guān)不等式的解集。
2、此時(shí)提出:若a0時(shí),怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項(xiàng)系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強(qiáng)調(diào);也有的學(xué)生提出畫(huà)出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫(xiě)出解集,教師應(yīng)給予肯定。)
(四)應(yīng)用新知,熟練掌握一元二次不等式的解集
借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識(shí),為鞏固所學(xué)知識(shí),我們一起來(lái)完成以下例題:
例1、解不等式2x2-3x-20
解:因?yàn)棣?,方程2x2-3x-2=0的解是
x1= ,x2=2
所以,不等式的解集是
{ x| x ,或x2}
例1的解決達(dá)到了兩個(gè)目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。
下面我們接著學(xué)習(xí)課本例2。
例2 解不等式-3x2+6x2
課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對(duì)于二次項(xiàng)系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項(xiàng)系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對(duì)此例的解答極易出現(xiàn)寫(xiě)錯(cuò)解集(如出現(xiàn)“或”與“且”的錯(cuò)誤)。
通過(guò)例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫(xiě)解集。
例3 解不等式4x2-4x+10
例4 解不等式-x2+2x-30
分別突出了“△=0”、“△0”對(duì)不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評(píng)學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表?yè)P(yáng)。
4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤(pán)散沙”的局面,我和學(xué)生一起總結(jié)。
(五)總結(jié)
解一元二次不等式的“四部曲”:
(1)把二次項(xiàng)的系數(shù)化為正數(shù)
(2)計(jì)算判別式δ
(3)解對(duì)應(yīng)的一元二次方程
(4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫(xiě)出不等式的解集。概括為:一化正→二算δ→三求根→四寫(xiě)解集
(六)作業(yè)布置
為了使所有學(xué)生鞏固所學(xué)知識(shí),我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。
(1)必做題:習(xí)題1.5的1、3題
(2)探究題:①若a、b不同時(shí)為零,記ax2+bx+c=0的解集為p,ax2+bx+c0的解集為m,ax2+bx+c0的解集為n,那么p∪m∪n=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是r,求實(shí)數(shù)k的取值范圍。
(七)板書(shū)設(shè)計(jì)
一元二次不等式解法(1)
本節(jié)課立足課本,著力挖掘,設(shè)計(jì)合理,層次分明。以“三個(gè)一次關(guān)系→三個(gè)二次關(guān)系→一元二次不等式解法”為主線(xiàn),以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫(huà)、看、說(shuō)、用”為特色,把握重點(diǎn),突破難點(diǎn)。在教學(xué)思想上既注重知識(shí)形成過(guò)程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂(lè)趣。
高中數(shù)學(xué)不等式教案篇五
線(xiàn)段的垂直平分線(xiàn)
1、使學(xué)生理解線(xiàn)段的垂直平分線(xiàn)的性質(zhì)定理及逆定理,掌握這兩個(gè)定理的關(guān)系并會(huì)用這兩個(gè)定理解決有關(guān)幾何問(wèn)題。
2、了解線(xiàn)段垂直平分線(xiàn)的軌跡問(wèn)題。
3、結(jié)合教學(xué)內(nèi)容培養(yǎng)學(xué)生的動(dòng)作思維、形象思維和抽象思維能力。
線(xiàn)段的垂直平分線(xiàn)性質(zhì)定理及逆定理的引入證明及運(yùn)用。
線(xiàn)段的垂直平分線(xiàn)性質(zhì)定理及逆定理的關(guān)系。
1、垂直平分線(xiàn)上所有的點(diǎn)和線(xiàn)段兩端點(diǎn)的距離相等。
2、到線(xiàn)段兩端點(diǎn)的距離相等的所有點(diǎn)都在這條線(xiàn)段的垂直平分線(xiàn)上。
:投影儀及投影膠片。
一、提問(wèn)
1、角平分線(xiàn)的性質(zhì)定理及逆定理是什么?
2、怎樣做一條線(xiàn)段的垂直平分線(xiàn)?
二、新課
1、請(qǐng)同學(xué)們?cè)谡n堂練習(xí)本上做線(xiàn)段ab的垂直平分線(xiàn)ef(請(qǐng)一名同學(xué)在黑板上做)。
2、在ef上任取一點(diǎn)p,連結(jié)pa、pb量出pa=?,pb=?引導(dǎo)學(xué)生觀(guān)察這兩個(gè)值有什么關(guān)系?
通過(guò)學(xué)生的觀(guān)察、分析得出結(jié)果pa=pb,再取一點(diǎn)p'試一試仍然有p'a=p'b,引導(dǎo)學(xué)生猜想ef上的所有點(diǎn)和點(diǎn)a、點(diǎn)b的距離都相等,再請(qǐng)同學(xué)把這一結(jié)論敘述成命題(用幻燈展示)。
定理:線(xiàn)段的垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段的兩個(gè)端點(diǎn)的距離相等。
這個(gè)命題,是我們通過(guò)作圖、觀(guān)察、猜想得到的,還得在理論上加以證明是真命題才能做為定理。
已知:如圖,直線(xiàn)ef⊥ab,垂足為c,且ac=cb,點(diǎn)p在ef上
求證:pa=pb
如何證明pa=pb學(xué)生分析得出只要證rtδpca≌rtδpcb
證明:∵pc⊥ab(已知)
∴∠pca=∠pcb(垂直的定義)
在δpca和δpcb中
∴δpca≌δpcb(sas)
即:pa=pb(全等三角形的對(duì)應(yīng)邊相等)。
反過(guò)來(lái),如果pa=pb,p1a=p1b,點(diǎn)p,p1在什么線(xiàn)上?
過(guò)p,p1做直線(xiàn)ef交ab于c,可證明δpa p1≌pb p1(sss)
∴ef是等腰三角型δpab的頂角平分線(xiàn)
∴ef是ab的垂直平分線(xiàn)(等腰三角形三線(xiàn)合一性質(zhì))
∴p,p1在ab的垂直平分線(xiàn)上,于是得出上述定理的逆定理(啟發(fā)學(xué)生敘述)(用幻燈展示)。
逆定理:和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上。
根據(jù)上述定理和逆定理可以知道:直線(xiàn)mn可以看作和兩點(diǎn)a、b的距離相等的所有點(diǎn)的集合。
線(xiàn)段的垂直平分線(xiàn)可以看作是和線(xiàn)段兩個(gè)端點(diǎn)距離相等的所有點(diǎn)的集合。
三、舉例(用幻燈展示)
例:已知,如圖δabc中,邊ab,bc的垂直平分線(xiàn)相交于點(diǎn)p,求證:pa=pb=pc。
證明:∵點(diǎn)p在線(xiàn)段ab的垂直平分線(xiàn)上
∴pa=pb
同理pb=pc
∴pa=pb=pc
由例題pa=pc知點(diǎn)p在ac的垂直平分線(xiàn)上,所以三角形三邊的垂直平分線(xiàn)交于一點(diǎn)p,這點(diǎn)到三個(gè)頂點(diǎn)的距離相等。
四、小結(jié)
正確的運(yùn)用這兩個(gè)定理的關(guān)鍵是區(qū)別它們的條件與結(jié)論,加強(qiáng)證明前的分析,找出證明的途徑。定理的作用是可證明兩條線(xiàn)段相等或點(diǎn)在線(xiàn)段的垂直平分線(xiàn)上。
五、練習(xí)與作業(yè)
練習(xí):第87頁(yè)1、2
作業(yè):第95頁(yè)2、3、4
線(xiàn)段的垂直平分線(xiàn)的性質(zhì)定理及逆定理,都是幾何中的重要定理,也是一條重要軌跡。在幾何證明、計(jì)算、作圖中都有重要應(yīng)用。我講授這節(jié)課是線(xiàn)段垂直平分線(xiàn)的第一節(jié)課,主要完成定理的引出、證明和初步的運(yùn)用。
在設(shè)計(jì)教案時(shí),我結(jié)合教材內(nèi)容,對(duì)如何導(dǎo)入新課,引出定理以及證明進(jìn)行了探索。在導(dǎo)入新課這一環(huán)節(jié)上我先讓學(xué)生做一條線(xiàn)段ab的垂直平分線(xiàn)ef,在ef上取一點(diǎn)p,讓學(xué)生量出pa、pb的長(zhǎng)度,引導(dǎo)學(xué)生觀(guān)察、討論每個(gè)人量得的這兩個(gè)長(zhǎng)度之間有什么關(guān)系:得到什么結(jié)論?學(xué)生回答:pa=pb。然后再讓學(xué)生取一點(diǎn)試一試,這兩個(gè)長(zhǎng)度也相等,由此引導(dǎo)學(xué)生猜想到線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理。在這一過(guò)程中讓學(xué)生主動(dòng)積極的參與到教學(xué)中來(lái),使學(xué)生通過(guò)作圖、觀(guān)察、量一量再得出結(jié)論。從而把知識(shí)的形成過(guò)程轉(zhuǎn)化為學(xué)生親自參與、發(fā)現(xiàn)、探索的過(guò)程。在教學(xué)時(shí),引導(dǎo)學(xué)生分析性質(zhì)定理的題設(shè)與結(jié)論,畫(huà)圖寫(xiě)出已知、求證,通過(guò)分析由學(xué)生得出證明性質(zhì)定理的方法,這個(gè)過(guò)程既是探索過(guò)程也是調(diào)動(dòng)學(xué)生動(dòng)腦思考的過(guò)程,只有學(xué)生動(dòng)腦思考了,才能真正理解線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理,以及證明方法。在此基礎(chǔ)上再提出如果有兩點(diǎn)到線(xiàn)段的兩端點(diǎn)的距離相等,這樣的點(diǎn)應(yīng)在什么樣的直線(xiàn)上?由條件得出這樣的點(diǎn)在線(xiàn)段的垂直平分線(xiàn)上,從而引出性質(zhì)定理的逆定理,由上述兩個(gè)定理使學(xué)生再進(jìn)一步知道線(xiàn)段的垂直平分線(xiàn)可以看作是到線(xiàn)段兩端點(diǎn)距離的所有點(diǎn)的集合。這樣可以幫助學(xué)生認(rèn)識(shí)理論來(lái)源于實(shí)踐又服務(wù)于實(shí)踐的道理,也能提高他們學(xué)習(xí)的積極性,加深對(duì)所學(xué)知識(shí)的理解。在講解例題時(shí)引導(dǎo)學(xué)生用所學(xué)的線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理以及逆定理來(lái)證,避免用三角形全等來(lái)證。最后總結(jié)點(diǎn)p是三角形三邊垂直平分線(xiàn)的交點(diǎn),這個(gè)點(diǎn)到三個(gè)頂點(diǎn)的距離相等。為了使學(xué)生當(dāng)堂掌握兩個(gè)定理的靈活運(yùn)用,讓學(xué)生做87頁(yè)的兩個(gè)練習(xí),以達(dá)到鞏固知識(shí)的目的。
高中數(shù)學(xué)不等式教案篇六
(一)知識(shí)與技能
1.了解從實(shí)際情境中抽象出二元一次不等式(組)模型的過(guò)程
2.掌握簡(jiǎn)單的二元線(xiàn)性規(guī)劃問(wèn)題的解法
3.了解數(shù)學(xué)建模的整個(gè)過(guò)程
(二)過(guò)程與方法
1.通過(guò)對(duì)實(shí)際問(wèn)題的探索,培養(yǎng)學(xué)生用數(shù)學(xué)眼光去觀(guān)察生活、并且能提出問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力.
2.增強(qiáng)學(xué)生的協(xié)作能力.
(三) 情感、態(tài)度與價(jià)值觀(guān)
1.通過(guò)學(xué)生自主探索、合作交流,親身體驗(yàn)數(shù)學(xué)模型的發(fā)現(xiàn),培養(yǎng)學(xué)生勇于探索、善于發(fā)現(xiàn)、不畏艱辛的品質(zhì),增強(qiáng)學(xué)習(xí)的成功心理,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,深刻體會(huì)數(shù)學(xué)是有用的.
2.通過(guò)實(shí)例的社會(huì)意義,培養(yǎng)學(xué)生愛(ài)護(hù)環(huán)境的責(zé)任心.
重點(diǎn):從具體生活情境中提煉出簡(jiǎn)單的二元線(xiàn)性規(guī)劃問(wèn)題,并且用數(shù)學(xué)方法解決問(wèn)題.
難點(diǎn):從具體生活情境中提煉出約束條件和目標(biāo)函數(shù).
本節(jié)課采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以二元一次不等式(組)模型的發(fā)現(xiàn)為基本探究?jī)?nèi)容,以周?chē)澜绾蜕顚?shí)際為對(duì)象,為學(xué)生提供充分自由表達(dá)、質(zhì)疑、探究、討論問(wèn)題的機(jī)會(huì),讓學(xué)生通過(guò)個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)實(shí)際問(wèn)題的深入探討.讓學(xué)生在“活動(dòng)”中學(xué)習(xí),在“主動(dòng)”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新.設(shè)計(jì)思路如下:
創(chuàng)設(shè)情境→方案討論→數(shù)據(jù)篩選→建立模型→解決模型→反饋實(shí)際
引入
(1)如圖,小明與小聰玩蹺蹺板,大家都不用力時(shí),蹺蹺板左低右高.小明的身體質(zhì)量為 p(kg),小聰?shù)纳眢w質(zhì)量為q(kg),書(shū)包的質(zhì)量為2kg,怎樣表示p 、q之間的關(guān)系?
(2)上圖是公路上對(duì)汽車(chē)的限速標(biāo)志,表示汽車(chē)在該路段行使的速度不得超過(guò)40km /h.若用v (km /h)表示車(chē)的速度,那么v與40之間的數(shù)量關(guān)系用怎樣的式子表示?
(3)據(jù)科學(xué)家測(cè)定,太陽(yáng)表面的溫度不低于6000 ℃.設(shè)太陽(yáng)表面的溫度為t (℃),怎樣表示t 與6000之間的關(guān)系?
歸納:數(shù)學(xué)作用之一,我們可以用數(shù)學(xué)語(yǔ)言描述客觀(guān)世界的某些現(xiàn)象
當(dāng)然,數(shù)學(xué)作用不僅于此,我們還可以通過(guò)數(shù)學(xué)解決現(xiàn)實(shí)生活中的問(wèn)題.
(一)情景設(shè)置
我校環(huán)境優(yōu)美,毗鄰江水,校園內(nèi)四季常青,但是遠(yuǎn)眺圍墻外,有一座小山,那是一座垃圾山.楊府山垃圾場(chǎng)有他的.歷史作用和意義,現(xiàn)在已經(jīng)完成了它的歷史使命,而且現(xiàn)在有了負(fù)面影響,市委市政府打算對(duì)其進(jìn)行改造.經(jīng)過(guò)專(zhuān)家論證,有如下方案可行:發(fā)電、制磚
(二)處理方案討論
現(xiàn)同時(shí)用兩種措施對(duì)垃圾山進(jìn)行改造處理,如果你是項(xiàng)目經(jīng)理,給你500萬(wàn)采購(gòu)發(fā)電設(shè)備以及制磚設(shè)備,你該如何去實(shí)施?
(學(xué)生自主發(fā)言)
學(xué)生問(wèn)題一、怎樣安排資金?買(mǎi)幾臺(tái)發(fā)電設(shè)備,幾臺(tái)制磚設(shè)備?如何決策?
引導(dǎo):?jiǎn)栴}轉(zhuǎn)化為如何安排資金,能取得最大效益?即兩種方案生產(chǎn)產(chǎn)品的利潤(rùn)(售價(jià)減去成本)
學(xué)生問(wèn)題二、如何知道這些信息?(產(chǎn)品售價(jià)、設(shè)備的單價(jià)等)
引導(dǎo)(先提問(wèn)學(xué)生):上網(wǎng)查詢(xún)、市場(chǎng)調(diào)查、向已建廠(chǎng)取經(jīng)、參觀(guān)展銷(xiāo)會(huì)等等.
(三)數(shù)據(jù)的篩選
由于教室條件限制,不能現(xiàn)場(chǎng)查取,所以老師幫你們收集了一些資料,希望對(duì)你們有所幫助.請(qǐng)分析以下信息,提取你認(rèn)為有用的數(shù)據(jù).
信息一、
信息二、
焚燒垃圾重量直接關(guān)系到垃圾發(fā)電企業(yè)的經(jīng)濟(jì)效益.在bot的模式下,企業(yè)的效益這樣來(lái)保障:
1.每處理1噸垃圾,政府補(bǔ)貼發(fā)電企業(yè)73.8元,
2.保證以0.52元/千瓦時(shí)的價(jià)格收購(gòu)全部垃圾發(fā)電量,
3.一臺(tái)發(fā)電設(shè)備每處理1噸垃圾平均費(fèi)用為123元
4.一臺(tái)發(fā)電設(shè)備日處理垃圾能力為225噸,
5.1噸垃圾可發(fā)電300千瓦時(shí),其中30%為自用電
信息三、
發(fā)電設(shè)備:120萬(wàn)/臺(tái) 制磚設(shè)備:35萬(wàn)/臺(tái)
機(jī)房總面積為7畝,每臺(tái)設(shè)備有各自平均占地,其中發(fā)電設(shè)備每臺(tái)平均占地1畝,制磚機(jī)每臺(tái)平占地1畝
(四)建立模型
你能從以上信息中提煉出你所需要的信息,并用數(shù)學(xué)語(yǔ)言表示出來(lái)嗎?
(學(xué)生動(dòng)手)
引導(dǎo):我們剛才處理的問(wèn)題即應(yīng)用題:
例 一工廠(chǎng)欲生產(chǎn)甲乙兩種產(chǎn)品,已知生產(chǎn)一件甲產(chǎn)品利潤(rùn)為60元,一臺(tái)甲設(shè)備價(jià)格為120萬(wàn),占地1畝,年生產(chǎn)能力為82125件;生產(chǎn)一件乙產(chǎn)品利潤(rùn)為0.12元,一臺(tái)乙設(shè)備價(jià)格為35萬(wàn),占地1畝,年生產(chǎn)能力為15000000件.現(xiàn)有資金500萬(wàn),廠(chǎng)房7畝,該廠(chǎng)該如何添置甲乙兩種設(shè)備,使得年利潤(rùn)最大?
(五)解決模型
該問(wèn)題即我們上節(jié)課剛學(xué)過(guò)的線(xiàn)性規(guī)劃問(wèn)題,請(qǐng)大家動(dòng)手解決.
(六)反饋實(shí)際
我們可以將我們的成果發(fā)到市長(zhǎng)信箱,為城市建設(shè)出謀劃策,貢獻(xiàn)自己的一份力量.
五、歸納小結(jié)
(一)解決生活問(wèn)題的步驟:
創(chuàng)設(shè)情境→方案討論→數(shù)據(jù)篩選→建立模型→解決模型→反饋實(shí)際
現(xiàn)實(shí)問(wèn)題:給你資金和地皮,購(gòu)置設(shè)備
方案討論:通過(guò)1.上網(wǎng)查詢(xún) 2.市場(chǎng)調(diào)查3.吸收已建廠(chǎng)經(jīng)驗(yàn)等方法收集信息.
數(shù)據(jù)篩選及建立模型:將收集到的信息用數(shù)學(xué)語(yǔ)言表示出來(lái).
解決模型:用已學(xué)過(guò)的數(shù)學(xué)知識(shí)進(jìn)行分析、處理,得出結(jié)論.
反饋實(shí)際:將結(jié)論應(yīng)用于實(shí)際問(wèn)題當(dāng)中.
(二)順利解決生活問(wèn)題體要具備的能力
我們要具備信息收集及處理能力、生活語(yǔ)言轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言的能力以及扎實(shí)的數(shù)學(xué)解題能力.
高中數(shù)學(xué)不等式教案篇一
1、知識(shí)與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡(jiǎn)單的求最值問(wèn)題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問(wèn)題解決問(wèn)題的能力。
2、過(guò)程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問(wèn)題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問(wèn)題的解決)的過(guò)程呈現(xiàn)。啟動(dòng)觀(guān)察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過(guò)運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂(lè)趣。
3、情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
1、基本不等式成立時(shí)的三個(gè)限制條件(簡(jiǎn)稱(chēng)一正、二定、三相等);
2、利用基本不等式求解實(shí)際問(wèn)題中的最大值和最小值。
一、創(chuàng)設(shè)情景,提出問(wèn)題;
設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問(wèn)題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:
上圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客。
[問(wèn)]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?
本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式
在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。
三、理解升華:
1、文字語(yǔ)言敘述:
兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2、聯(lián)想數(shù)列的知識(shí)理解基本不等式
已知a,b是正數(shù),a是a,b的等差中項(xiàng),g是a,b的正的等比中項(xiàng),a與g有無(wú)確定的大小關(guān)系?
兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的等比中項(xiàng)。
3、符號(hào)語(yǔ)言敘述:
4、探究基本不等式證明方法:
[問(wèn)]如何證明基本不等式?
(意圖在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。)
方法一:作差比較或由
展開(kāi)證明。
方法二:分析法(完成課本填空)
設(shè)計(jì)依據(jù):課本是學(xué)生了解世界的窗口和工具,所以,課本必須成為學(xué)生賴(lài)以學(xué)會(huì)學(xué)習(xí)的文本.在教學(xué)中要讓學(xué)生學(xué)會(huì)認(rèn)真看書(shū)、用心思考,養(yǎng)成講講議議、
動(dòng)手動(dòng)筆、仔細(xì)觀(guān)察、用心體會(huì)的好習(xí)慣,真正學(xué)會(huì)讀“數(shù)學(xué)書(shū)”。
點(diǎn)評(píng):證明方法叫做分析法,實(shí)際上是尋找結(jié)論的充分條件,執(zhí)果索因的一種思維方法.
5、探究基本不等式的幾何意義:
借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生
幾何解釋實(shí)質(zhì)可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長(zhǎng)的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高。
四、探究歸納
下列命題中正確的是
結(jié)論:
若兩正數(shù)的乘積為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的和有最小值;
若兩正數(shù)的和為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的乘積有最大值。
簡(jiǎn)記為:“一正、二定、三相等”。
五、領(lǐng)悟練習(xí):
公式應(yīng)用之二:(最優(yōu)化問(wèn)題)
設(shè)計(jì)意圖:新穎有趣、簡(jiǎn)單易懂、貼近生活的問(wèn)題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中
(1)在學(xué)農(nóng)期間,生態(tài)園中有一塊面積為100m2的矩形茶地,為了保護(hù)茶葉的健康生長(zhǎng),學(xué)校決定用籬笆圍起來(lái),問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用籬笆最短。最短的籬笆是多少?
(2)現(xiàn)在學(xué)校倉(cāng)庫(kù)有一段長(zhǎng)為36m的籬笆,要圍成一個(gè)矩形菜園,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),菜園的面積最大。最大面積是多少?
六、反思總結(jié),整合新知:
通過(guò)本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問(wèn)題需要
請(qǐng)教?
設(shè)計(jì)意圖:通過(guò)反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平.
老師根據(jù)情況完善如下:
兩種思想:數(shù)形結(jié)合思想、歸納類(lèi)比思想。
三個(gè)注意:基本不等式求函數(shù)的最大(小)值是注意:“一正二定三相等”
高中數(shù)學(xué)不等式教案篇二
本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開(kāi)的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ)。要進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問(wèn)題,此時(shí)基本不等式是必不可缺的?;静坏仁皆谥R(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,因此它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀(guān)教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。
教學(xué)中注意用新課程理念處理教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過(guò)程。通過(guò)本節(jié)學(xué)習(xí)體會(huì)數(shù)學(xué)來(lái)源于生活,提高學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。
依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):
1、知識(shí)與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡(jiǎn)單的求最值問(wèn)題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問(wèn)題解決問(wèn)題的能力。
2、過(guò)程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問(wèn)題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問(wèn)題的解決)的過(guò)程呈現(xiàn)。啟動(dòng)觀(guān)察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過(guò)運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂(lè)趣。
3、情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
重點(diǎn):應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式的證明過(guò)程及應(yīng)用。
難點(diǎn):1、基本不等式成立時(shí)的三個(gè)限制條件(簡(jiǎn)稱(chēng)一正、二定、三相等);
2、利用基本不等式求解實(shí)際問(wèn)題中的最大值和最小值。
本節(jié)課采用觀(guān)察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線(xiàn),從實(shí)際問(wèn)題出發(fā),放手讓學(xué)生探究思索。以現(xiàn)代信息技術(shù)多媒體課件作為教學(xué)輔助手段,加深學(xué)生對(duì)基本不等式的理解。
多媒體課件、板書(shū)
教學(xué)過(guò)程設(shè)計(jì)以問(wèn)題為中心,以探究解決問(wèn)題的方法為主線(xiàn)展開(kāi)。這種安排強(qiáng)調(diào)過(guò)程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過(guò)程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過(guò)程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
具體過(guò)程安排如下:
創(chuàng)設(shè)情景,提出問(wèn)題;
設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問(wèn)題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:
上圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客。
[問(wèn)]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?
本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。
二、抽象歸納:
一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
[問(wèn)]你能給出它的證明嗎?
學(xué)生在黑板上板書(shū)。
特別地,當(dāng)a>0,b>0時(shí),在不等式中,以、分別代替a、b,得到什么?
設(shè)計(jì)依據(jù):類(lèi)比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式不等式的來(lái)源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).
答案:。
【歸納總結(jié)】
如果a,b都是正數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
我們稱(chēng)此不等式為基本不等式。其中稱(chēng)為a,b的算術(shù)平均數(shù),稱(chēng)為a,b的幾何平均數(shù)。
三、理解升華:
1、文字語(yǔ)言敘述:
兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2、聯(lián)想數(shù)列的知識(shí)理解基本不等式
已知a,b是正數(shù),a是a,b的等差中項(xiàng),g是a,b的正的等比中項(xiàng),a與g有無(wú)確定的大小關(guān)系?
兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的等比中項(xiàng)。
3、符號(hào)語(yǔ)言敘述:
若,則有,當(dāng)且僅當(dāng)a=b時(shí),。
[問(wèn)]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))
“當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:
高中數(shù)學(xué)不等式教案篇三
【知識(shí)與技能】
掌握求解一元二次不等式的簡(jiǎn)單方法,能正確求解一元二次不等式的解集。
【過(guò)程與方法】
在探究一元二次不等式的解法的過(guò)程中,提升邏輯推理能力。
【情感、態(tài)度與價(jià)值觀(guān)】
感受數(shù)學(xué)知識(shí)的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。
【重點(diǎn)】一元二次不等式的解法。
【難點(diǎn)】一元二次不等式的解法的探究過(guò)程。
(一)導(dǎo)入新課
回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡(jiǎn)單的一元二次不等式。
提問(wèn):如何求解?引出課題。
(二)講解新知
結(jié)合課前回顧的一元二次不等式的一般形式,對(duì)比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點(diǎn)。
高中數(shù)學(xué)不等式教案篇四
各位評(píng)委、各位專(zhuān)家,大家好!今天,我說(shuō)課的內(nèi)容是人民教育出版社全日制普通高級(jí)中學(xué)教科書(shū)(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。
下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評(píng)價(jià)六方面進(jìn)行說(shuō)課。
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀(guān)察能力、概括能力、探究能力及創(chuàng)新意識(shí)。
(二)教學(xué)內(nèi)容
本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過(guò)二次函數(shù)的圖象探索一元二次不等式的解集。通過(guò)復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫(huà)、看、說(shuō)、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂(lè)趣。
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過(guò)看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——?jiǎng)?chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生觀(guān)察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問(wèn)題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。
要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒(méi)有專(zhuān)門(mén)研究過(guò)這類(lèi)問(wèn)題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問(wèn)題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫(huà)、看、說(shuō)、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計(jì)
本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀(guān)察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。
(一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系
本節(jié)課開(kāi)始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問(wèn)開(kāi)始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計(jì)了以下幾個(gè)問(wèn)題:
1、請(qǐng)同學(xué)們解以下方程和不等式:
①2x-7=0;②2x-70;③2x-70
學(xué)生回答,我板書(shū)。
2、我指出:2x-70和2x-70的解實(shí)際上只需利用不等式基本性質(zhì)就容易得到。
3、接著我提出:我們能否利用不等式的基本性質(zhì)來(lái)解一元二次不等式呢?學(xué)生可能感到很困惑。
4、為此,我引入一次函數(shù)y=2x-7,借助動(dòng)畫(huà)從圖象上直觀(guān)認(rèn)識(shí)方程和不等式的解,得出以下三組重要關(guān)系:
①2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸
交點(diǎn)的橫坐標(biāo)。
②2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的上方的點(diǎn)的橫坐標(biāo)的集合。
③2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的下方的點(diǎn)的橫坐標(biāo)的集合。
三組關(guān)系的得出,實(shí)際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來(lái)解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問(wèn)題的興趣。此時(shí),學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來(lái)求不等式x2-x-60的解集。
(二)比舊悟新,引出“三個(gè)二次”的關(guān)系
為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說(shuō)一說(shuō) 問(wèn)一問(wèn)”的思路進(jìn)行探究。
看函數(shù)y=x2-x-6的圖象并說(shuō)出:
①方程x2-x-6=0的解是
x=-2或x=3 ;
②不等式x2-x-60的解集是
{x|x-2,或x3};
③不等式x2-x-60的解集是
{x|-23}。
此時(shí),學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來(lái)解一元二次不等式的方法。
學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問(wèn)一問(wèn):如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時(shí),圖象與x軸有兩個(gè)交點(diǎn);△=0時(shí),圖象與x軸只有一個(gè)交點(diǎn);△0時(shí),圖象與x輛沒(méi)有交點(diǎn)。)請(qǐng)同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?
(三)歸納提煉,得出“三個(gè)二次”的關(guān)系
1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對(duì)位置關(guān)系,寫(xiě)出相關(guān)不等式的解集。
2、此時(shí)提出:若a0時(shí),怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項(xiàng)系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強(qiáng)調(diào);也有的學(xué)生提出畫(huà)出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫(xiě)出解集,教師應(yīng)給予肯定。)
(四)應(yīng)用新知,熟練掌握一元二次不等式的解集
借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識(shí),為鞏固所學(xué)知識(shí),我們一起來(lái)完成以下例題:
例1、解不等式2x2-3x-20
解:因?yàn)棣?,方程2x2-3x-2=0的解是
x1= ,x2=2
所以,不等式的解集是
{ x| x ,或x2}
例1的解決達(dá)到了兩個(gè)目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。
下面我們接著學(xué)習(xí)課本例2。
例2 解不等式-3x2+6x2
課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對(duì)于二次項(xiàng)系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項(xiàng)系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對(duì)此例的解答極易出現(xiàn)寫(xiě)錯(cuò)解集(如出現(xiàn)“或”與“且”的錯(cuò)誤)。
通過(guò)例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫(xiě)解集。
例3 解不等式4x2-4x+10
例4 解不等式-x2+2x-30
分別突出了“△=0”、“△0”對(duì)不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評(píng)學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表?yè)P(yáng)。
4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤(pán)散沙”的局面,我和學(xué)生一起總結(jié)。
(五)總結(jié)
解一元二次不等式的“四部曲”:
(1)把二次項(xiàng)的系數(shù)化為正數(shù)
(2)計(jì)算判別式δ
(3)解對(duì)應(yīng)的一元二次方程
(4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫(xiě)出不等式的解集。概括為:一化正→二算δ→三求根→四寫(xiě)解集
(六)作業(yè)布置
為了使所有學(xué)生鞏固所學(xué)知識(shí),我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。
(1)必做題:習(xí)題1.5的1、3題
(2)探究題:①若a、b不同時(shí)為零,記ax2+bx+c=0的解集為p,ax2+bx+c0的解集為m,ax2+bx+c0的解集為n,那么p∪m∪n=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是r,求實(shí)數(shù)k的取值范圍。
(七)板書(shū)設(shè)計(jì)
一元二次不等式解法(1)
本節(jié)課立足課本,著力挖掘,設(shè)計(jì)合理,層次分明。以“三個(gè)一次關(guān)系→三個(gè)二次關(guān)系→一元二次不等式解法”為主線(xiàn),以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫(huà)、看、說(shuō)、用”為特色,把握重點(diǎn),突破難點(diǎn)。在教學(xué)思想上既注重知識(shí)形成過(guò)程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂(lè)趣。
高中數(shù)學(xué)不等式教案篇五
線(xiàn)段的垂直平分線(xiàn)
1、使學(xué)生理解線(xiàn)段的垂直平分線(xiàn)的性質(zhì)定理及逆定理,掌握這兩個(gè)定理的關(guān)系并會(huì)用這兩個(gè)定理解決有關(guān)幾何問(wèn)題。
2、了解線(xiàn)段垂直平分線(xiàn)的軌跡問(wèn)題。
3、結(jié)合教學(xué)內(nèi)容培養(yǎng)學(xué)生的動(dòng)作思維、形象思維和抽象思維能力。
線(xiàn)段的垂直平分線(xiàn)性質(zhì)定理及逆定理的引入證明及運(yùn)用。
線(xiàn)段的垂直平分線(xiàn)性質(zhì)定理及逆定理的關(guān)系。
1、垂直平分線(xiàn)上所有的點(diǎn)和線(xiàn)段兩端點(diǎn)的距離相等。
2、到線(xiàn)段兩端點(diǎn)的距離相等的所有點(diǎn)都在這條線(xiàn)段的垂直平分線(xiàn)上。
:投影儀及投影膠片。
一、提問(wèn)
1、角平分線(xiàn)的性質(zhì)定理及逆定理是什么?
2、怎樣做一條線(xiàn)段的垂直平分線(xiàn)?
二、新課
1、請(qǐng)同學(xué)們?cè)谡n堂練習(xí)本上做線(xiàn)段ab的垂直平分線(xiàn)ef(請(qǐng)一名同學(xué)在黑板上做)。
2、在ef上任取一點(diǎn)p,連結(jié)pa、pb量出pa=?,pb=?引導(dǎo)學(xué)生觀(guān)察這兩個(gè)值有什么關(guān)系?
通過(guò)學(xué)生的觀(guān)察、分析得出結(jié)果pa=pb,再取一點(diǎn)p'試一試仍然有p'a=p'b,引導(dǎo)學(xué)生猜想ef上的所有點(diǎn)和點(diǎn)a、點(diǎn)b的距離都相等,再請(qǐng)同學(xué)把這一結(jié)論敘述成命題(用幻燈展示)。
定理:線(xiàn)段的垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段的兩個(gè)端點(diǎn)的距離相等。
這個(gè)命題,是我們通過(guò)作圖、觀(guān)察、猜想得到的,還得在理論上加以證明是真命題才能做為定理。
已知:如圖,直線(xiàn)ef⊥ab,垂足為c,且ac=cb,點(diǎn)p在ef上
求證:pa=pb
如何證明pa=pb學(xué)生分析得出只要證rtδpca≌rtδpcb
證明:∵pc⊥ab(已知)
∴∠pca=∠pcb(垂直的定義)
在δpca和δpcb中
∴δpca≌δpcb(sas)
即:pa=pb(全等三角形的對(duì)應(yīng)邊相等)。
反過(guò)來(lái),如果pa=pb,p1a=p1b,點(diǎn)p,p1在什么線(xiàn)上?
過(guò)p,p1做直線(xiàn)ef交ab于c,可證明δpa p1≌pb p1(sss)
∴ef是等腰三角型δpab的頂角平分線(xiàn)
∴ef是ab的垂直平分線(xiàn)(等腰三角形三線(xiàn)合一性質(zhì))
∴p,p1在ab的垂直平分線(xiàn)上,于是得出上述定理的逆定理(啟發(fā)學(xué)生敘述)(用幻燈展示)。
逆定理:和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上。
根據(jù)上述定理和逆定理可以知道:直線(xiàn)mn可以看作和兩點(diǎn)a、b的距離相等的所有點(diǎn)的集合。
線(xiàn)段的垂直平分線(xiàn)可以看作是和線(xiàn)段兩個(gè)端點(diǎn)距離相等的所有點(diǎn)的集合。
三、舉例(用幻燈展示)
例:已知,如圖δabc中,邊ab,bc的垂直平分線(xiàn)相交于點(diǎn)p,求證:pa=pb=pc。
證明:∵點(diǎn)p在線(xiàn)段ab的垂直平分線(xiàn)上
∴pa=pb
同理pb=pc
∴pa=pb=pc
由例題pa=pc知點(diǎn)p在ac的垂直平分線(xiàn)上,所以三角形三邊的垂直平分線(xiàn)交于一點(diǎn)p,這點(diǎn)到三個(gè)頂點(diǎn)的距離相等。
四、小結(jié)
正確的運(yùn)用這兩個(gè)定理的關(guān)鍵是區(qū)別它們的條件與結(jié)論,加強(qiáng)證明前的分析,找出證明的途徑。定理的作用是可證明兩條線(xiàn)段相等或點(diǎn)在線(xiàn)段的垂直平分線(xiàn)上。
五、練習(xí)與作業(yè)
練習(xí):第87頁(yè)1、2
作業(yè):第95頁(yè)2、3、4
線(xiàn)段的垂直平分線(xiàn)的性質(zhì)定理及逆定理,都是幾何中的重要定理,也是一條重要軌跡。在幾何證明、計(jì)算、作圖中都有重要應(yīng)用。我講授這節(jié)課是線(xiàn)段垂直平分線(xiàn)的第一節(jié)課,主要完成定理的引出、證明和初步的運(yùn)用。
在設(shè)計(jì)教案時(shí),我結(jié)合教材內(nèi)容,對(duì)如何導(dǎo)入新課,引出定理以及證明進(jìn)行了探索。在導(dǎo)入新課這一環(huán)節(jié)上我先讓學(xué)生做一條線(xiàn)段ab的垂直平分線(xiàn)ef,在ef上取一點(diǎn)p,讓學(xué)生量出pa、pb的長(zhǎng)度,引導(dǎo)學(xué)生觀(guān)察、討論每個(gè)人量得的這兩個(gè)長(zhǎng)度之間有什么關(guān)系:得到什么結(jié)論?學(xué)生回答:pa=pb。然后再讓學(xué)生取一點(diǎn)試一試,這兩個(gè)長(zhǎng)度也相等,由此引導(dǎo)學(xué)生猜想到線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理。在這一過(guò)程中讓學(xué)生主動(dòng)積極的參與到教學(xué)中來(lái),使學(xué)生通過(guò)作圖、觀(guān)察、量一量再得出結(jié)論。從而把知識(shí)的形成過(guò)程轉(zhuǎn)化為學(xué)生親自參與、發(fā)現(xiàn)、探索的過(guò)程。在教學(xué)時(shí),引導(dǎo)學(xué)生分析性質(zhì)定理的題設(shè)與結(jié)論,畫(huà)圖寫(xiě)出已知、求證,通過(guò)分析由學(xué)生得出證明性質(zhì)定理的方法,這個(gè)過(guò)程既是探索過(guò)程也是調(diào)動(dòng)學(xué)生動(dòng)腦思考的過(guò)程,只有學(xué)生動(dòng)腦思考了,才能真正理解線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理,以及證明方法。在此基礎(chǔ)上再提出如果有兩點(diǎn)到線(xiàn)段的兩端點(diǎn)的距離相等,這樣的點(diǎn)應(yīng)在什么樣的直線(xiàn)上?由條件得出這樣的點(diǎn)在線(xiàn)段的垂直平分線(xiàn)上,從而引出性質(zhì)定理的逆定理,由上述兩個(gè)定理使學(xué)生再進(jìn)一步知道線(xiàn)段的垂直平分線(xiàn)可以看作是到線(xiàn)段兩端點(diǎn)距離的所有點(diǎn)的集合。這樣可以幫助學(xué)生認(rèn)識(shí)理論來(lái)源于實(shí)踐又服務(wù)于實(shí)踐的道理,也能提高他們學(xué)習(xí)的積極性,加深對(duì)所學(xué)知識(shí)的理解。在講解例題時(shí)引導(dǎo)學(xué)生用所學(xué)的線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理以及逆定理來(lái)證,避免用三角形全等來(lái)證。最后總結(jié)點(diǎn)p是三角形三邊垂直平分線(xiàn)的交點(diǎn),這個(gè)點(diǎn)到三個(gè)頂點(diǎn)的距離相等。為了使學(xué)生當(dāng)堂掌握兩個(gè)定理的靈活運(yùn)用,讓學(xué)生做87頁(yè)的兩個(gè)練習(xí),以達(dá)到鞏固知識(shí)的目的。
高中數(shù)學(xué)不等式教案篇六
(一)知識(shí)與技能
1.了解從實(shí)際情境中抽象出二元一次不等式(組)模型的過(guò)程
2.掌握簡(jiǎn)單的二元線(xiàn)性規(guī)劃問(wèn)題的解法
3.了解數(shù)學(xué)建模的整個(gè)過(guò)程
(二)過(guò)程與方法
1.通過(guò)對(duì)實(shí)際問(wèn)題的探索,培養(yǎng)學(xué)生用數(shù)學(xué)眼光去觀(guān)察生活、并且能提出問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力.
2.增強(qiáng)學(xué)生的協(xié)作能力.
(三) 情感、態(tài)度與價(jià)值觀(guān)
1.通過(guò)學(xué)生自主探索、合作交流,親身體驗(yàn)數(shù)學(xué)模型的發(fā)現(xiàn),培養(yǎng)學(xué)生勇于探索、善于發(fā)現(xiàn)、不畏艱辛的品質(zhì),增強(qiáng)學(xué)習(xí)的成功心理,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,深刻體會(huì)數(shù)學(xué)是有用的.
2.通過(guò)實(shí)例的社會(huì)意義,培養(yǎng)學(xué)生愛(ài)護(hù)環(huán)境的責(zé)任心.
重點(diǎn):從具體生活情境中提煉出簡(jiǎn)單的二元線(xiàn)性規(guī)劃問(wèn)題,并且用數(shù)學(xué)方法解決問(wèn)題.
難點(diǎn):從具體生活情境中提煉出約束條件和目標(biāo)函數(shù).
本節(jié)課采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以二元一次不等式(組)模型的發(fā)現(xiàn)為基本探究?jī)?nèi)容,以周?chē)澜绾蜕顚?shí)際為對(duì)象,為學(xué)生提供充分自由表達(dá)、質(zhì)疑、探究、討論問(wèn)題的機(jī)會(huì),讓學(xué)生通過(guò)個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)實(shí)際問(wèn)題的深入探討.讓學(xué)生在“活動(dòng)”中學(xué)習(xí),在“主動(dòng)”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新.設(shè)計(jì)思路如下:
創(chuàng)設(shè)情境→方案討論→數(shù)據(jù)篩選→建立模型→解決模型→反饋實(shí)際
引入
(1)如圖,小明與小聰玩蹺蹺板,大家都不用力時(shí),蹺蹺板左低右高.小明的身體質(zhì)量為 p(kg),小聰?shù)纳眢w質(zhì)量為q(kg),書(shū)包的質(zhì)量為2kg,怎樣表示p 、q之間的關(guān)系?
(2)上圖是公路上對(duì)汽車(chē)的限速標(biāo)志,表示汽車(chē)在該路段行使的速度不得超過(guò)40km /h.若用v (km /h)表示車(chē)的速度,那么v與40之間的數(shù)量關(guān)系用怎樣的式子表示?
(3)據(jù)科學(xué)家測(cè)定,太陽(yáng)表面的溫度不低于6000 ℃.設(shè)太陽(yáng)表面的溫度為t (℃),怎樣表示t 與6000之間的關(guān)系?
歸納:數(shù)學(xué)作用之一,我們可以用數(shù)學(xué)語(yǔ)言描述客觀(guān)世界的某些現(xiàn)象
當(dāng)然,數(shù)學(xué)作用不僅于此,我們還可以通過(guò)數(shù)學(xué)解決現(xiàn)實(shí)生活中的問(wèn)題.
(一)情景設(shè)置
我校環(huán)境優(yōu)美,毗鄰江水,校園內(nèi)四季常青,但是遠(yuǎn)眺圍墻外,有一座小山,那是一座垃圾山.楊府山垃圾場(chǎng)有他的.歷史作用和意義,現(xiàn)在已經(jīng)完成了它的歷史使命,而且現(xiàn)在有了負(fù)面影響,市委市政府打算對(duì)其進(jìn)行改造.經(jīng)過(guò)專(zhuān)家論證,有如下方案可行:發(fā)電、制磚
(二)處理方案討論
現(xiàn)同時(shí)用兩種措施對(duì)垃圾山進(jìn)行改造處理,如果你是項(xiàng)目經(jīng)理,給你500萬(wàn)采購(gòu)發(fā)電設(shè)備以及制磚設(shè)備,你該如何去實(shí)施?
(學(xué)生自主發(fā)言)
學(xué)生問(wèn)題一、怎樣安排資金?買(mǎi)幾臺(tái)發(fā)電設(shè)備,幾臺(tái)制磚設(shè)備?如何決策?
引導(dǎo):?jiǎn)栴}轉(zhuǎn)化為如何安排資金,能取得最大效益?即兩種方案生產(chǎn)產(chǎn)品的利潤(rùn)(售價(jià)減去成本)
學(xué)生問(wèn)題二、如何知道這些信息?(產(chǎn)品售價(jià)、設(shè)備的單價(jià)等)
引導(dǎo)(先提問(wèn)學(xué)生):上網(wǎng)查詢(xún)、市場(chǎng)調(diào)查、向已建廠(chǎng)取經(jīng)、參觀(guān)展銷(xiāo)會(huì)等等.
(三)數(shù)據(jù)的篩選
由于教室條件限制,不能現(xiàn)場(chǎng)查取,所以老師幫你們收集了一些資料,希望對(duì)你們有所幫助.請(qǐng)分析以下信息,提取你認(rèn)為有用的數(shù)據(jù).
信息一、
信息二、
焚燒垃圾重量直接關(guān)系到垃圾發(fā)電企業(yè)的經(jīng)濟(jì)效益.在bot的模式下,企業(yè)的效益這樣來(lái)保障:
1.每處理1噸垃圾,政府補(bǔ)貼發(fā)電企業(yè)73.8元,
2.保證以0.52元/千瓦時(shí)的價(jià)格收購(gòu)全部垃圾發(fā)電量,
3.一臺(tái)發(fā)電設(shè)備每處理1噸垃圾平均費(fèi)用為123元
4.一臺(tái)發(fā)電設(shè)備日處理垃圾能力為225噸,
5.1噸垃圾可發(fā)電300千瓦時(shí),其中30%為自用電
信息三、
發(fā)電設(shè)備:120萬(wàn)/臺(tái) 制磚設(shè)備:35萬(wàn)/臺(tái)
機(jī)房總面積為7畝,每臺(tái)設(shè)備有各自平均占地,其中發(fā)電設(shè)備每臺(tái)平均占地1畝,制磚機(jī)每臺(tái)平占地1畝
(四)建立模型
你能從以上信息中提煉出你所需要的信息,并用數(shù)學(xué)語(yǔ)言表示出來(lái)嗎?
(學(xué)生動(dòng)手)
引導(dǎo):我們剛才處理的問(wèn)題即應(yīng)用題:
例 一工廠(chǎng)欲生產(chǎn)甲乙兩種產(chǎn)品,已知生產(chǎn)一件甲產(chǎn)品利潤(rùn)為60元,一臺(tái)甲設(shè)備價(jià)格為120萬(wàn),占地1畝,年生產(chǎn)能力為82125件;生產(chǎn)一件乙產(chǎn)品利潤(rùn)為0.12元,一臺(tái)乙設(shè)備價(jià)格為35萬(wàn),占地1畝,年生產(chǎn)能力為15000000件.現(xiàn)有資金500萬(wàn),廠(chǎng)房7畝,該廠(chǎng)該如何添置甲乙兩種設(shè)備,使得年利潤(rùn)最大?
(五)解決模型
該問(wèn)題即我們上節(jié)課剛學(xué)過(guò)的線(xiàn)性規(guī)劃問(wèn)題,請(qǐng)大家動(dòng)手解決.
(六)反饋實(shí)際
我們可以將我們的成果發(fā)到市長(zhǎng)信箱,為城市建設(shè)出謀劃策,貢獻(xiàn)自己的一份力量.
五、歸納小結(jié)
(一)解決生活問(wèn)題的步驟:
創(chuàng)設(shè)情境→方案討論→數(shù)據(jù)篩選→建立模型→解決模型→反饋實(shí)際
現(xiàn)實(shí)問(wèn)題:給你資金和地皮,購(gòu)置設(shè)備
方案討論:通過(guò)1.上網(wǎng)查詢(xún) 2.市場(chǎng)調(diào)查3.吸收已建廠(chǎng)經(jīng)驗(yàn)等方法收集信息.
數(shù)據(jù)篩選及建立模型:將收集到的信息用數(shù)學(xué)語(yǔ)言表示出來(lái).
解決模型:用已學(xué)過(guò)的數(shù)學(xué)知識(shí)進(jìn)行分析、處理,得出結(jié)論.
反饋實(shí)際:將結(jié)論應(yīng)用于實(shí)際問(wèn)題當(dāng)中.
(二)順利解決生活問(wèn)題體要具備的能力
我們要具備信息收集及處理能力、生活語(yǔ)言轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言的能力以及扎實(shí)的數(shù)學(xué)解題能力.